首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Low–density lipoprotein (LDL) apheresis is applied in patients with coronary heart disease because of severe inherited forms of hypercholesterolemia, for which dietary and combined drug treatment cannot lower LDL cholesterol concentrations less than 130 mg/dl. The following article describes the changes in lipoprotein levels in a total of 19 patients undergoing weekly LDL apheresis. Immunoadsorption, operating with polyclonal antibodies against apolipoprotein B–100, was used in 6 patients. Five patients were put on heparin–induced extracorporeal LDL precipitation (HELP) therapy; 6 received dextran sulfate adsorption treatments. Under steady–state conditions a single treatment reduced LDL cholesterol by 149 ± 3 m/dl with immunoadsorption, 122 ± 2 mg/dl with HELP, and 124 ± 18 mg/dl with dextran sulfate adsorption. Lipoprotein (a) (Lp[a]) declined by 52 to 65%. Very low density lipoprotein (VLDL) cholesterol and VLDL triglycerides declined by 45 to 55% because of the activation of lipoprotein lipase and precipitation during the HELP procedure. In all procedures, there was a small reduction in the different high–density lipoprotein fractions, which had returned to normal after 24 h. The long–term HDL3 cholesterol levels increased significantly. During all procedures there was a decrease in the molar esterification rate of lecithin cholesterol acyltrans–ferase activity. All changes in lipid fractions were paralleled by changes in the corresponding apolipoprotein levels. It is concluded that all three techniques described are powerful tools capable of lowering LDL cholesterol in severe hereditary forms of hypercholesterolemia. In HELP and dextran sulfate adsorption, the amount of plasma is limited by the elimination of other plasma constituents. Immunoadsorption may thus be preferred in very severe forms of hypercholesterolemia.  相似文献   

2.
Abstract: In total, 30 patients suffering from familial hypercholesterolemia, resistant to diet and lipid–lowering drugs, were treated for up to 6 years (3.6 ± 1.6; range, 0.2–6.8 years) with low–density lipoprotein (LDL) apheresis. Three different systems were used; the dextran sulfate adsorption system (Kaneka) for 27 of 30 patients, the immunoadsorption system from Baxter for 2 of 30 patients, and the immunoadsorption system with special li–poprotein(a) (Lp[a]) columns from Lipopak for one patient. Prior to the LDL apheresis, 23 of 30 patients suffered from coronary heart disease. Twenty of 23 patients suffered intermittently from symptoms of angina, excertional dyspnea, and claudication. With LDL apheresis, reductions of 47% for total cholesterol, 49% for LDL, 26% for Lp(a), and 40% for triglycerides were reached. Severe side effects such as shock or allergic reactions were very rare (0.55%). In the course of treatment with LDL apheresis, an improvement in general well–being and increased performance were experienced in 27 of 30 patients. A reduction of nitrate medication between 60 and 100% was observed in 17 of 23 patients. The present data clearly demonstrate that treatment with LDL apheresis in patients suffering from severe familial hyperlipidemia, resistant to maximum conservative therapy, is very effective and safe even over long periods of time.  相似文献   

3.
Abstract: Preliminary experience with the efficacy and safety of dextran sulfate cellulose low-density lipoprotein (LDL) apheresis for the treatment of a 4.5-year-old girl with homozygous familial hypercholesterolemia and coronary artery disease is reported. The decrease of the most atherogenic apolipoprotein B-containing lipoproteins, low-density lipoprotein (LDL) and lipoprotein(a) (Lp [a]), were in the ranges of 63.1–68.7%, and 52.5–58.6%, respectively. The child tolerated LDL apheresis without any clinically significant complications. Therefore, she was submitted to a long-term program of treatment at intervals of 15 days. The experience suggests the possibility of an early beginning of extracorporeal treatment with LDL apheresis in children severely affected by homozygous or double heterozygous familial hypercholesterolemia.  相似文献   

4.
Abstract: Hypercholesterolemia and elevated lipoprotein (a) (Lp[a]) levels are considered to be risk factors for the development and progression of premature atherosclerosis. The purpose of our report is to describe the effects of low density lipoprotein (LDL) apheresis (Liposorber system, Kanegafuchi Chemical Industrial Company LTD, Osaka, Japan) on serum lipoprotein concentrations and the clinical status in 2 male patients with homozygous familial hypercholesterolemia. Compared with pretreatment values, the posttreatment concentrations of total cholesterol, LDL cholesterol, and Lp(a) were significantly reduced by 50–60% (p < 0.0001). The concentration of high density lipoprotein (HDL) cholesterol was slightly affected. After one treatment session, LDL cholesterol and Lp(a) were decreased on average by 65% and then increased to reach about 70–75% of the pretreatment values before the next session. Prior to the treatment with LDL apheresis, each patient had suffered one myocardial infarction and had had 2 coronary angiographies. After treatment with LDL apheresis, neither cardiac complaints nor myocardial infarction were observed. The xanthomas were much decreased during the treatment or disappeared. We conclude that LDL apheresis can be continued safely and without major technical problems for several years. Apheresis effectively lowers the serum levels of total and LDL cholesterol. Furthermore, it reduces Lp(a), which is not influenced by lipid-lowering drugs. The reduction of LDL cholesterol and Lp(a) may delay the progression of the atherosclerotic process, thereby helping to reduce the risk of new episodes of coronary heart disease and thus extending the life expectancy in these patients.  相似文献   

5.
Abstract: Hyperlipidemia and elevated lipoprotein (a) (Lp[a]) levels have been linked to the development and progression of premature atherosclerosis. Our study concerned 2 white male patients (aged 36 and 42 years) with heterozygous familial hypercholesterolemia and extremely elevated Lp(a) concentrations that were resistant to diet regimens and lipid–lowering drugs. The patients were treated with low–density lipoprotein (LDL) apheresis for 59 months (Liposorber system, Kaneka, Japan) and 19 months (immunoadsorption system, special Lp(a) columns; Lipopak; Pocard, Russia), respectively. The concentration of Lp(a) decreased on average by 50%, total cholesterol by 27%, LDL cholesterol by 41%, triglycerides by 43%, and fibrinogen by 16%. High–density lipoprotein (HDL) cholesterol increased by approximately 4%. Before treatment with LDL apheresis, each patient had suffered 3 myocardial infarctions, and had had 4 and 6 coronary angiographies with 2 and 4 percutaneous transluminal angioplasties (PTCAs), respectively. Since treatment with LDL apheresis, no myocardial infarctions or cardiac complaints were observed. In the course of treatment, both patients reported an increased performance. Available data suggest that LDL apheresis may be effective in the treatment of patients, the only risk factor for premature atherosclerosis being extremely elevated Lp(a) concentrations.  相似文献   

6.
In 40 patients (22 women, 18 men) suffering from familial hypercholesterolemia resistant to diet and lipid lowering drugs, low-density lipoprotein (LDL) apheresis was performed over 84.9 +/- 43.2 months. Four different systems (Liposorber, 28 of 40, Kaneka, Osaka, Japan; Therasorb, 6 of 40, Baxter, Munich, Germany; Lipopak, 2 of 40, Pocard, Moscow, Russia; and Dali, 4 of 40, Fresenius, St. Wendel, Germany) were used. With all methods, average reductions of 50.6% for total cholesterol, 52.2% for LDL, 64.3% for lipoprotein (a) (Lp[a]), and 43.1% for triglycerides, and an average increase of 10.3% for high-density lipoprotein (HDL) were reached. Severe side effects such as shock or allergic reactions were very rare (0.5%) in all methods. In the course of treatment, an improvement in general well being and increased performance were experienced by 39 of 40 patients. Assessing the different apheresis systems used, at the end of the trial, there were no significant differences with respect to the clinical outcome experienced with the patients' total cholesterol, LDL, HDL, and triglyceride concentrations. However, to reduce high Lp(a) levels, the immunoadsorption method with special Lp(a) columns (Lipopak) seems to be most effective: -59% versus -25% (Kaneka) - (Baxter), and -29% (Dali). The present data demonstrate that treatment with LDL apheresis of patients suffering from familial hypercholesterolemia resistant to maximum conservative therapy is very effective and safe even in long-term application.  相似文献   

7.
Abstract: Both heparin–induced extracorporeal low–density lipoprotein precipitation (HELP) and dextran sulfate (DS) apheresis are potent tools for acute and long–term risk factor reduction in the secondary prevention treatment of coronary patients suffering from recalcitrant hypercholesterolemia. They combine high efficacy and selectivity of risk factor removal. Whereas LDL cholesterol and lipoprotein (a) adsorption onto DS offers the advantage of an unlimited treatable plasma volume and somewhat easier handling, HELP reduces fibrinogen more effectively and does not interfere with angiotension converting enzyme (ACE) inhibitors. Both systems can improve blood rheology and induce regression or stabilize coronary lesions. In an uncontrolled trial, HELP reduced the incidence of myocardial infarction. To date, no controlled prospective trials have been performed comparing the two systems with respect to their long–term risk factor reduction and their effect on coronary lesions, morbidity, and mortality.  相似文献   

8.
Abstract: To date, lipid apheresis procedures can remove low-density lipoprotein (LDL) cholesterol (LDL-C) only from plasma. Thus, initially plasma has to be separated from the blood cells, which increases the costs and complexity of the extracorporeal circuit. This paper describes the first clinical application of a new LDL adsorber that eliminates LDL directly from whole blood. The goal of this pilot study was to test the efficacy, safety, and feasibility of direct lipoprotein adsorption in patients. In a 2 center Phase II clinical trial, 12 hypercholesterolemic patients suffering from overt coronary or peripheral artery disease were treated once with LDL hemoperfusion. The new LDL adsorber (DALI, Fresenius, St. Wendel, Germany) contained 480 ml of polyacrylate coated polyacrylamide gel. The anticoagulation consisted of an initial heparin bolus followed by an acid citrate dextrose (ACD)-A infusion during the treatment. The processing of nearly 1 patient blood volume resulted in a reduction of LDL-C by 45 ± 8% and triglycerides by 23 ± 20%. HDL-C, fibrinogen, and cell counts were not significantly influenced. In a subgroup of 5 patients who exhibited elevated lipoprotein (a) (Lp[a]) levels, Lp(a) reduction was 43 ± 15% (all results corrected for plasma volume shifts). The sessions were clinically uneventful; the system was technically safe and easily handled. In conclusion, short-term LDL hemoperfusion by the DALI proved to be a safe, effective, and simple procedure for the treatment of patients suffering from symptomatic recalcitrant hypercholesterolemia. The present study represents a solid basis for the clinical long-term evaluation of this new technique in the future.  相似文献   

9.
Abstract: Elevated lipoprotein concentrations seem to be linked strongly in a dose dependent manner to an increased incidence of atherosclerosis. A total of 47 patients suffering from severe hyperlipidemia were matched to treatment with LDL apheresis (Baxter, Kaneka, Li–popak; 24 patients, aged 50.2 ±11.5 years), diet, and/or lipid–lowering drugs or with diet and lipid–lowering drugs only (23 patients, aged 48.8 ±11.8 years). After treatment periods of 49.8 ±13.4 months (apheresis group, 2,396 treatment sessions) and 38.6 ± 15.1 months (drug group), the ensuing results revealed significant differences (p <0.0001): –47.3% versus –12.1% for total cholesterol, –46.9% versus –21.8% for LDL, +8.4% versus +0.9% for HDL, –52.0% versus – 13.1% for the LDL/HDL ratio, –36.4% versus –16.2% for triglycerides, and –25.9% versus + 1.5% for lipoprotein (a). In the apheresis group, one patient died of myocardial infarction; in the drug group, there was one nonfatal myocardial infarction and the manifestation of coronary heart disease in 3 cases. There were no severe side effects in either group. All patients in the apheresis group responded to therapy. The present trial suggests that a continuing reduction in serum lipid concentrations may lower, in a dose dependent manner, the risk for development and progression of coronary heart disease. Regarding clinical and laboratory results, LDL apheresis seems to be safe, effective therapy for treatment of severe hyperlipidemia.  相似文献   

10.
Lipid Apheresis: From a Heroic Treatment to Routine Clinical Practice   总被引:1,自引:0,他引:1  
Abstract: Lipid apheresis has developed from a heroic treatment into a routine clinical therapy and currently is the major indication for performing extracorporeal plasma therapy. Whereas it was once reserved for patients with homozygous familial hypercholesterolemia, today it has a place in the secondary prevention of severe coronary heart disease when low-density lipoprotein (LDL)-cholesterol levels exceed 150 mg/dl, despite conservative treatment, in any type of primary hypercholesterolemia. Unselective plasma exchange has been replaced by a variety of selective procedures. The efficacy of the treatment can be maximized by combining LDL apheresis with the use of cholesterol synthesis enzyme inhibitors. Clinical studies have shown that drastic cholesterol reduction can result in regression of coronary atherosclerosis as well as in reduced cardiac morbidity and mortality. Technical progress comprises improved selectivity, online regeneration of adsorbers, and LDL adsorption from whole blood. Recently, a new LDL hemoper-fusion procedure was successfully tested in a clinical pilot study; blood is passed directly over a lipid sorbent without prior plasma separation. If this system is demonstrated to be safe and effective in clinical Phase III trials, a further qualitative step in the rapid development of LDL apheresis will have been made.  相似文献   

11.
Extracorporeal treatment of hypercholesterolaemia   总被引:1,自引:0,他引:1  
Extracorporeal removal of LDL cholesterol (LDL apheresis) hasbeen carried out in patients with diet- and drug-resistant hypercholesterolaemiato prevent or to reduce coronary heart disease. Plasma separationis the first step in all five LDL-apheresis methods presentlyavailable. Plain plasma exchange and double-membrane filtrationare unselective and remove HDL cholesterol and plasma proteins.Adsorption of LDL to dextran sulphate, to LDL antibodies, orprecipitation of LDL by heparin at low pH are more selective.With all methods LDL cholesterol reduction per treatment is60–70%. In most patients one treatment per week is sufficientto reduce mean LDL to 100–150 mg/dl. Minor side-effectsoccur in 10±5% of treatments. Major side-effects arerare. Long-term LDL apheresis increased survival in patientswith homozygous familial hypercholesterolaemia. In heterozygousfamilial hypercholesterolaemia controlled studies regardingsurvival are not available. Uncontrolled trials indicate regressionof coronary artery disease in heterozygotes with drug- and diet-resistantLDL cholesterol > 200 mg/dl. Hence, LDL apheresis is indicatedin all patients with homozygous familial hypercholesterolaemia.LDL apheresis in heterozygous familial hypercholesterolaemiashould be restricted to patients with diet- and drug-resistantLDL cholesterol >200 mg/dl with coronary heart disease and/orother atherosclerotic vascular lesion.  相似文献   

12.
State of the Art of Lipid Apheresis   总被引:6,自引:0,他引:6  
Abstract: Currently, 5 different lipid apheresis procedures are available for routine clinical treatment of hy–percholesterolemic patients. Unselective plasma exchange is a technically simple extracorporeal circuit, but albumin substitution fluid must be used and there is no high–density lipoprotein (HDL) recovery. Semiselective double filtration with improved size selectivity because of a small–pore secondary filter combines good elimination of low–density lipoprotein (LDL), lipoprotein (a) (Lp[a]), and fibrinogen with adequate HDL recovery; modifications such as thermofiltration, predilution/backflush, or pulsatile flow have been proposed for the improvement of this system. Three highly selective procedures are basedon immunologic or electrostatic interactions: immunoad–sorption using anti–low–density lipoprotein (LDL) antibodies, chemoadsorption onto dextran sulfate, and hep–arin–induced LDL precipitation (HELP) apheresis. The features of each system are discussed critically. Lastly, two new developments, Lp(a) immunoadsorption and LDL hemoperfusion using a polyacrylate LDL adsorber compatible with whole blood, are described  相似文献   

13.
BACKGROUND: Development of coronary graft disease is currently the main cause of late heart-transplantation (HT) failure. HT patients frequently show hypercholesterolemia as well as alterations in chylomicron metabolism. These postHT changes may be important in coronary graft disease development. To clarify whether hypercholesterolemia is caused by decreased low-density lipoprotein (LDL) removal from the plasma, we studied the plasma kinetics of a cholesterol-rich emulsion that binds to LDL receptor. METHODS: We studied 13 HT patients and 13 healthy normolipidemic subjects paired for sex, age, and body mass index. An emulsion labeled with C-cholesteryl oleate was injected intravenously, and blood samples were collected in predetermined intervals (5 minutes, 1, 2, 4, 6, and 8 hours) to determine the radioactivity decay curves and to calculate the fractional clearance rates (FCR). RESULTS: The plasma level of total cholesterol, LDL cholesterol, high-density lipoprotein cholesterol, and apo B were greater in HT group than in the control group (P<0.005). FCR C-cholesteryl oleate was smaller in HT patients when compared with the control group (P=0.02). CONCLUSION: The results showed that HT patients have a deficiency in the mechanisms of LDL removal from the plasma, as tested by the cholesterol-rich emulsion, and this may be important in the development of coronary graft disease.  相似文献   

14.
Therapeutic means to lower Lp(a) are limited. The most effective method to reduce plasma Lp(a) concentration significantly is therapeutic apheresis, namely, low‐density lipoprotein (LDL) lipoprotein(a) (Lp(a)) apheresis. A novel technique based on reusable LDL adsorber called Lipocollect 200 (Medicollect, Rimbach, Germany) allows the removal of both LDL and Lp(a) from plasma. Two male patients with hyperLp(a)lipoproteinemia and angiographically established progressive coronary heart disease, without rough elevation of LDL‐cholesterol, who did not respond to diet and medication were submitted to 50 LDL Lp(a) aphereses with Lipocollect 200 LDL Lp(a)‐adsorber at weekly and biweekly intervals. Total cholesterol and LDL cholesterol plasma levels fell significantly by 48.3% (±6.7) to 61.6% (±12.7) (first patient), and 42.5% (±6.3) to 60.6% (±14.3) (second patient), respectively (all differences: P ≤ 0.001). High‐density lipoprotein (HDL)‐cholesterol concentration in plasma did not show statistically significant change. Plasma triglycerides were also significantly reduced by 43.6% (±24.4) (first patient) and 42.3% (±13) (second patient) (both differences: P ≤ 0.001). Plasma Lp(a) showed a statistically significant percent reduction in plasma as expected: 64.7 ± 9.5 (first patient), and 59.1 ± 6.7 (second patient) (both differences: P ≤ 0.001). Plasma fibrinogen concentration was decreased by 35.9% (±18.7) (P ≤ 0.05) (first patient) and 41.8% (±11.5) (second patient) (P ≤ 0.005). Considering the reduction rate between the first and the last procedures, we have compared the mean percent reduction of the first five treatments (from session #1 to #5) with the last five treatments (from session #21 to #25). We have observed an increasing reduction of all activity parameters on both patients apart from HDL‐cholesterol (first patient) and triglyceride (second patient) that showed a decreasing reduction rate. Both patients followed the prescribed schedule and completed the study. Clinically, all sessions were well tolerated and undesired reactions were not reported. The Lipocollect 200 adsorber proved to have a good biocompatibility. In this study, the adsorber reusability for several sessions was confirmed.  相似文献   

15.
BACKGROUND: Patients with nephrotic syndrome have the highest lipoprotein(a) [Lp(a)] concentrations known. Lp(a) is an low-density lipoprotein (LDL)-like particle consisting of 45% cholesterol. The usual methods to determine LDL cholesterol do not distinguish between cholesterol derived from LDL and Lp(a) and are thus the net result of cholesterol levels from both lipoproteins. High Lp(a) concentrations therefore significantly contribute to the measured or calculated LDL cholesterol levels. Since statins have no influence on Lp(a) levels, it can be expected that the LDL cholesterol-lowering effect of statins may be diminished in patients who have a pronounced elevation of Lp(a) levels accompanied by only moderate elevations of LDL cholesterol. METHODS: We investigated 207 patients with nondiabetic nephrotic syndrome in whom Lp(a) concentrations were strikingly elevated when compared to 274 controls (60.4 +/- 85.4 mg/dL vs. 20.0 +/- 32.8 mg/dL, P < 0.0001). RESULTS: According to National Kidney Foundation Dialysis Outcomes Quality Initiative (K/DOQI) Clinical Practice Guidelines for Managing Dyslipidemias, almost 95% of these patients are candidates for a therapeutic intervention to lower LDL cholesterol. LDL cholesterol levels corrected for Lp(a)-derived cholesterol, however, were 27 mg/dL lower than uncorrected concentrations (compared to only 9 mg/dL in controls). If Lp(a)-corrected levels instead of total LDL cholesterol levels were used, 25.7% of patients with low-molecular-weight (LMW) apolipoprotein(a) [apo(a)] isoforms were classified no longer to be in need of LDL cholesterol-lowering therapeutic intervention compared to only 2.3% of patients with high-molecular-weight (HMW) apo(a) phenotypes (P < 0.00001). This ("pseudo") pharmacogenetic effect results in incorrect determination of LDL cholesterol. CONCLUSION: Our observation has an impact on the indication for, and assessment of efficacy of intervention. This potential artifact should be investigated in ongoing large trials in renal patients as well as in nonrenal African American subjects who have on average markedly higher Lp(a) levels. In nonrenal Caucasian subjects with much lower Lp(a) concentrations, this issue will be less relevant.  相似文献   

16.
Abstract: A wide variety of treatments is now available for arteriosclerosis obliterans (ASO) patients, not very successful in some cases. Low—density lipoprotein (LDL) apheresis using an extracorporeal adsorption column containing dextran sulfate cellulose beads was applied to control lipid levels intensively in ASO patients with accompanying drug—resistant hyperlipidemia. A series of the apheresis procedures had a remarkable impact on clinical symptoms and physiological findings with improvement in intermittent claudication observed in more than 80% of the patients. Improvements in plethysmogram and thermogram readings suggested an increased circulation in lower extremities in more than 80% of patients. In addition, the treatment improved blood rheology, as evidenced by a reduction in blood viscosity. In a follow—up study made by sending a questionnaire to previously treated patients, it was revealed that improvements in clinical symptoms were well maintained even after cessation of the treatment. In conclusion, LDL apheresis proved to be a useful therapeutic tool in ASO patients having elevated lipid levels  相似文献   

17.
Abstract: In collaboration with B. Braun Melsungen AG, Germany, we were able to develop the heparin–mediated extracorporeal low–density lipoprotein (LDL) fibrinogen precipitation (H.E.L.P.) system and to introduce it into clinical use. The H.E.L.P. apheresis system is the most potent technique to reduce at the same time LDL, lipoprotein (a) (Lp[a]), and fibrinogen plasma concentrations if the physiological clearing mechanisms are insufficient and if diet and drugs fail to achieve a target concentration of 100 mg/dl LDL–cholesterol or lower, required for secondary prevention of coronary heart disease. The H.E.L.P. LDL apheresis system also improves plasma viscosity and microcirculation efficiently. The clinical experience with the H.E.L.P. system has proved its clinical utility; regression of coronary heart disease occurs, a decrease in events of coronary heart disease takes place, and acute as well as chronic impairment of microcirculation shows a remarkable improvement with H.E.L.P. therapy. For the future, the availability of this safe and efficient apheresis technique may help many patients who previously could not be treated adequately  相似文献   

18.
Low-density lipoprotein (LDL) apheresis is an extracorporeal modality to lower LDL cholesterol. While most of the devices eliminate LDL particles from plasma, a recently introduced whole-blood perfusion column (DALI) adsorbs lipoproteins directly from whole blood. We investigated the efficacy and safety of a new whole-blood LDL apheresis system (Liposorber D) in 10 patients with severe hypercholesterolemia in a multicenter trial. In 93 LDL aphereses, the mean reduction in LDL cholesterol and lipoprotein(a) was 62.2 +/- 11.5% and 55.6 +/- 16.9%, respectively (P < 0.01). If hemodilution during apheresis was considered, the reductions were 58.0 +/- 10.9 and 55.3 +/- 10.9%, respectively (P < 0.01), while high-density lipoprotein (HDL) cholesterol did not change significantly. Three mild episodes of hypocalcemia and two mild episodes of arterial hypotension were observed; however, LDL apheresis could be continued in each case. In conclusion, the new whole-blood LDL apheresis with Liposorber D is a safe, simple, and useful modality to reduce LDL cholesterol and lipoprotein(a) in cardiovascular high-risk patients.  相似文献   

19.
Abstract: A prospective study was performed to determine whether low-density lipoprotein (LDL) apheresis, when performed only immediately before and after percutaneous transluminal coronary angioplasty (PTCA), is effective in preventing restenosis of coronary artery lesions following PTCA. Thirty-six patients with coronary heart disease (CHD) and hypercholesterolemia were divided into 2 groups. The 9 patients in the LDL group underwent LDL-apheresis 1 day before and 5 days after PTCA while the 27 patients of the control group underwent PTCA but did not undergo LDL-apheresis. Follow-up coronary angiography (CAG) was performed 4 months after PTCA. The rate of restenosis of coronary artery lesions was significantly lower in the LDL group (0%) than in the control group (30%). These findings suggest that LDL-apheresis, when performed before and after PTCA, is effective in preventing restenosis of coronary artery lesions in patients with CHD and hypercholesterolemia.  相似文献   

20.
Abstract: The beneficial effect of cholesterol–lowering therapy for secondary prevention in patients with coronary artery disease (CAD) is well established. The therapeutic goal in this situation is a low–density lipoprotein (LDL) cholesterol level of 100 mg/dl. Cholesterol–lowering therapy will not only lead to a reduction in the progression of lesions but also and probably more importantly will reduce lesion activation and rupture and improve endothelial vasomotor function. Depending on the underlying hyperlipoproteinemia, the first choice for single drug therapy is a bile acid–binding resin or a hepatic hydroxymethyl glutaryl coenzyme A (HMG–CoA) reductase inhibitor in isolated LDL hypercholesterolemia, and nicotinic acid, a fibric acid, or a HMG–CoA reductase inhibitor in combined hyperlipidemia. Combination therapy usually consists of a bile acid–binding resin with either an HMG–CoA reductase inhibitor, a fibric acid, or nicotinic acid in LDL hypercholesterolemia and nicotinic acid with a fibric acid in combined hyperlipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号