首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Costimulation blockade has been proposed to induce allograft tolerance. We combined an antagonist anti-CD40 monoclonal antibody (mAb) with an antagonist anti-CD86 mAb in a rhesus monkey kidney allograft model. We chose this combination because it leaves CD80-CD152 signaling unimpaired, allowing for the down-regulatory effect of CD152 signaling to take place through this pathway. METHODS: Rhesus monkeys underwent transplantation with a major histocompatibility complex-mismatched kidney. One group of animals received anti-CD40 alone, and a second group received the combination of anti-CD40 and anti-CD86, twice weekly for 56 days. RESULTS: Three animals with low levels of anti-CD40 rejected the transplanted kidney while still receiving treatment. Three animals with high levels of anti-CD40 rejected at days 91, 134, and 217 with signs of chronic rejection. Animals treated with the combination of anti-CD40 and anti-CD86 mAbs rejected their kidneys at days 61, 75, and 78, shortly after cessation of treatment. Two animals were killed on days 71 and 116 with a blocked ureter. These animals developed virtually no signs of tubulitis or infiltration during treatment and no donor-specific alloantibodies. CONCLUSIONS: Both treatment protocols prevented rejection for the duration of the treatment in most animals. Blocking costimulation by anti-CD40 or by anti-CD40 plus anti-CD86 may be an effective method to prevent graft rejection and may obviate the need for other immunosuppressive drugs, especially in the immediate posttransplantation period.  相似文献   

2.
BACKGROUND: Induction of antigen-specific unresponsiveness to grafts is the ultimate goal for organ transplantation. It has been shown that anergic T cells generated in vivo can be transferred as suppressor cells. Anergic cells generated in vitro have never been successfully used to prevent allograft rejection in vivo. We examined whether anergic cells generated in vitro by blocking CD28/B7 costimulatory pathway can suppress allograft rejection in vivo. METHODS: Anergic T cells were generated in vitro by the addition of anti-B7-1 and anti-B7-2 monoclonal antibodies (mAbs) to primary mixed lymphocyte reaction (MLR) consisting of C57BL/6 (B6) splenocytes as responder and irradiated BALB/c splenocytes as stimulator. We tested the ability of these cells to respond to various stimuli and to suppress alloreactive T-cell responses in vitro. For in vivo studies, 4x10(7) anergic cells were injected intravenously immediately after transplantation of BALB/c islets under the renal subcapsular space of streptozotocin-induced diabetic and 2.5-Gy X-irradiated B6 mice. RESULTS: Anergic cells treated with both mAbs in the primary MLR did not proliferate in secondary MLR against BALB/c and third-party C3H/He stimulators. The cells also failed to respond to immobilized anti-CD3 mAb, although they proliferated in response to concanavalin A or phorbol myristate acetate + ionomycin. The anergic state was reversed by the addition of exogenous IL-2. Furthermore, these cells suppressed the proliferation of naive B6 T cells against either the same (BALB/c) or third-party (C3H/He) stimulator cells. In in vivo studies, irradiated B6 mice rejected BALB/c islet allografts acutely with a mean survival time of 27.0+/-8.3 days, whereas two of six animals injected with the anergic cells accepted the allografts indefinitely (>100 days) with a mean survival time of 52.0+/-38.2 days. CONCLUSIONS: Anergic cells generated in vitro by blocking CD28/B7 costimulatory pathway suppress islet allograft rejection after adoptive transfer. This procedure might be clinically useful for promoting allograft survival.  相似文献   

3.
BACKGROUND: There is accumulating evidence that blockade of the costimulatory pathways offers a valid approach for immune suppression after solid organ transplantation. In this study, the efficacy of anti-CD80 and anti-CD86 monoclonal antibodies (mAbs) in combination with cyclosporine (CsA) to prevent renal allograft rejection was tested in non-human primates. METHODS: Rhesus monkeys were transplanted with a partly major histocompatibility complex-matched kidney on day 0. Anti-CD80 and anti-CD86 mAbs were administered intravenously daily for 14 days starting at day - 1. CsA was given intramuscularly for 35 days starting just after transplantation. The kidney function was monitored by determining serum creatinine levels. RESULTS: The combination of anti-CD80 and anti-CD86 mAbs completely abrogated the mixed lymphocyte reaction. Untreated rhesus monkeys rejected the kidney allograft in 5-7 days. Treatment with anti-CD80 plus anti-CD86 mAbs resulted in a significantly prolonged graft survival of 28+ 7 days (P=0.025). There were no clinical signs of side effects or rejection during treatment. Kidney graft rejection started after the antibody therapy was stopped. The anti-mouse antibody response was delayed from day 10 to 30 after the first injection. No difference in graft survival was observed between animals treated with CsA alone or in combination with anti-CD80 and anti-CD86 mAbs. However, treatment with anti-CD80 and anti-CD86 mAbs reduced development of vascular rejection. CONCLUSIONS: In combination, anti-CD80 and antiCD86 mAbs abrogate T-cell proliferation in vitro, delay the anti-mouse antibody response in vivo, and prevent graft rejection and development of graft vascular disease in a preclinical vascularized transplant model in non-human primates.  相似文献   

4.
BACKGROUND: Dendritic cells can mount immune response as competent antigen presenting cells. Recently, it has been reported that immature dendritic cells induce prolongation of allograft survival. However, the ability of mature dendritic cells to induce operational tolerance is unclear. Therefore, in this study, we examined the ability of splenic mature dendritic cells to induce operational tolerance to fully allogeneic antigens using mouse heterotopic heart transplantation model. METHODS: CBA (H2k) mice received i.v. injections with donor splenic dendritic cells or B cells in the absence or presence of monoclonal antibody (mAb) specific for CD40 ligand or CD80/CD86 2 weeks before transplantation of a C57BL/10 (H2b) heart. RESULTS: When donor dendritic cells were injected i.v. 2 weeks before transplantation, rejection response was accelerated compared with that of naive mice [median survival time (MST) = 7 and 8 days, respectively]. However, when CD40 pathway was blocked by anti-CD40 ligand mAb, i.v. injection of donor dendritic cells but not B cells induced indefinite graft survival (MST >100 and 20 days, respectively). Mice treated with anti-CD40 ligand mAb alone rejected their grafts with a MST of 18 days. Intravenous injection of donor dendritic cells and B cells in combination with anti-CD80/CD86 mAbs was less effective to induce graft prolongation (MST = 9.5 and 13 days, respectively). CONCLUSIONS: Therefore, under blockade of CD40 pathway, mature dendritic cells were tolerogens in vivo independent of CD80/86 pathways.  相似文献   

5.
A group A recipient received a group B cardiac allograft. Aggressive plasma exchange with replacement by group AB FFP initially reduced the recipient's anti-B titer to a low level. Once a secondary anti-B response was mounted, plasma exchange was ineffective and IgM and IgG anti-B titers rose to high levels. Associated with the increased anti-B titers, cardiac function deteriorated and on day 13 the group B heart was replaced by a group A allograft. The compatible allograft functioned well initially but was eventually rejected, and the patient died 51 days after the initial transplantation. Histologic examination of the first allograft revealed a delayed form of typical antibody-mediated rejection with destruction of the microvasculature associated with antibody deposition and acute inflammation. By contrast, the histopathology of the second compatible allograft was typical of cell-mediated allograft rejection. Extracts of myocardium from the incompatible heart contained IgM and IgG anti-B, while no anti-B alloantibody was demonstrable in the extracts of the ABO-compatible allograft and a control heart. The utility of plasma exchange with group AB FFP replacement in such a circumstance requires further study.  相似文献   

6.
OBJECTIVE: To determine the precise in vivo interaction between T-cell costimulatory blockade and conventional immunosuppression in transplantation. SUMMARY BACKGROUND DATA: Blocking B7 or CD154 T-cell costimulatory activation pathways prevents allograft rejection in small and large animal transplant models and is considered a promising strategy for clinical organ transplantation. METHODS: A fully MHC-mismatched vascularized mouse cardiac allograft model was used to test the interactions between anti-CD154 or CTLA4Ig monotherapy and conventional immunosuppressive drugs in promoting long-term graft acceptance. The frequency of alloreactive T cell was measured by ELISPOT. Chronic rejection was examined by histology. RESULTS: Cyclosporine, tacrolimus, and anti-IL-2R monoclonal antibody therapy abrogated the effect of a single-dose protocol of anti-CD154 therapy. In contrast, rapamycin acted synergistically with anti-CD154 therapy in promoting long-term allograft survival. The addition of calcineurin inhibitors did not abolish this synergistic effect. Intense CD154-CD40 blockade by a multiple-dose schedule of anti-CD154 resulted in long-term graft survival and profound alloreactive T-cell unresponsiveness and overcame the opposite effects of calcineurin inhibitors. CTLA4Ig induced long-term graft survival, and the effect was not affected by the concomitant use of any immunosuppressive drugs. CONCLUSIONS: The widespread view that calcineurin inhibitors abrogate the effects of T-cell costimulatory blockade should be revisited. Sufficient costimulatory blockade and synergy induced by CD154 blockade and rapamycin promote allograft tolerance and prevent chronic rejection.  相似文献   

7.
BACKGROUND: CD45RB is a potent immunomodulatory target to achieve long-term allograft survival. We evaluated the in vivo effect of anti-CD45RB monoclonal antibody (mAb) treatment in combination with conventional immunosuppression or costimulatory blockade strategies as a therapeutic modality for future clinical application. METHODS: A fully MHC-mismatched vascularized mouse cardiac allograft model was used to test the interactions between anti-CD45RB mAb and conventional immunosuppressive drugs or costimulatory blockade of the CD40/CD154 or B7/CD28 pathway. Chronic rejection was examined histologically for development of chronic allograft vasculopathy. RESULTS: Cyclosporine significantly abrogated the effect of anti-CD45RB therapy. In contrast, rapamycin acted synergistically with anti-CD45RB mAb in promoting long-term allograft survival. CD154 blockade further enhanced the tolerogenic efficacy of anti-CD45RB mAb. These synergistic effects of combination treatments also prevented the development of chronic allograft vasculopathy. CONCLUSION: CD45RB-targeting strategy in combination with the use of rapamycin or costimulatory blockade promotes allograft tolerance and prevents chronic rejection.  相似文献   

8.
The purpose of this study was to determine the role for CD8 T cells versus generalized MHC class I-restricted antigen presentation in islet allograft rejection and tolerance. Diabetic C57BI/6 (B6, H-2(b)) controls, C57BI/6 CD8-deficient (CD8 KO), or MHC class I-deficient C57BI/6 (beta 2m KO) recipients were grafted with allogeneic BALB/c (H-2(d)) islets. Islet allografts were acutely rejected in untreated B6, CD8 KO, and in beta 2m KO mice, indicating that neither CD8 T cells nor host MHC class I is required for allograft rejection. We then determined the efficacy of costimulation blockade in these same strains. Costimulation blockade with anti-CD154 therapy facilitated long-term islet allograft survival in both B6 and in CD8 KO recipients. However, anti-CD154 treated beta 2m KO recipients were completely refractory to anti-CD154 therapy; all treated animals acutely rejected islet allografts with or without therapy. Also, anti-NK1.1 treatment of wild-type B6 mice abrogated graft prolongation following anti-CD154 therapy. Taken together, results show a dramatic distinction between two forms of MHC class I-restricted pathways in allograft prolongation. Although anti-CD154-induced allograft survival was CD8 T-cell independent, an intact host MHC class I-restricted (beta 2m-dependent) pathway is nevertheless necessary for allograft survival. This pathway required NK1.1+ cells, implicating NK and/or NKT cells in promoting allograft prolongation in vivo.  相似文献   

9.
Clinical islet cell transplantation has resulted in insulin independence in a limited number of cases. Rejection, recurrence of autoimmunity, and impairment of normal islet function by conventional immunosuppressive drugs, e.g., steroids, tacrolimus, and cyclosporin A, may all contribute to islet allograft loss. Furthermore, intraportal infusion of allogeneic islets results in the activation of intrahepatic macrophages and endothelial cells, followed by production of proinflammatory mediators that can contribute to islet primary nonfunction. We reasoned that the beneficial effects of anti-CD154 treatment on autoimmunity, alloreactivity, and proinflammatory events mediated by macrophages and endothelial cells made it an ideal agent for the prevention of islet allograft failure. In this study, a nonhuman primate model (Papio hamadryas) was used to assess the effect of humanized anti-CD154 (hu5c8) on allogeneic islet engraftment and function. Nonimmunosuppressed and tacrolimus-treated recipients were insulin independent posttransplant, but rejected their islet allografts in 8 days. Engraftment and insulin independence were achieved in seven of seven baboon recipients of anti-CD154 induction therapy administered on days -1, 3, and 10 relative to the islet transplant. Three of three baboons treated with 20 mg/kg anti-CD154 induction therapy experienced delayed rejection episodes, first detected by elevations in postprandial blood glucose levels, on postoperative day (POD) 31 for one and on POD 58 for the other two. Re-treatment with three doses of anti-CD154 resulted in reversal of rejection in all three animals and in a return to normoglycemia and insulin independence in two of three baboons. It was possible to reverse multiple episodes of rejection with this approach. A loss of functional islet mass, as detected by reduced first-phase insulin release in response to intravenous glucose tolerance testing, was observed after each episode of rejection. One of two baboons treated with 10 mg/kg induction therapy became insulin independent post-transplant but rejected the islet graft on POD 10; the other animal experienced a reversible rejection episode on POD 58 and remained insulin independent and normoglycemic until POD 264. Two additional baboon recipients of allogeneic islets and donor bone marrow (infused on PODs 5 and 11) were treated with induction therapy (PODs -1, 3, 10), followed by initiation of monthly maintenance therapy (for a period of 6 months) on POD 28. Rejection-free graft survival and insulin independence was maintained for 114 and 238 days, with preservation of functional islet mass observed in the absence of rejection. Prevention and reversal of rejection, in the absence of the deleterious effects associated with the use of conventional immunosuppressive drugs, make anti-CD154 a unique agent for further study in islet cell transplantation.  相似文献   

10.
CD28 antagonists have been shown to promote long-term graft survival and induce donor-specific tolerance. In this study, the role of CD28/B7 costimulation and the relative importance of host versus donor B7 expression in allograft rejection was assessed in a murine abdominal vascularized heterotopic heart transplant model. Wild-type, CD28-deficient, or B7-1/B7-2-deficient C57BL/6 (B6) mice were grafted with allogeneic wild type or B7-1/B7-2-deficient hearts. The results demonstrate allogeneic heart grafts survive long-term in mCTLA4Ig-treated B6 and untreated B7-1/B7-2-deficient B6 recipients but not CD28KO B6 mice. B7-1/B7-2KO B6 recipients treated with anti-CD28 (PV-1) or recombinant human IL-2 rejected the heart transplants indicating that these mice are immunologically competent to reject grafts if costimulatory signals are supplied or bypassed. Finally, there was no difference in rejection between normal animals transplanted with wild-type versus B7-1/B7-2-deficient hearts. These results support a critical role for B7-expressing host antigen presenting cells in the rejection of heart allografts in mice and differences among B7KO and CD28KO animals.  相似文献   

11.
Zhong T  Liu Y  Jiang J  Wang H  Temple CL  Sun H  Garcia B  Zhong R  Ross DC 《Transplantation》2007,84(12):1636-1643
BACKGROUND: The purpose of this study was to determine if a short course of monoclonal antibody (mAb) against CD45RB, LF 15-0195, and rapamycin would achieve long-term survival by inducing tolerance in a mouse limb transplant model. METHODS: Group 1 (n=9) consisted of nine isogenic (C57BL/6) transplants. Group 2 (n=3) included C57BL/6-to-BALB/c transplants receiving no drug therapy. Group 3 mice (n=4) were treated with mAb (3 mg/kg) and LF (2 mg/kg), and Group 4 (n=13) was treated with mAb, LF, and rapamycin (2 mg/kg). Both treatment groups received drug treatment for only 14 days posttransplantation. Animals were sacrificed if they displayed evidence of rejection or when deemed to be tolerant (defined as >day 100). RESULTS: All isografts had normal histology and graft function on day 100. Untreated C57BL/6-to-BALB/c allografts developed acute rejection within 10 days. The combination of mAb and LF prolonged allograft survival to a mean of 39+/-7 days. In Group 4, two animals had to be sacrificed at days 28 and 76 due to acute urinary retention. Transplant tolerance was achieved in 8 of the remaining 11 animals with a mean survival time of 100+/-12 days. Donor specific tolerance was demonstrated through permanent acceptance of skin grafts from the donor strain and rejection of skin grafts from C3H mice. Three Group 4 animals showed clinical and histological signs of mild, chronic rejection. Dendritic cells isolated from tolerant recipients exerted a suppressive effect in mixed lymphocyte reaction. CONCLUSION: A short course of anti-CD45RB mAb and LF 15-0195 prolonged limb allograft survival. The addition of rapamycin induced limb allograft tolerance which is associated with the generation of tolerogenic dendritic cells that suppressed T-cell proliferation.  相似文献   

12.
There is increasing evidence that ongoing T-cell recognition of alloantigen and activation are key mediators of chronic allograft rejection. The CD28-B7 pathway is unique among costimulatory pathways in that two alternate ligands for B7 exist: CD28 and CTLA4. Recently, it has been suggested that CTLA4 negative signaling may be required for induction of acquired tolerance in vivo. A strategy by which the T cell is targeted at the CD28 receptor rather than its ligands would theoretically allow the inhibitory functions of the CTLA4-B7-1/2 axis to remain intact. Using a rat-specific monoclonal antibody, we investigated the effect of targeting CD28 in a model of chronic rejection without the confounding variable of immunosuppression. We also used an acute cardiac allograft rejection model to investigate CD28 stimulation-based strategies to induce donor-specific tolerance. We demonstrated that anti-CD28 monoclonal antibody was as effective as CTLA4 immunoglobulin in protecting against chronic allograft vasculopathy. In addition, a short course of cyclosporine therapy synergized with either anti-CD28 monoclonal antibody or CTLA4 immunoglobulin, suggesting that it may be clinically relevant to combine low-dose calcineurin inhibitors with CTLA4 immunoglobulin or anti-B7 antibodies. Finally, we report on the potential mechanisms of action of targeting CD28 in vivo.  相似文献   

13.
CD2 and 2B4 (CD244) are members of the immunoglobulin gene superfamily and are both ligands for another family member, CD48. CD2 is widely distributed on T, NK, and B cells and some antigen-presenting cells, while 2B4 is expressed on NK and some T cells and monocytes and is known to participate in NK cytotoxicity. Since indefinite allograft survival could be obtained by a combination of anti-CD48 plus anti-CD2 mAb administration, it was important to determine the role of 2B4 blockade in allograft rejection. MAbs directed against CD2, CD48, or 2B4 were administered singly or in pairs to cardiac allograft recipients. The experiments show that only anti-CD2 plus anti-CD48 mAbs result in indefinite allograft survival, while anti-CD2 plus anti-2B4 mAbs substantially prolong graft survival, and anti-CD48 plus anti-2B4 mAbs were no better than each mAb alone. The effect of these mAbs on anti-CD3 mAb and alloantigen-driven proliferation and IFN-gamma production were also assessed. In general, anti-CD2 inhibited both anti-CD3 mAb and alloantigen-driven responses, while anti-CD48 inhibited only anti-CD3 mAb but not alloantigen-driven proliferative and cytokine responses. Anti-2B4 mAbs were generally ineffective alone. Combinations of mAbs were more effective than single mAbs only in alloantigen-driven proliferation, commensurate with allograft survival results. Using CD2-/- and CD48-/- T cells and antigen-presenting cells, we also demonstrate that these inhibitory mAbs act primarily by blocking intercellular interactions, rather than directly delivering negative signals to T cells. These results suggest that, unlike CD2, 2B4 is not a potent regulatory molecule or ligand for CD48 in the response to alloantigen. Blocking the 2B4-CD48 receptor-ligand pair does not inhibit T-cell responses and alloreactivity to the same degree as CD2-CD48 blockade.  相似文献   

14.
Abstract Tolerance to organ allografts in rodents and pigs can be easily achieved. However, tolerance induction in a large primate model has been more elusive. In this study, we have used an anti‐CD4, murine monoclonal antibody as a carrier for the cytotoxic drug idarubicin (IDA) to delete or inactivate alloreactive T‐cells responding to a renal allograft in a baboon transplant model. Fourteen Chacma baboons weighing between 15‐25 kg received heterotopic renal allografts. Recipient and donor pairs were selected on the basis of ABO compatibility. Seven animals were given no immunosuppression and served as the control group. The remaining 7 animals received anti‐CD4 IDA. The first 2 animals in this group received 2 mg IVI intraoperatively and three doses at 48‐h intervals thereafter. The last 5 animals received a larger dose of 1 mg/kg, starting 24 h pre‐operatively and again on postoperative days 2 and 5. The untreated animals promptly rejected their allografts with a mean survival of 10 days. The survival of the 2 animals treated with 2 mg anti‐CD4 IDA was 7 days each. However, the animals treated with 1 mg/kg anti‐CD4 IDA survived 7, 18, 20, 40 and > 40 days. Peritransplant administration of anti‐CD4 IDA prolonged renal allograft survival in a large primate model. This unique immunoconjugate has the potential of tolerance induction.  相似文献   

15.
BACKGROUND: The CD40-CD154 interaction is critically important in the cell-mediated immune responses. Blockade of this costimulatory pathway has been shown to prevent acute allograft rejection in murine, as well as nonhuman primate models. However, the role of the CD40-CD154 pathway in the development of chronic rejection and the effects of CD154 targeting on progression of chronic rejection have not been evaluated. METHODS: We examined the effect of AH.F5, a new hamster anti-rat CD154 monoclonal antibody, in a fully allogeneic acute(u) into Lewis [LEW] (RT11) and chronic [WF.1L (RT1l) into LEW (RT1l)] vascularized cardiac allograft rejection model. In the chronic model, the antibody was evaluated for prevention (starting day of transplant) and interruption of progression (starting day 30 or 60 after transplant) of chronic vasculopathy. Graft survival, morphology, and immunohistology were evaluated. RESULTS: In the acute rejection model, anti-CD154 therapy alone prevented acute allograft rejection and resulted in 50% long-term allograft survival (>200 days) and donor-specific tolerance. In recipients treated with anti-CD154 monoclonal antibody in combination with a short course of cyclosporine, 100% of allografts survived long-term and all recipients achieved donor-specific tolerance. In the chronic rejection model, allografts from animals treated with the anti-CD154 antibody had a statistically significant lower score of graft arteriosclerosis and fibrosis in both the prevention and 30-day interruption groups when compared with control allografts. In addition, immunohistochemistry showed a decrease in intragraft mononuclear cell infiltration and activation. CONCLUSION: A new anti-CD154 antibody not only prevents acute allograft rejection, but also inhibits and interrupts the development of chronic rejection. In the acute rejection model cyclosporine acts synergistically with anti-CD154 therapy to prolong allograft survival and induce tolerance. In the chronic rejection model relatively early initiation of therapy is essential to prevent progression of chronic allograft vasculopathy and fibrosis.  相似文献   

16.
CD80 and CD86 (also known as B7-1 and B7-2, respectively) are both ligands for the T cell costimulatory receptors CD28 and CD152. Both CD80 and CD86 mediate T cell costimulation, and as such, have been studied for their role in promoting allograft rejection. In this study we demonstrate that administering monoclonal antibodies specific for these B7 ligands can delay the onset of acute renal allograft rejection in rhesus monkeys. The most durable effect results from simultaneous administration of both anti-B7 antibodies. The mechanism of action does not involve global depletion of T or B cells. Despite in vitro and in vivo evidence demonstrating the effectiveness of the anti-B7 antibodies in suppressing T cell responsiveness to alloantigen, their use does not result in durable tolerance. Prolonged therapy with murine anti-B7 antibodies is limited by the development of neutralizing antibodies, but that problem was avoided when humanized anti-B7 reagents are used. Most animals develop rejection and an alloantibody response although still on antibody therapy and before the development of a neutralizing antibody response. Anti-B7 antibody therapy may have use as an adjunctive agent for clinical allotransplantation, but using the dosing regimens we used, is not a tolerizing therapy in this non-human primate model.  相似文献   

17.
The growing development of composite tissue allografts (CTA) highlights the need for tolerance induction protocols. Herein, we developed a mouse model of heterotopic limb allograft in a stringent strain combination in which potentially tolerogenic strategies were tested taking advantage of donor stem cells in the grafted limb. BALB/c allografts were transplanted into C57BL/6 mice treated with anti‐CD154 mAb, nondepleting anti‐CD4 combined to either depleting or nondepleting anti‐CD8 mAbs. Some groups received additional rapamycin. Both depleting and nondepleting mAb combinations without rapamycin only delayed limb allograft rejection, whereas the addition of rapamycin induced long‐term allograft survival in both combinations. Nevertheless, robust donor‐specific tolerance, defined by the acceptance of a fresh donor‐type skin allograft and simultaneous rejection of third‐party grafts, required initial CD8+ T‐cell depletion. Mixed donor‐recipient chimerism was observed in lymphoid organs and recipient bone marrow of tolerant but not rejecting animals. Tolerance specificity was confirmed by the inability to produce IL‐2, IFN‐γ and TNF‐α in MLC with donor antigen while significant alloreactivity persisted against third‐ party alloantigens. Collectively, these results show that robust CTA tolerance and mixed donor‐recipient chimerism can be achieved in response to the synergizing combination of rapamycin, transient CD8+ T‐cell depletion and costimulation/coreceptor blockade.  相似文献   

18.
In recent years a series of novel costimulatory molecules have been identified, including inducible costimulator (ICOS). In a fully major histocompatibility complex (MHC)-mismatched mouse model of islet transplantation, we demonstrate that while monotherapy with CTLA4-Ig, CD40 ligand monoclonal antibody (CD40L mAb) or rapamycin each improves islet allograft survival, graft rejection eventually develops. Immunohistologic analysis of rejected grafts revealed increased ICOS expression, suggesting a role for this costimulatory molecule as an alternate pathway for T-cell activation. The combination of a blocking anti-ICOS mAb with each of the above therapies resulted in significantly improved islet allograft survival, confirming the importance of ICOS signaling in islet allograft rejection. Mechanistic studies conducted in mice treated with anti-ICOS mAb and rapamycin demonstrated a lack of donor-specific immunological tolerance and an absence of regulatory T-cell activity. However, a dramatic effect was seen on acute anti-donor responses whereby anti-ICOS mAb and rapamycin significantly reduced the initial expansion and function of alloreactive T cells. These data demonstrate that blockade of the ICOS/B7RP-1 pathway has potential therapeutic benefit given its role in enhancing islet allograft survival and regulating acute alloresponses in vivo.  相似文献   

19.
Costimulatory blockade with anti-CD154 monoclonal antibody (aCD154) prolongs allograft survival in nonhuman primates, but has not reliably induced tolerance when used alone. In the current studies, we evaluated the effect of adding CD154 blockade to a chimerism inducing nonmyeloablative regimen in primates. We observed a significant improvement of donor bone marrow (DBM) engraftment, which has been associated with a lower incidence of acute rejection and long-term survival of renal allografts without the need for previously required splenectomy. Among the long-term survivors, four never showed evidence of rejection, with the longest survival exceeding 1700 days following discontinuation of immunosuppression. Nevertheless, late chronic rejection was observed in three of eight recipients, indicating the necessity of further modifications of the regimen. Control recipients receiving no DBM or donor splenocytes in place of DBM rejected their allografts. Thus, DBM engraftment with, at least, transient mixed chimerism appears essential for induction of allograft tolerance using this conditioning regimen. Modification of the original mixed chimerism approach, by the addition of costimulatory blockade, has been shown to enhance mixed chimerism and induce renal allograft tolerance with less morbidity in nonhuman primates.  相似文献   

20.
Costimulation blockade is a promising strategy for preventing allograft rejection and inducing tolerance. Using a fully allogeneic mouse model, we tested the effectiveness of the combined blockade of the CD40 ligand and the inducible costimulator (ICOS) on islet allograft survival and in the prevention of autoimmune diabetes in the NOD mouse. Recipients treated with blocking monoclonal antibodies (mAbs) to ICOS and the CD40 ligand had significant prolongation of graft survival, with 26 of 28 functioning for >200 days. Long-term engrafted mice maintained antidonor proliferative and cytotoxic responses, but donor-specific immunization did not induce graft rejection, and challenge with second, same donor but not third-party grafts resulted in long-term acceptance. The immunohistology of tolerant grafts demonstrated the presence of CD4(+)CD25(+) T-cells expressing Foxp3, and islet/kidney composite grafts from tolerant mice, but not from mice lacking lymphocytes, were accepted indefinitely when transplanted into na?ve B6 mice, suggesting that recipient T-cells were necessary to generate dominant tolerance. Combined anti-ICOS and anti-CD40 ligand mAb therapy also prevented diabetes in NOD mice, with only 11% of treated recipients developing diabetes compared with 75% of controls. These data demonstrate that the blockade of CD40 ligand and ICOS signaling induces islet allograft tolerance involving a dominant mechanism associated with intragraft regulatory cells and prevents autoimmune diabetes in NOD mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号