首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article we studied spinal and cortical inhibitory mechanisms in patients with Huntington's disease. To evaluate spinal cord inhibitory circuitries, we assessed reciprocal inhibition between antagonist forearm muscles and the recovery cycle of the H reflex in the flexor carpi radialis. Patients showed a significant decrease in the presynaptic phase of reciprocal inhibition reaching a minimum at the conditioning-test interval of 20 msec and an abnormal facilitation of the test H reflex at the conditioning test interval of 40 to 60 msec. Throughout its time course (10-200 msec), the H reflex recovery cycle showed a more prominent facilitation in patients than in control subjects. To assess whether the observed pathophysiological abnormalities might have arisen from an abnormal motor cortical excitability, we examined the recovery cycle of the motor potentials evoked by paired transcranial magnetic stimuli. We found that the inhibitory mechanisms controlling motor cortical excitability were normal. An interpretation of the spinal cord abnormalities is that the intrinsically normal but deafferentated motor cortex in Huntington's disease partly loses its inhibitory control, thus disinhibiting spinal cord circuitry. Our findings from paired transcranial magnetic stimulation suggest that cortical motor areas are not hyperexcitable in Huntington's disease. Hence, the postulated thalamocortical overactivity in experimental models of Huntington's disease needs to be reappraised.  相似文献   

2.
Clinical and research methods for evaluating cortical excitability.   总被引:8,自引:0,他引:8  
The evaluation of motor cortical output after transcranial magnetic stimulation (TMS) is a means of investigating how the motor cortex reacts to external stimuli (i.e., a method to assess the excitability of the motor cortex). The recording of the descending volleys at the surface of the spinal cord provides a direct measure of the motor cortical output. However, this approach is highly invasive and can be used only during particular conditions. On the other hand, electromyographic recordings of the motor phenomena induced by TMS provide a completely painless, noninvasive, indirect measure of the cortical output, with these phenomena obviously reflecting the excitability of the spinal motoneurons as well as that of the muscle itself. The authors review how the electromyographic activity induced by TMS can provide valuable information about motor cortical excitability for use in clinical practice and research.  相似文献   

3.
Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex is a relatively non-invasive technique with putative therapeutic effects in major depression. However, the exact neurophysiological basis of these effects needs further clarification. Therefore, we studied the impact of ten daily sessions of left, dorsolateral prefrontal rTMS on motor cortical excitability, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials in 30 patients. As compared to the non-responders, responders (33%) showed changes in parameters pointing towards a reduced cortical excitability. These results suggest that repetitive transcranial magnetic stimulation of the dorsolateral, prefrontal cortex may have inhibitory effects on motor cortical neuronal excitability in patients with major depressive disorder. Furthermore, measurement of motor cortical excitability may be a useful tool for investigating and monitoring inhibitory brain effects of antidepressant stimulation techniques like rTMS.  相似文献   

4.
Lo YL  Cui SL 《Neuroreport》2003,14(9):1229-1231
Although acupuncture is increasingly utilized for medical therapy, its mechanism of action remains uncertain. We used transcranial magnetic stimulation to demonstrate lateralized effects of motor cortex excitability with this technique. Right-sided reduction in motor cortex excitability and a tendency to the opposite effect on the left side was seen with acupuncture. Sham needle insertions did not result in significant changes of motor cortex excitability. These findings provide new neurophysiological evidence of cortical excitability modulation complementary to findings derived from functional neuroimaging studies.  相似文献   

5.
We studied the effects of lorazepam and dextromethorphan on the responses to 1 Hz repetitive transcranial magnetic stimulation applied to the left human motor cortex. Lorazepam, dextromethorphan or placebo was administered to 45 normal controls in a double-blind fashion 2.5 h before the repetitive transcranial magnetic stimulation procedure. Motor cortical excitability was measured with single transcranial magnetic stimulation pulses before and after 15 min of 1 Hz repetitive transcranial magnetic stimulation applied at supra-threshold intensity. 1 Hz repetitive transcranial magnetic stimulation resulted in a decrease in motor cortical excitability in the placebo group but not in the groups taking lorazepam or dextromethorphan. These results suggest that cortical responses to 1 Hz repetitive transcranial magnetic stimulation are dependent on activity at both gamma-aminobutyric acid and N-methyl-D-asparate receptor systems.  相似文献   

6.
Single or paired pulse paradigms of transcranial magnetic stimulation (TMS) provide several parameters to test motor cortex excitability, such as motor threshold (MT), motor evoked potential (MEP) amplitude, electromyographic silent period to cortical stimulation (CSP) and intracortical facilitation (ICF) or inhibition (ICI). Various changes in TMS parameters, revealing motor cortex dysfunction, were found in patients with Parkinson's disease (PD). For instance, low MT and increased MEP size disclosed an enhanced corticospinal motor output at rest, while reduced ICF and failure of MEP size increase during contraction suggested defective facilitatory cortical inputs, particularly for movement execution. Inhibitory cortical pathways were also found less excitable at rest (reduced ICI) and sometimes during contraction (shortened CSP). By restoring cortical inhibition, dopaminergic drugs and deep brain stimulation probably overcome the difficulty to focus neuronal activity onto the appropriate network required for a specific motor task. The application of repetitive TMS trains over motor cortical areas also showed some effect on cortical excitability, opening perspectives to consider the motor cortex as a target for therapeutic neuromodulation in PD. However, systematic studies of cortical excitability remained to be performed in large series of patients with PD, taking into account disease stage, clinical symptoms and medication influence.  相似文献   

7.
OBJECTIVE: To investigate whether a short-duration reduction of input to the motor cortex affects excitability in the hand region of the motor cortex. METHODS: Subjects (n=10) received sets of transcranial magnetic stimulation of the motor cortex (TMS) and peripheral ulnar nerve stimulation. Stimuli were delivered before and after 20 min of inactivity of the test hand. The evoked compound muscle action potentials were recorded in two relaxed intrinsic hand muscles using surface EMG. RESULTS: Motor evoked potential size (MEP; expressed relative to the maximal M-wave) increased by approximately 30-40 in both hand muscles (P=0.012) following inactivity. The enlarged MEP was not associated with changes in F-wave size, a marker of motoneurone excitability, or changes in intracortical inhibition and facilitation measured with paired-pulse TMS. CONCLUSIONS: MEP growth most likely reflects an increase in motor cortical excitability. The increased excitability appears to be more associated with reduced voluntary drive to and from the motor cortex rather than reduced afferent input from the periphery. SIGNIFICANCE: These results have important implications for any investigation of motor cortical excitability in relaxed subjects. The outcome of an experimental intervention is the net result of the intervention itself and alterations in cortical excitability produced by the subjects' inactivity.  相似文献   

8.
Electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex are brain stimulation techniques that are used as therapeutic interventions in major depression. However, the exact therapeutic mode of action needs further clarification. In this case report, we describe the impact of these stimulation techniques on motor cortical excitability, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials in 2 patients who received consecutively both rTMS and ECT. Both patients showed a decrease in motor cortical excitability after response to antidepressant brain stimulation, whereas parameters of motor cortical excitability remained unchanged after the first non-successful intervention. These results suggest that both ECT and rTMS may have an impact on parameters of motor cortical neuronal excitability. Furthermore, measurement of motor cortical excitability may be a useful tool for investigating and monitoring inhibitory brain effects of different antidepressant stimulation techniques.  相似文献   

9.
Patients with Unverricht–Lundborg disease, also referred to as progressive myoclonus epilepsy type 1, exhibit widespread motor symptoms and signs in addition to epileptic seizures, which suggest abnormal excitability of the primary motor pathways. To explore the plasticity of the sensory–motor cortex, we employed a modern neurophysiological method, the paired associative stimulation protocol, which resembles the concept of long‐term potentiation of experimental studies. Seven patients with genetically verified Unverricht–Lundborg disease and 13 healthy control subjects were enrolled in the study to characterize cortical sensory–motor plasticity. In the study protocol, peripheral electric median nerve stimulation preceded navigated transcranial magnetic stimulation targeted to the representation area of thenar musculature on the contralateral primary motor cortex. The protocol consisted of 132 transcranial magnetic stimulation trials at 0.2 Hz, preceded by peripheral sensory stimulation at 25 ms. Motor‐evoked potential amplitudes were analyzed at baseline and after the paired associative stimulation protocol at an intensity of 130% of the individual motor threshold. The patients with Unverricht–Lundborg disease exhibited an average decrease of 15% in motor‐evoked potential amplitudes 30 minutes after paired associative stimulation, whereas in the control subjects, a significant increase (101%) was observed (P < .05), as expected. The results indicate a lack of normal cortical plasticity in Unverricht–Lundborg disease, which stresses the role of abnormal motor cortical functions or sensorimotor integration as possible pathophysiological contributors to the motor symptoms. The impaired cortical plasticity may be associated with the previously reported structural and physiological abnormalities of the primary motor cortex. © 2011 Movement Disorder Society  相似文献   

10.
Modulating cortical excitability in acute stroke: a repetitive TMS study.   总被引:1,自引:0,他引:1  
OBJECTIVE: Changes in cerebral cortex excitability have been demonstrated after a stroke and are considered relevant for recovery. Repetitive transcranial magnetic stimulation (rTMS) of the brain can modulate cerebral cortex excitability and, when rTMS is given as theta burst stimulation (TBS), LTP- or LTD-like changes can be induced. The aim of present study was to evaluate the effects of TBS on cortical excitability in acute stroke. METHODS: In 12 acute stroke patients, we explored the effects of facilitatory TBS of the affected hemisphere and of inhibitory TBS of the unaffected hemisphere on cortical excitability to single-pulse transcranial magnetic stimulation (TMS) on both sides. The effects produced by TBS in patients were compared with those observed in a control group of age-matched healthy individuals. RESULTS: In patients, both the facilitatory TBS of the affected motor cortex and the inhibitory TBS of the unaffected motor cortex produced a significant increase of the amplitude of MEPs evoked by stimulation of the affected hemisphere. The effects observed in patients were comparable to those observed in controls. CONCLUSIONS: Facilitatory TBS over the stroke hemisphere and inhibitory TBS over the intact hemisphere in acute phase enhance the excitability of the lesioned motor cortex. SIGNIFICANCE: TBS might be useful to promote cortical plasticity in stroke patients.  相似文献   

11.
Motor cortex disinhibition of the unaffected hemisphere after acute stroke   总被引:11,自引:0,他引:11  
Liepert J  Hamzei F  Weiller C 《Muscle & nerve》2000,23(11):1761-1763
We studied motor cortex excitability in the nonlesioned hemisphere of patients with a large cortical infarction. Patients with a severe hemiparesis due to a stroke were compared with age-matched, healthy controls. Paired transcranial magnetic stimuli were applied over the unaffected hemisphere to investigate intracortical inhibition and facilitation. In the patient group, intracortical inhibition was reduced. We suggest that this disinhibition is due to an impairment of transcallosal fibers and may affect recovery.  相似文献   

12.
In a patient with a familial form of paroxysmal exertion induced dyskinesia (PED), the efficacy of different stimuli and manoeuvres in triggering dystonic attacks in the arm was studied. As a new approach, transcranial magnetic stimulation (TMS) of the motor cortex was used to trigger motor paroxysms and to monitor cortical excitability during attacks. Motor paroxysms could be provoked by muscle vibration, passive movements, TMS, magnetic stimulation of the brachial plexus, and electrical nerve stimulation. Sham stimulation over the motor cortex and thermal and tactile cutaneous stimuli were ineffective in triggering attacks. It is concluded that dystonic attacks are triggered by proprioceptive afferents rather than cutaneous stimuli or the descending motor command itself. Outside the attacks, motor cortical excitatory and inhibitory neuronal mechanisms as assessed by TMS (response threshold and amplitudes, duration of the contralateral and ipsilateral silent period, corticocortical inhibition, and facilitation) were normal, which underlines the paroxysmal character of the disorder.  相似文献   

13.
Electroconvulsive therapy (ECT) is a widely acknowledged effective treatment for severe major depression. ECT produces considerable anticonvulsant effects that may be related to an increased GABA-ergic neurotransmission. We aimed to explore whether motor cortical excitability as assessed with single and paired pulse transcranial magnetic stimulation (TMS) could be used to investigate these anticonvulsant effects. Therefore, parameters of motor cortical excitability were investigated in 10 patients before and after 10 sessions of right unilateral ECT. After 10 sessions of right unilateral ECT, an enhanced activity of inhibitory circuits in human motor cortex had been observed, as measured by both increased intracortical inhibition and cortical silent period duration, whereas intracortical facilitation and resting motor threshold remained unchanged. The reduction of seizure duration in the course of ECT was associated with clinical improvement and an increase in intracortical inhibition. We interpret this finding as further indirect evidence for changes in inhibitory circuits in the course of ECT in patients with major depression.  相似文献   

14.
Prior transcranial magnetic stimulation studies showed that resting motor threshold is elevated in abstinent cocaine-dependent patients, suggesting a decrease in axonal excitability. In contrast, the increased incidence of seizures and psychosis in this group suggests increased excitability or decreased inhibition. Here, we studied long-interval intracortical facilitation and long-interval intracortical inhibition, paired-pulse transcranial magnetic stimulation measures that are more directly linked to glutamatergic cortical facilitation and GABAergic inhibition, respectively. Ten cocaine-dependent and 10 healthy controls were examined. Resting motor threshold, long-interval intracortical facilitation and long-interval intracortical inhibition were tested from the left motor cortex. The cocaine group showed an elevated resting motor threshold and an increased long-interval intracortical facilitation, whereas long-interval intracortical inhibition was normal. Although the increase in long-interval intracortical facilitation suggests exaggerated cortical glutamatergic excitability, the increase in resting motor threshold may signify a protective mechanism against seizures and psychosis.  相似文献   

15.
《Brain stimulation》2020,13(5):1298-1304
BackgroundNeural information processing is subject to noise and this leads to variability in neural firing and behavior. Schizophrenia has been associated with both more variable motor control and impaired cortical inhibition, which is crucial for excitatory/inhibitory balance in neural commands.HypothesisIn this study, we hypothesized that impaired intracortical inhibition in motor cortex would contribute to task-related motor noise in schizophrenia.MethodsWe measured variability of force and of electromyographic (EMG) activity in upper limb and hand muscles during a visuomotor grip force-tracking paradigm in patients with schizophrenia (N = 25), in unaffected siblings (N = 17) and in healthy control participants (N = 25). Task-dependent primary motor cortex (M1) excitability and inhibition were assessed using transcranial magnetic stimulation (TMS).ResultsDuring force maintenance patients with schizophrenia showed increased variability in force and EMG, despite similar mean force and EMG magnitudes. Compared to healthy controls, patients with schizophrenia also showed increased M1 excitability and reduced cortical inhibition during grip-force tracking. EMG variability and force variability correlated negatively to cortical inhibition in patients with schizophrenia. EMG variability also correlated positively to negative symptoms. Siblings had similar variability and cortical inhibition compared to controls. Increased EMG and force variability indicate enhanced motor noise in schizophrenia, which relates to reduced motor cortex inhibition.ConclusionThe findings suggest that excessive motor noise in schizophrenia may arise from an imbalance of M1 excitation/inhibition of GABAergic origin. Thus, higher motor noise may provide a useful marker of impaired cortical inhibition in schizophrenia.  相似文献   

16.
OBJECTIVE: TMS techniques have provided controversial information on motor cortical function in Huntington's disease (HD). We investigated the excitability of motor cortex in patients with HD using repetitive transcranial magnetic stimulation (rTMS). METHODS: Eleven patients with HD, and 11 age-matched healthy subjects participated in the study. The clinical features of patients with HD were evaluated with the United Huntington's Disease Rating Scale (UHDRS). rTMS was delivered with a Magstim Repetitive Magnetic Stimulator through a figure-of-8 coil placed over the motor area of the first dorsal interosseus (FDI) muscle. Trains of 10 stimuli were delivered at 5 Hz frequency and suprathreshold intensity (120% resting motor threshold) with the subjects at rest and during voluntary contraction of the target muscle. RESULTS: In healthy subjects at rest, rTMS produced motor evoked potentials (MEPs) that increased in amplitude over the course of the trains. Conversely in patients, rTMS left the MEP size almost unchanged. In both groups, during voluntary contraction rTMS increased the silent period (SP) duration. CONCLUSIONS: Because rTMS modulates motor cortical excitability by activating cortical excitatory and inhibitory interneurons these findings suggest that in patients with HD the excitability of facilitatory intracortical interneurones is decreased. SIGNIFICANCE: We suggest that depressed excitability of the motor cortex in patients with HD reflects a disease-related weakening of cortical facilitatory mechanisms.  相似文献   

17.
OBJECTIVE: To reverse the profile of abnormal intracortical excitability in patients with restless legs syndrome (RLS) by administering the dopaminergic agonist cabergoline. METHODS: The effects of this drug on motor cortex excitability were examined with a range of transcranial magnetic stimulation (TMS) protocols before and after administration of cabergoline over a period of 4 weeks in 14 patients with RLS and in 15 healthy volunteers. Measures of cortical excitability included central motor conduction time; resting and active motor threshold to TMS; duration of the cortical silent period; short latency intracortical inhibition (SICI) and intracortical facilitation using a paired-pulse TMS technique. RESULTS: Short latency intracortical inhibition was significantly reduced in RLS patients compared with the controls and this abnormal profile was reversed by treatment with cabergoline; the other TMS parameters did not differ significantly from the controls and remained unaffected after treatment with cabergoline. Cabergoline had no effect on cortical excitability of the normal subjects. CONCLUSIONS: As dopaminergic drugs are known to increase SICI, our findings suggest that RLS may be caused by a central nervous system dopaminergic dysfunction. This study demonstrates that the cortical hyperexcitability of RLS is reversed by cabergoline, and provides physiological evidence that this dopamine agonist may be a potentially efficacious option for the treatment of RLS.  相似文献   

18.
The potential therapeutic role of repetitive transcranial magnetic stimulation (rTMS) in epilepsy has been increasingly recognized. We investigated the effects of low-frequency rTMS in a patient with epilepsia partialis continua (EPC) due to cortical dysplasia. A 31-year-old female patient experienced EPC in the right upper and lower extremities, which had lasted for 15 years without generalized seizures. MRI showed focal megaencephaly around the motor cortex suggestive of cortical dysplasia. A figure of eight magnetic coil was placed over the hand motor area, and 100 stimuli with an intensity at 90% of motor threshold were given at 0.5 Hz. Immediately after rTMS, EPC was nearly abolished. The effects had continued approximately for 2 months, and the second trial resulted in the similar effects and time-course. Low-frequency rTMS was safe and well tolerated in this patient. These findings support the concept that rTMS decreases cortical excitability, and may be an effective treatment for focal partial seizures.  相似文献   

19.
OBJECTIVE: To prove whether painful cutaneous stimuli can affect specifically the motor cortex excitability. METHODS: The electromyographic (EMG) responses, recorded from the first dorsal interosseous muscle after either transcranial magnetic or electric anodal stimulation of the primary motor (MI) cortex, was conditioned by both painful and non-painful CO2 laser stimuli delivered on the hand skin. RESULTS: Painful CO2 laser stimuli reduced the amplitude of the EMG responses evoked by the transcranial magnetic stimulation of both the contralateral and ipsilateral MI areas. This inhibitory effect followed the arrival of the nociceptive inputs to cerebral cortex. Instead, the EMG response amplitude was not significantly modified either when it was evoked by the motor cortex anodal stimulation or when non-painful CO2 laser pulses were used as conditioning stimuli. CONCLUSIONS: Since the magnetic stimulation leads to transynaptic activation of pyramidal neurons, while the anodal stimulation activates directly cortico-spinal axons, the differential effect of the noxious stimuli on the EMG responses evoked by the two motor cortex stimulation techniques suggests that the observed inhibitory effect has a cortical origin. The bilateral cortical representation of pain explains why the painful CO2 laser stimuli showed a conditioning effect on MI area of both hemispheres. Non-painful CO2 laser pulses did not produce any effect, thus suggesting that the reduction of the MI excitability was specifically due to the activation of nociceptive afferents.  相似文献   

20.
Changes of motor cortex organization after lesions in the nervous system can be demonstrated by mapping the motor cortex with transcranial magnetic stimulation.We studied cortical plasticity in 22 patients who had a unilateral immobilization of the ankle joint without peripheral nerve lesion. The motor cortex area of the inactivated tibial anterior muscle diminished compared to the unaffected leg without changes in spinal excitability or motor threshold. The area reduction was correlated to the duration of immobilization. It could be quickly reversed by voluntary muscle contraction. This indicates a functional (and not morphological) origin of the phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号