首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: Proliferation of neural precursors adjacent to the granule cell layer of the dentate gyrus has been identified in previous epilepsy models. Convincingly demonstrating that seizure activity is the stimulant for neurogenesis, rather than neuronal death or other insults inherent to seizure models, is difficult. To address this we derived a rapid electrical amygdala kindling model in mice known to be resistant to seizure-induced neuronal death as an experimental model of focal seizures and to analyze subsequent neurogenesis. METHODS: Mice were implanted with bipolar electrodes in the left amygdala and given electrical stimulation (3 s, 100 Hz, 1 ms monophasic square wave pulses every 5 min, 40 in total) while being observed and graded for the development of seizures. Neurogenesis in the hippocampus was assessed by counting bromodeoxyuridine-immunoreactive cells co-labeled for astrocyte (glial fibrillary acidic protein) and neuronal nuclear markers. RESULTS: Bromodeoxyuridine-reactive cell numbers were three-fold higher in stimulated mice compared with controls at 1 week in the subgranular region and at three weeks extensive co-labeling with neuronal nuclear was noted in cells which had migrated into the body of the granule cell layer, while mice receiving stimulation but failing to kindle did not differ significantly from controls. No increase in neuronal death was detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling, Fluorojade or fluorescent examination of hematoxylin and eosin-stained sections in any inter-group comparison. CONCLUSIONS: We propose that this kindling paradigm, not previously applied to mice, demonstrates more convincingly than previously the surge in neurogenesis in response to seizures, and the effects of seizures alone in regard to neuronal injury and regeneration.  相似文献   

2.
Repetitive sound-induced seizures, known as audiogenic kindling (AK), gradually induce the transference of epileptic activity from brainstem to forebrain structures along with behavioral changes. The aim of our work was to correlate the behavioral changes observed during the AK with possible alterations in neuronal proliferation, cell death, hippocampal mossy fiber sprouting and in the EEG pattern of Wistar audiogenic rats, a genetically susceptible strain from our laboratory.Susceptible and non-susceptible animals were submitted to repeated sound stimulations for 14-16 days and hippocampal mitotic activity was studied through the incorporation of bromodeoxyuridine (BrdU). Cell death and mossy fiber sprouting were assessed, respectively, by using Fluoro-Jade and Timm staining, 2 and 32 days after the last kindling stimulation. In addition, we used immunofluorescent double labeling for a glial and a mitotic marker to evaluate newly born cell identity. Some animals had hippocampus and amygdala electrodes for EEG recordings.Our results show that kindled animals with 6-11 generalized limbic seizures (class IV-V) had increased cell proliferation in the dentate gyrus when compared with animals with zero or one to three seizures. BrdU-positive cells labeled on day 2 and on day 32 were both GFAP negative. In the later group, rounded and well-defined BrdU-positive/GFAP-negative nuclei were seen in different portions of the granule cell layer. We did not observe any Fluoro-Jade or differential Timm staining in kindled animals at both killing times. However, EEG recordings showed intense epileptic activity in the hippocampus and amygdala of all animals with limbic seizures.Therefore, our data indicate that AK-induced limbic epileptogenicity is able to increase the hippocampal mitotic rate, even though it does not seem to promote neuronal death or mossy fiber sprouting in the supragranular layer of the dentate gyrus.  相似文献   

3.
Consequences of recurrent seizures during early brain development.   总被引:17,自引:0,他引:17  
It is well documented that prolonged seizures (status epilepticus) can cause neuronal injury and result in synaptic reorganization in certain brain regions. However, the effect of recurrent, relatively short seizures in young animals on subsequent brain development is not known. To study the consequences of recurrent seizures on the developing brain, we subjected immature rats to a total of 50 flurothyl-induced seizures from postnatal day 11 until day 23. Immunohistochemistry for c-fos was performed to characterize the pattern of neuronal activation following the seizures. Cell counting of dentate granule cells, CA3, CA1, and hilar neurons, using unbiased stereological methods, and the silver impregnation method were used to evaluate neuronal death following the recurrent seizures. Timm and Golgi staining were performed four weeks after the 50th seizure to evaluate the effects of recurrent seizures on synaptic organization. Our results show that recurrent flurothyl-induced seizures progressively increased excitability of the brain, as revealed by a dramatic increase in the extent and intensity of c-fos immunostaining. While no cell loss was detected in the hippocampus with either Cresyl Violet or silver stains, animals experiencing multiple daily seizures developed increased mossy fiber sprouting in both the supragranular layer of the dentate gyrus and the infrapyramidale layer of the CA3 region. Golgi staining confirmed that there was an increase in mossy fibers in the pyramidal cell layer. Our results suggest that serial recurrent seizures in the immature brain can lead to significant changes in mossy fiber distribution even though the seizures do not cause significant hippocampal cell loss.  相似文献   

4.
We studied hippocampal cellular proliferation and neurogenesis processes in a model of transient global cerebral ischemia in gerbils by labelling dividing cells with 5'-Bromo-2'-deoxyuridine (BrdU). Surrounding the region of selective neuronal death (CA1 pyramidal layer of the hippocampus), an important increase in reactive astrocytes and BrdU-labelled cells was detected 5 days after ischemia. A similar result was found in the dentate gyrus (DG) 12 days after ischemia. The differentiation of the BrdU+ cells was investigated 28 days after BrdU administration by analyzing the morphology, anatomic localization and cell phenotype by triple fluorescent labelling (BrdU, adult neural marker NeuN and DNA marker TOPRO-3) using confocal laser-scanning microscopy. This analysis showed increased neurogenesis in the DG in case of ischemia and triple positive labelling in some newborn cells in CA1. Seven brain hemispheres from gerbils subjected to ischemia did not develop CA1 neuronal death; hippocampus from these hemispheres did not show any of the above mentioned findings. Our results indicate that ischemia triggers proliferation in CA1 and neurogenesis in the DG in response to CA1 pyramidal neuronal death, independently of the reduced cerebral blood flow or the cell migration from subventricular zone (SVZ).  相似文献   

5.
A new epileptic rat mutant with spontaneous seizures was developed by successive mating and selection from an inherited cataract rat. The procedures for developing the mutant and the symptomatology, electroencephalographic correlates, and neuropathology of the mutant are reported. It is possible that this rat stain will provide a useful animal model for human temporal lobe epilepsy. The seizures of the rat usually begin with face and head myoclonus, followed by rearing, and generalized clonic and tonic convulsions, all of which are symptomatologically the same as limbic seizures. Electrographic recording during generalized convulsive seizures demonstrated that sustained spike discharges emerged at the hippocampus and then propagated to the neocortex. Seizures occurred spontaneously without any artificial stimuli. Furthermore, external stimuli such as auditory, flashing light, or vestibular stimulations could not elicit epileptic attacks. Almost all of the male animals had generalized convulsions, mostly from 5 months after birth, and the frequency of the seizures increased with aging. Generalized convulsions developed in approximately 20% of the female rats. Microdysgenesis, such as abnormal neuronal clustering, neuronal disarrangement, or interruption of pyramidal neurons in the hippocampal formation, was found in the young rats that had not yet had generalized seizures. This microdysgenesis, which is though to be genetically programmed, was very interesting from the aspect of the relationship between structural abnormalities and epileptogenesis in this mutant. In addition to microdysgenesis, there was sprouting of mossy fibers into the inner molecular layer of the dentate gyrus in those adult rats that had repeated generalized convulsions. An increase of glial-fibrillary-acidic-protein-positive astrocytes with thickened and numerous processes, ie, astrogliosis, was also found in the cerebral cortex, amygdala region, and hippocampus of these adult animals. Judging from the characteristics of the symptomatology, electroencephalographic correlates, and neuropathology, this epileptic mutant can be expected to be a useful animal model for studying human temporal lobe epilepsy.  相似文献   

6.
Both the amygdala and hippocampus are damaged in drug-resistant temporal lobe epilepsy (TLE), suggesting that amygdalo-hippocampal interconnectivity is compromised in TLE. Therefore, we examined one of the major projections from the amygdala to the hippocampus, the projection from the amygdala to the CA1 subfield of the hippocampus/subiculum border region, and assessed whether it is preserved in rats with spontaneous seizures. Male Wistar rats were injected with kainic acid (9 mg/kg, i.p.) to induce chronic epilepsy. The occurrence of spontaneous seizures was monitored 5 or 15 weeks later by video-recording the rats for up to 5 days. Saline-injected animals served as controls. Thereafter, the retrograde tracer Fluoro-gold was injected into the border region of the temporal CA1/subiculum. Rats were perfused for histology 1-2 weeks later and sections were immunohistochemically processed to detect Fluoro-gold-positive cells. Comparison of the labeling in control and epileptic tissue indicated that a large cluster of retrogradely labeled cells in the parvicellular division of the basal nucleus was well preserved in epilepsy, even when the neuronal damage in the amygdala was substantial. Another large cluster of retrogradely labeled cells in the lateral division of the amygdalo-hippocampal area, the posterior cortical nucleus (part of the vomeronasal amygdala), and the periamygdaloid cortex (part of the olfactory amygdala), however, had disappeared in epileptic brain in parallel to severe neuronal loss in these nuclei. These data demonstrate that a projection from the parvicellular division of the basal nucleus to the temporal CA1/subiculum region is resistant to status epilepticus-induced neuronal damage and provides a candidate pathway by which seizure activity can spread and propagate from the amygdala to the hippocampal formation.  相似文献   

7.
《Neuroscience research》2010,66(4):367-374
Dietary restriction (DR) is known to have potential health benefits including enhanced resistance of neurons to excitotoxic, oxidative and metabolic insults, cancer, stress, diabetes, reduced morbidity, and increased life span. In the present study, we examined the effect of DR (alternate day feeding regimen) on neurogenesis, expression of immature neuronal marker polysialic acid neural cell adhesion molecule (PSA-NCAM) and neurotrophic factors from different brain regions such as subventricular zone (SVZ), subgranular zone (SGZ) of hippocampus, median eminence arcuate (ME-ARC) region of hypothalamus, and piriform cortex (PIR) of adult male rats and further challenged ad libitum fed (AL) and DR rats with pilocarpine to induce excitotoxic injury. The quantitative analysis of bromodeoxyuridine (BrdU) labeling revealed a significant increase in the proliferation rate of neuronal progenitor cells from discrete brain regions in DR rats with and without pilocarpine induced seizures as compared to AL rats. DR significantly enhanced the expression of PSA-NCAM and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). There was a marked reduction in neuronal cell death in SVZ and PIR cortex after pilocarpine administration in DR rats. These results add to the accumulating evidence that DR may be an effective intervention to enhance the resistance of brain to excitotoxic injury.  相似文献   

8.
D Masco  N Sahibzada  R Switzer  K Gale 《Neuroscience》1999,91(4):1315-1319
Seizures evoked by electroshock induce rapid changes in the expression of several genes in the adult brain, including those encoding for neurotrophic factors. Some of the neurotrophic factors induced by brief seizures such as basic fibroblast growth factor and nerve growth factor have been shown to have neuroprotective action. We reasoned therefore that these seizures may protect against neural injury. To test this hypothesis, we examined the effect of electroshock-induced seizures on the vulnerability to cell death in the hippocampus. Cell death was induced by adrenalectomy, which results in a highly selective apoptotic neuronal death in the dentate granule cell layer of the hippocampus. Daily electroshock seizures were administered for seven days to sham-operated and adrenalectomized rats. Neuronal degeneration was evaluated by the highly sensitive and reliable cupric-silver impregnation method. Animals experiencing electroshock seizures were completely protected against adrenalectomy-induced cell death, whereas adrenalectomized animals not exposed to electroshock seizures exhibited substantial neuronal cell degeneration in the dentate granule cell layer. Daily restraint stress did not prevent the adrenalectomy-induced neuronal death, indicating that the neuroprotective effect of the seizure treatment is not accounted for by stress. We conclude that brief controlled seizure-evoked neural activation may allow the sparing of otherwise vulnerable neuronal populations in the injured adult brain. This prompts a need to explore the possibility that controlled administration of electroshock seizures may have therapeutic potential in treating neurodegenerative disorders.  相似文献   

9.
Vaidya VA  Siuciak JA  Du F  Duman RS 《Neuroscience》1999,89(1):157-166
Stress, which can precipitate and exacerbate depression, causes atrophy and in severe cases death of hippocampal neurons. Atrophy of the hippocampus has also been observed in patients suffering from recurrent major depression. The present study examines the influence of electroconvulsive seizures, one of the most effective treatments for depression, on the morphology and survival of hippocampal neurons. The results demonstrate that chronic administration of electroconvulsive seizures induces sprouting of the granule cell mossy fiber pathway in the hippocampus. This sprouting is dependent on repeated administration of electroconvulsive seizures, reaches a maximum 12 days after the last treatment and is long lasting (i.e. up to six months). Electroconvulsive seizure-induced sprouting occurs in the absence of neuronal loss, indicating that sprouting is not a compensatory response to cell death. This is different from the sprouting induced by kindling or excitotoxin treatment, which induce cell death along with recurrent seizures. Electroconvulsive seizure-induced sprouting is significantly diminished in brain-derived neurotrophic factor heterozygote knockout mice, indicating that this neurotrophic factor contributes to mossy fiber sprouting. However, infusion of brain-derived neurotrophic factor into the hippocampus does not induce sprouting of the mossy fiber pathway. The results demonstrate that chronic administration of electroconvulsive seizures induces mossy fiber sprouting and suggest that increased expression of brain-derived neurotrophic factor is necessary, but not sufficient for the induction of this sprouting. Although the functional consequences remain unclear, sprouting of the mossy fiber pathway would appear to oppose the actions of stress and could thereby contribute to the therapeutic actions of electroconvulsive seizure therapy.  相似文献   

10.
Limbic epilepsy is a chronic condition associated with a broad zone of seizure onset and pathology. Studies have focused mainly on the hippocampus, but there are indications that changes occur in other regions of the limbic system. This study used in vitro intracellular recording and histology to examine alterations to the physiology and anatomy of the basal nucleus of the amygdala in a rat model of chronic limbic epilepsy characterized by spontaneously recurring seizures. Epileptic pyramidal neuron responses evoked by stria terminalis stimulation revealed hyperexcitability characterized by multiple action potential bursts and no evident inhibitory potentials. In contrast, no hyperexcitability was observed in amygdalar neurons from kindled (included as a control for seizure activity) or control rats. Blockade of ionotropic glutamate receptors unmasked inhibitory postsynaptic potentials in epileptic pyramidal neurons. Control, kindled and epileptic inhibitory potentials were predominantly biphasic, with fast and slow components, but a few cells exhibited only the fast component (2/12 in controls, 0/3 in kindled, 3/10 in epileptic). Epileptic fast inhibitory potentials had a more rapid onset and shorter duration than control and kindled. Approximately 40% of control neurons exhibited spontaneous inhibitory potentials; no spontaneous inhibitory potentials were observed in neurons from kindled or epileptic rats. A preliminary histological examination revealed no gross alterations in the basal amygdala from epileptic animals.These results extend previous findings from this laboratory that hyperexcitability is found in multiple epileptic limbic regions and may be secondary to multiple alterations in excitatory and inhibitory efficacy. Because there were no differences between control and kindled animals, the changes observed in the epileptic animals are unlikely to be secondary to recurrent seizures.  相似文献   

11.
Temporal lobe epilepsy (TLE) is defined as the sporadic occurrence of spontaneous recurrent seizures, and its pathogenesis is complex. SHP‐2 (Src homology 2‐containing protein tyrosine phosphatase 2) is a widely expressed cytosolic tyrosine phosphatase protein that participates in the regulation of inflammation, angiogenesis, gliosis, neurogenesis and apoptosis, suggesting a potential role of SHP‐2 in TLE. Therefore, we investigated the expression patterns of SHP‐2 in the epileptogenic brain tissue of intractable TLE patients and the various effects of treatment with the SHP‐2‐specific inhibitor SHP099 on a pilocarpine model. Western blotting and immunohistochemistry results confirmed that SHP‐2 expression was upregulated in the temporal neocortex of patients with TLE. Double‐labeling experiments revealed that SHP‐2 was highly expressed in neurons, astrocytes, microglia and vascular endothelial cells in the epileptic foci of TLE patients. In the pilocarpine‐induced C57BL/6 mouse model, SHP‐2 upregulation in the hippocampus began one day after status epilepticus, reached a peak at 21 days and then maintained a significantly high level until day 60. Similarly, we found a remarkable increase in SHP‐2 expression at 1, 7, 21 and 60 days post‐SE in the temporal neocortex. In addition, we also showed that SHP099 increased reactive gliosis, the release of IL‐1β, neuronal apoptosis and neuronal loss, while reduced neurogenesis and albumin leakage. Taken together, the increased expression of SHP‐2 in the epileptic zone may be involved in the process of TLE.  相似文献   

12.
Although neonatal hypoxia can lead to brain damage, mild hypoxic episodes may be beneficial, as illustrated by tolerance induction by preconditioning, a process that might involve neurogenesis. To examine if brief hypoxia in newborn rats could stimulate the generation of neurons, pups were exposed for 5 min to 100% N2. Cell density and apoptosis were monitored in various brain regions and cell proliferation was studied by the incorporation of bromodeoxyuridine. Hypoxia did not result in detectable cell death but promoted cell proliferation in the ensuing three weeks in the subventricular zone and hippocampal dentate gyrus, with increased cell density in hippocampus CA1 pyramidal cells and granular layer of the dentate gyrus. Newly generated cells expressed neuronal markers (NeuroD or neuronal nuclear antigen) and were able to migrate from germinative zones to specific sites, in particular from the subventricular zone to the CA1 layer along the posterior periventricle. Neurogenesis was associated with an early activation of the extracellular regulated kinase 1/2 pathway, and pre-hypoxic administration of U0126, an inhibitor of mitogen-activated protein kinase kinase, impaired hypoxia effect on cell proliferation. Neurobehavioral capacities of hypoxic rats paralleled those of controls, but early exposure to hypoxia was associated with significantly improved memory retrieval scores at 40 days. In conclusion, brief neonatal hypoxia may trigger delayed generation of potentially functional neurons without concomitant cell death. This may constitute an interesting model for studying cell key events involved in the induction of neurogenesis.  相似文献   

13.
Following kainate (KA)-induced epilepsy, rat hippocampal neurons strongly express immediate early gene (IEG) products, i.e., c-FOS and c-JUN, and neural stress protein, HSP72. Prolonged expression of c-JUN and c-FOS 48 hr after cerebral ischemia has been underwent delayed neuronal death. However, it is not yet clear whether IEGs actually assume the essential roles in the cell death process or simply as a by-product due to external stimuli because of the prolonged expression of c-FOS, more than one week, on intact CA2 neurons of the hippocampus in a KA-induced epilepsy model. This study investigated the relationships between prolonged expression of c-JUN and hippocampal neuronal apoptosis in a KA-induced epilepsy model. Epileptic seizure was induced in rats by a single microinjection of KA (1 microgram/microL) into the left amygdala. Characteristic seizures and hippocampal neuronal injury were developed. The expression of c-JUN was evaluated by immunohistochemistry, and neuronal apoptosis by in situ end labeling. The seizures were associated with c-JUN expression in the hippocampal neurons, of which the level showed a positive correlation with that of apoptosis. Losses of hippocampal neurons, especially in the CA3 region, were partly caused by apoptotic cell death via a c-JUN-mediated signaling pathway. This is thought to be an important component in the pathogenesis of hippocampal neuronal injury via KA-induced epilepsy.  相似文献   

14.
In temporal lobe epilepsy, the occurrence of seizures seems to correlate with the presence of lesions underlying the establishment of a hyperexcitable circuit. However, in the lithium-pilocarpine model of epilepsy, neuronal damage occurs both in the structures belonging to the circuit of initiation and maintenance of the seizures (forebrain limbic system) as in the propagation areas (cortex and thalamus) and in the circuit of remote control of seizures (substantia nigra pars reticulata). To determine whether or not we could protect the brain from lesions and epileptogenesis induced by status epilepticus and identify cerebral structures involved in the genesis of epilepsy, we studied the effects of the chronic exposure to non-deleterious seizures, either focalized with secondary generalization (amygdala kindling, kindled-pilocarpine rats), or primary generalized (ear-clip electroshocks, electroshock-pilocarpine rats) on neuronal damage and epileptogenesis induced by lithium-pilocarpine status epilepticus. These animals were compared to rats subjected to status epilepticus but not pretreated with seizures (sham-kindled-pilocarpine or sham-electroshock-pilocarpine rats). Compared to sham-pilocarpine rats, neuronal damage was prevented in the limbic system of the kindled-pilocarpine rats, except in the hilus of the dentate gyrus and the entorhinal cortex, while it was enhanced in rats pretreated with electroshocks, mainly in the entorhinal and perirhinal cortices. Most sham-kindled- and sham-electroshock-pilocarpine rats (92-100%) developed recurrent seizures after a silent period of 40-54days. Likewise, all kindled-pilocarpine rats developed spontaneous seizures after the same latency as their sham controls, while only two of 10 electroshock-pilocarpine rats became epileptic after a delay of 106-151days.The present data show that the apparent antiepileptic properties of electroshocks correlate with extensive damage in midbrain cortical regions, which may prevent the propagation of seizures from the hippocampus and inhibit their motor expression. Conversely, the extensive neuroprotection of the limbic system but not the hilus and entorhinal cortex provided by amygdala kindling does not prevent epileptogenesis. Thus, the hilus, the entorhinal and/or perirhinal cortex may be key structure(s) for the establishment of epilepsy.  相似文献   

15.
Repeated (but not acute) exposure to brief, non-injurious seizures evoked by minimal electroconvulsive shock (ECS) decreases neuronal death in limbic system and increases mRNA levels for nerve growth factor (NGF). Thus, the induction of NGF is a potential mechanism for the neuroprotection evoked by repeated ECS. The neuroprotective action of NGF is mediated by the TrkA receptor. This study determined whether repeated ECS exposure increased TrkA and NGF protein levels. To determine the functional significance of changes in these proteins, we compared the effects of ECS given daily either for 7 days (chronic ECS) or for 1 day (acute ECS). After chronic ECS, upregulation of both NGF and TrkA was found in perirhinal cortex, thalamus, and amygdala. In hippocampus, TrkA was upregulated in CA2, CA3 and CA4. NGF increase in hippocampus was found in CA1 and dentate gyrus. In frontal cortex and substantia innominata, an increase in NGF (but not in TrkA) was found. In most brain regions, TrkA and NGF remained unchanged after acute ECS. Our results demonstrate that repeated exposure to ECS causes an upregulation of TrkA and NGF proteins in several limbic areas in which neuroprotective effects are observed suggesting that NGF contributes to ECS-evoked neuroprotection.  相似文献   

16.
Subthreshold excitotoxic stimuli such as brief cerebral ischemia or chemically induced seizures modulate brain injury resulting from subsequent transient ischemia. Depending on the delay between the two insults, either tolerance or cumulative damage will develop. We were interested whether non-chemically induced inherent epileptic seizures as they occur in Mongolian gerbils have an effect on the outcome of a transient global ischemia, i.e., whether they are an interfering variable in ischemia experiments. Occurrence of spontaneous seizures in adult male gerbils was registered with a video-controlled seizure monitoring system. Bilateral occlusion of common carotid arteries was carried out 2 h or 24 h after the last generalized seizure. After 4 days survival, the extent of ischemia-induced neuronal damage and glial activation were assessed in the hippocampus and striatum. No significant difference in the ischemia induced nerve cell loss was observed in cresyl violet stained sections between the 2-h or 24-h interval gerbils. Neuronal expression of endothelial nitric oxide synthase in CA1 disappeared with neuronal degeneration. Distribution and degree of upregulation of glial fibrillary acidic protein as marker for astrocytes did not differ between the two groups. We concluded that non-chemically induced inherent epileptic seizures neither protect the gerbil brain from injury nor augment the degree of damage resulting from transient forebrain ischemia. Thus, inherent epileptic seizures do not influence the outcome of the insult, making the gerbil a reliable model for studies on transient brain ischemia.  相似文献   

17.
Exposure to organophosphorus nerve agents induces brain seizures, which can cause profound brain damage resulting in death or long-term cognitive deficits. The amygdala and the hippocampus are two of the most seizure-prone brain structures, but their relative contribution to the generation of seizures after nerve agent exposure is unclear. Here, we report that application of 1 μM soman for 30 min, in rat coronal brain slices containing both the hippocampus and the amygdala, produces prolonged synchronous neuronal discharges (10–40 s duration, 1.5–5 min interval of occurrence) resembling ictal activity in the basolateral nucleus of the amygdala (BLA), but only interictal-like activity (“spikes” of 100–250 ms duration; 2–5 s interval) in the pyramidal cell layer of the CA1 hippocampal area. BLA ictal- and CA1 interictal-like activity were synaptically driven, as they were blocked by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. As the expression of the GluR5 subunit of kainate receptors is high in the amygdala, and kainate receptors containing this subunit (GluR5KRs) play an important role in the regulation of neuronal excitability in both the amygdala and the hippocampus, we tested the efficacy of a GluR5KR antagonist against the epileptiform activity induced by soman. The GluR5KR antagonist UBP302 reduced the amplitude of the hippocampal interictal-like spikes, and eliminated the seizure-like discharges in the BLA, or reduced their duration and frequency, with no significant effect on the evoked field potentials. This is the first study reporting in vitro ictal-like activity in response to a nerve agent. Our findings, along with previous literature, suggest that the amygdala may play a more important role than the hippocampus in the generation of seizures following soman exposure, and provide the first evidence that GluR5KR antagonists may be an effective treatment against nerve agent–induced seizures.  相似文献   

18.
Unilateral intrahippocampal injection of kainic acid in adult mice reproduces most of the morphological characteristics of hippocampal sclerosis (neuronal loss, gliosis, reorganization of neurotransmitter receptors, mossy fiber sprouting, granule cell dispersion) observed in patients with temporal lobe epilepsy. Whereas some neuronal loss is observed immediately after the initial status epilepticus induced by kainate treatment, most reorganization processes develop progressively over a period of several weeks. The aim of this study was to characterize the evolution of seizure activity in this model and to assess its pharmacological reactivity to classical antiepileptic drugs.Intrahippocampal electroencephalographic recordings showed three distinct phases of paroxystic activity following unilateral injection of kainic acid (1 nmol in 50 nl) into the dorsal hippocampus of adult mice: (i) a non-convulsive status epilepticus, (ii) a latent phase lasting approximately 2 weeks, during which no organized activity was recorded, and (iii) a phase of chronic seizure activity with recurrent hippocampal paroxysmal discharges characterized by high amplitude sharp wave onset. These recurrent seizures were first seen about 2 weeks post-injection. They were limited to the injected area and were not observed in the cerebral cortex, contralateral hippocampus or ipsilateral amygdala. Secondary propagation to the contralateral hippocampus and to the cerebral cortex was rare. In addition hippocampal paroxysmal discharges were not responsive to acute carbamazepine, phenytoin, or valproate treatment, but could be suppressed by diazepam.Our data further validate intrahippocampal injection of kainate in mice as a model of temporal lobe epilepsy and suggest that synaptic reorganization in the lesioned hippocampus is necessary for the development of organized recurrent seizures.  相似文献   

19.
Mudò G  Belluardo N  Mauro A  Fuxe K 《Neuroscience》2007,145(2):470-483
Over the past years, evidence has accumulated that stem cells are present in the adult brain, and generate neurons and/or glia from two active germinal zones: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. This study shows that acute intermittent nicotine treatment significantly enhances neuronal precursor cell proliferation in the SVZ of adult rat brain, but not in the SGZ of the hippocampus, and pre-treatment with mecamylamine, a nonselective nAChR antagonist, blocks the enhanced precursor proliferation by nicotine. This effect is supported by up-regulation of fibroblast growth factor-2 (FGF-2) mRNA in the SVZ and the expression of its receptor FGFR-1 in cells of SVZ showing precursor cells profile. It is also demonstrated that the nicotine effect on neuronal precursor proliferation is mediated by FGF-2 via fibroblast growth factor receptor 1 (FGFR-1) activation by showing that i.c.v. pre-treatment with anti-FGF-2 antibodies or with FGFR-1 inhibitor 3-[(3-(2-carboxyethyl)-4-methylpyrrol-2-yl)methylene]-2-indolinone (SU5402) blocks nicotine-induced precursor cell proliferation. This nicotine enhancement of neuronal precursor cell proliferation was not accompanied by an increase in the number of apoptotic cells. Taken together the present findings revealed the existence in the SVZ of the adult rat brain of a trophic mechanism mediated by FGF-2 and its receptor and regulated by nAchR activation. This possibility of in vivo regulation of neurogenesis in the adult brain by exogenous factors may aid to develop treatments stimulating neurogenesis with potential therapeutic implications.  相似文献   

20.
The production of new neurons declines during adulthood and persists, although at very low levels, in the aged hippocampus. Since neurogenesis in young adults has been related to learning and memory, its reduction may contribute to the age-related impairments in these abilities. Adrenalectomy (ADX) enhances neurogenesis in the aged hippocampus, although it also induces neuronal cell death. Since the administration of an NMDA receptor antagonist enhances neurogenesis in young adult rats without deleterious morphological effects, we have tested whether neurogenesis could be reactivated in aged rats. Our study shows that cell proliferation, cell death, neurogenesis and the number of radial glia-like nestin immunoreactive cells decrease in middle-age (10 months) and remain very low in the aged hippocampus. Injection of the NMDA receptor antagonist to aged rats increases significantly the number of proliferating cells, new neurons and radial glia-like cells in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号