首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To investigate the pharmacokinetics and excretion balance of [(14)C]-OR-1896, a pharmacologically active metabolite of levosimendan, in six healthy male subjects. In addition, pharmacokinetic parameters of total radiocarbon and the deacetylated congener, OR-1855, were determined. METHODS: OR-1896 was administered as a single intravenous infusion of 200 microg of [(14)C]-OR-1896 (specific activity 8.6 MBq/mg) over 10 min. The pharmacokinetic parameters were calculated by three-compartmental methods. RESULTS: During the 14-day collection of urine and faeces, excretion (+/-S.D.) averaged 94.2+/-1.4% of the [(14)C]-OR-1896 dose. Mean recovery of radiocarbon in urine was 86.8+/-1.9% and in faeces 7.4+/-1.5%. Mean terminal elimination half-life of OR-1896 (t(1/2)) was 70.0+/-44.9 h. Maximum concentrations of OR-1855 were approximately 30% to that of OR-1896. Total clearance and the volume of distribution of OR-1896 were 2.0+/-0.4 l/h and 175.6+/-74.5l, respectively. Renal clearances of OR-1896 and OR-1855 were 0.9+/-0.4 l/h and (5.4+/-2.3)x10(-4) l/h, respectively. CONCLUSIONS: This study provides data to demonstrate that nearly one half of OR-1896 is eliminated unchanged into urine and that the active metabolites metabolite of levosimendan remain in the body longer than levosimendan. The remaining half of OR-1896 dose is eliminated through other metabolic routes, partially through interconversion back to OR-1855 with further metabolism of OR-1855. Given the fact that the pharmacological activity and potency of OR-1896 is similar to levosimendan, these results emphasize the clinical significance of OR-1896 and its contribution to the long-lasting effects of levosimendan.  相似文献   

2.
建立快速、 灵敏、 易操作的LC-MS/MS法测定人血浆中的左西孟旦及其代谢物OR-1855和OR-1896的浓度。根据待测物的不同性质, 采用两套液相色谱系统和电离方式分别测定人血浆中的左西孟旦和代谢物OR-1855、 OR-1896。测定左西孟旦时, 用瑞舒伐他汀为内标, 血浆样品经甲醇沉淀蛋白, 以甲醇-15 mmol·L-1醋酸铵-甲酸(55∶45∶0.02, v/v/v)为流动相, Capcell MG III C18柱(35 mm×2.0 mm ID, 3 μm)进行分离, 采用电喷雾电离源,以选择反应监测(SRM)方式进行负离子检测。测定代谢物OR-1855和OR-1896时, 用多索茶碱为内标, 血浆样品经乙酸乙酯萃取, 以甲醇-15 mmol·L-1醋酸铵-甲酸(65∶35∶0.1, v/v/v)为流动相, Zorbax Extend C18柱(150 mm×4.6 mm ID, 5 μm)进行分离, 采用电喷雾电离源, SRM方式进行正离子检测。测定血浆中左西孟旦方法的线性范围为0.10~50.0 ng·mL-1, 定量下限可达0.10 ng·mL-1; 测定血浆中代谢物OR-1855和OR-1896方法的线性范围均为0.20~100 ng·mL-1, 定量下限均可达0.20 ng·mL-1。本方法专属性好, 准确、 快速, 适用于左西孟旦注射液的临床药代动力学研究。  相似文献   

3.
The concentration dependences of the Ca(2+)-sensitizing and the phosphodiesterase-inhibitory effects of levosimendan (the (-) enantiomer of [[4-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)phenyl]hydrazono]propanedinitrile) and its active metabolite, OR-1896 (the (-) enantiomer of N-[4-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)phenyl] acetamide), were compared with their positive inotropic effects to reveal their mechanisms of action in guinea pig hearts. In Langendorff-perfused hearts, left ventricular +dP/dt(max) increased by 26+/-4% and 25+/-3% (mean+/-S.E.M.), with EC(50) values of 15+/-2 and 25+/-1 nM for levosimendan and OR-1896, respectively. In permeabilized myocyte-sized preparations, levosimendan and OR-1896 both increased isometric force production via Ca(2+) sensitization (at pCa 6.2), by 51+/-7% and 52+/-6%, with EC(50) values of 8+/-1 and 36+/-7 nM (P<0.05), respectively. Thus, the two molecules could be defined as Ca(2+) sensitizers and positive inotropes with very similar concentration dependences. However, major differences appeared when the phosphodiesterase-inhibitory effects of levosimendan and OR-1896 were probed on the two phosphodiesterase isoforms (phosphodiesterases III and IV) dominant in the left ventricular cardiac tissue. Levosimendan was a 40-fold more potent and a 3-fold more selective phosphodiesterase III inhibitor (IC(50) for phosphodiesterase III=2.5 nM, and IC(50) for phosphodiesterase IV=25 microM, selectivity factor approximately 10000) than OR-1896 (IC(50) for phosphodiesterase III=94 nM, and IC(50) for phosphodiesterase IV=286 microM, selectivity factor approximately 3000). Hence, our data support the hypothesis that levosimendan and OR-1896 both exert positive inotropy via a Ca(2+)-sensitizing mechanism and not via simultaneous inhibition of the phosphodiesterases III and IV isozymes in the myocardium at their maximal free plasma concentrations.  相似文献   

4.
The influence of left ventricular hypertrophy (LVH) on the endothelial function of resistance endocardial arteries is not well established. The aim of this study was to characterise the mechanisms responsible for UK-14,304 (alpha(2)-adrenoreceptor agonist)-induced endothelium-dependent dilation in pig endocardial arteries isolated from hearts with or without LVH. LVH was induced by aortic banding 2 months before determining endothelial function. Following euthanasia, hearts were harvested and endocardial resistance arteries were isolated and pressurised to 100 mmHg in no-flow conditions. Vessels were preconstricted with acetylcholine (ACh) or high external K(+) (40 mmol l(-1) KCl). Results are expressed as mean+/-s.e.m. UK-14,304 induced a maximal dilation representing 79+/-6% (n=8) of the maximal diameter. NO synthase (l-NNA, 10 micromol l(-1), n=7) or guanylate cyclase (ODQ, 10 micromol l(-1), n=4) inhibition reduced (P<0.05) UK-14,304-dependent dilation to 35+/-6 and 18+/-7%, respectively. Apamin and charybdotoxin reduced (P<0.05) to 39+/-8% (n=4) the dilation induced by UK-14,304. In depolarised conditions, however, this dilation was prevented (P<0.05). UK-14,304-induced dilation was reduced (P<0.05) by glibenclamide (Glib, 1 micromol l(-1)), a K(ATP) channel blocker, either alone (35+/-10%, n=5) or in combination with l-NNA (34+/-9%, n=4). In LVH, UK-14,304-induced maximal dilation was markedly reduced (25+/-4%, P<0.05) compared to control; it was insensitive to l-NNA (21+/-5%) but prevented either by the combination of l-NNA, apamin and charybdotoxin, or by 40 mmol l(-1) KCl. Activation of endothelial alpha(2)-adrenoreceptor induces an endothelium-dependent dilation of pig endocardial resistance arteries. This dilation is in part dependent on NO, the release of which appears to be dependent on the activation of endothelial K(ATP) channels. This mechanism is blunted in LVH, leading to a profound reduction in UK-14,304-dependent dilation.  相似文献   

5.
OBJECTIVE: The purpose of this study was to investigate the pharmacokinetics of levosimendan and to determine the primary pharmacokinetic parameters of the pharmacologically active metabolite OR-1896 in rapid and slow acetylators. METHODS: Levosimendan was administered as a constant rate (0.1 microg/(kg min)) i.v. infusion for 24h in six rapid and six slow acetylators based on N-acetyltransferase 2 genotyping. At the end of the infusion, a small amount (2.5 microg/kg) of (13)C-labeled OR-1896 was administered by i.v. infusion for 10 min. Blood samples were taken at predefined sampling points 14 days post-infusion and levosimendan and its metabolite concentrations were determined by LC-MS/MS. RESULTS: Steady-state concentrations of levosimendan were achieved within 4-8h and no differences were found in the pharmacokinetics of the parent compound between the rapid and slow acetylators. The maximum concentrations of amino phenylpyridazinone metabolite OR-1855 and N-acetylated conjugate OR-1896 were observed approximately 24h after terminating the infusion. AUC of OR-1896 was approximately 3.5 times higher in the rapid acetylators compared to the slow acetylators (P = 0.002, 95% confidence interval for group ratio from 2.0 to 8.2). The mean +/- S.D. fraction of levosimendan metabolized to OR-1896 was 6.8 +/- 2.8% in the rapid and 4.3 +/- 2.4% in the slow acetylators (P = 0.12). (13)C-OR-1855 concentrations were detected in plasma after administration of (13)C-OR-1896 indicating deacetylation from OR-1896 to OR-1855. CONCLUSIONS: Plasma OR-1896 levels during and after levosimendan treatment are dependent on the acetylation status of the subject-rapid acetylators having 3.5 times higher concentrations than slow acetylators.  相似文献   

6.
  1. Anti-inflammatory actions of heparin and related glycosaminoglycans have been described in the literature. Here, we used intravital microscopy of the rat mesentery microcirculation to examine effects of locally administered heparin on leukocyte rolling and chemoattractant-induced firm adhesion.
  2. It was found that topical application of heparin reduced N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced leukocyte adhesion. Notably, the inhibitory action of heparin was not dose-dependent, but rather a biphasic dose-response was found, i.e. low (2 and 20 iu ml−1) and high (1000 iu ml−1) concentrations of heparin significantly reduced adhesion, whereas an intermediate dose (200 iu ml−1) was less effective.
  3. Heparin, 2 and 20 iu ml−1, decreased rolling leukocyte flux, while having no effect on blood flow or total leukocyte flux. By contrast, heparin, 200 and 1000 iu ml−1, increased total leukocyte flux in parallel with a rise in volume blood flow resulting in recovery of the rolling leukocyte flux at these doses. Thus, the biphasic inhibitory action of heparin on fMLP-induced firm adhesion could in part be attributed to changes in leukocyte delivery (i.e. blood flow) and rolling leukocyte flux induced by heparin.
  4. When compensating for the influence of different rolling levels on fMLP-evoked adhesion, a dose-related inhibitory effect of heparin on the firm adhesive response per se was revealed. Similar results were obtained in a static adhesion assay in vitro where heparin 200 and 1000 iu ml−1 (but not 2 and 20 iu ml−1) significantly inhibited fMLP-induced leukocyte adhesion in the absence of any modulatory influence on changes in rolling.
  5. Our data show that locally administered heparin inhibits leukocyte rolling as well as chemoattractant-induced firm adhesion in vivo which thus may contribute to the postulated anti-inflammatory activity of this compound. However, because of interference with several microvascular functions, strict dose-dependent responses to heparin treatment were not found, which illustrates the complex interplay between local blood flow, leukocyte rolling and chemoattractant-induced adhesion as determinants of leukocyte recruitment to tissues in inflammation.
  相似文献   

7.

BACKGROUND AND PURPOSE

Transient receptor potential vanilloid type 4 (TRPV4) channels are expressed in brain endothelial cells, but their role in regulating cerebrovascular tone under physiological and pathological conditions is still largely unknown.

EXPERIMENTAL APPROACH

Wild-type (WT) mice and mice that overexpress a mutated form of the human amyloid precursor protein (APP mice, model of increased amyloid β), a constitutively active form of TGF-β1 (TGF mice, model of cerebrovascular fibrosis) or both (APP/TGF mice) were used. Dilations to the selective TRPV4 channel opener GSK1016790A (GSK) or to ACh were measured in posterior cerebral artery segments.

KEY RESULTS

Both GSK- and ACh-induced dilations virtually disappeared following endothelium denudation in WT mice. These responses were impaired in vessels from APP, TGF and APP/TGF mice compared with WT. Pre-incubation of WT vessels with the selective TRPV4 channel blocker HC-067047, or with small-conductance (SK channel, apamin) and/or intermediate-conductance (IK channel, charybdotoxin, ChTx) Ca2+-sensitive K+ channel blocker abolished GSK-induced dilations and massively decreased those induced by ACh. These treatments had no or limited effects on ACh-induced dilation in vessels from APP, TGF or APP/TGF mice, and IK and SK channel function was preserved in transgenic mice. Antioxidant superoxide dismutase or catalase normalized GSK- and ACh-mediated dilations only in APP brain arteries.

Conclusion and Implications

We conclude that endothelial TRPV4 channels mediate ACh-induced dilation in cerebral arteries, that they are impaired in models of cerebrovascular pathology and that they are sensitive, albeit in the reversible manner, to amyloid β-induced oxidative stress.  相似文献   

8.
The effects of pinacidil and its major metabolite, pinacidil-N-oxide, were compared in isolated smooth and cardiac muscle preparations. Wide variation occurred in the sensitivity of different smooth muscle preparations to the relaxant effect of pinacidil. Relaxant sensitivity of pinacidil was greatest in the one vascular preparation examined, the rat aorta, where the ED50 for pinacidil was approximately 0.5 μM. Pinacidil was equally potent in relaxing serotonin- or norepinephrine-contracted aortic preparations. Although pinacidil was also a smooth muscle relaxant in the guinea pig trachea, guinea pig ileum, rat vas deferens, and rat stomach funds, the ED50 ranged from 1--25 μM in these smooth muscle preparations. In the trachea, pinacidil was most effective in relaxing histamine-induced contractions as compared to contractions induced by carbamylcholine. Thus, bronchodilatory effects of pinacidil might be most apparent when bronchoconstriction is produced by allergic responses that result from histamine release. Pinacidil was least effective in quiescent rat uterine smooth muscle, where approximately 80% of the maximum contractile response to oxytocin was maintained in the presence of 10?4 M pinacidil. Although a direct cardiostimulatory effect of hydralazine has been postulated, no direct stimulatory effect on guinea pig cardiac rate or force occurred with pinacidil. Furthermore, an inhibitory effect on rate and force of atrial responses occurred only in higher doses of pinacidil. The major metabolite of pinacidil, pinacidil-N-oxide, also relaxed the rat aorta, although it was approximately eight- to tenfold less potent than pinacidil. These data are consistent with the contention that pinacidil-N-oxide would contribute to the antihypertensive activity seen after pinacidil only when plasma levels were approximately tenfold greater than the parent compound. Furthermore, because of the relative insensitivity of other smooth and cardiac.  相似文献   

9.
1. The mechanisms of oscillatory contraction of arterial smooth muscle in vitro are discussed. 2. The membrane potential and cytoplasmic free Ca2+ concentration in smooth muscle cells oscillate in the presence of agonists. 3. The oscillatory change in the membrane potential of smooth muscle cells is related to Ca2+ release from intracellular stores. 4. Gap junctions between smooth muscle cells play important roles in the synchronized oscillation of the cytoplasmic free Ca2+ concentration in this population of cells. 5. Endothelial cells may increase or decrease the tension oscillation of smooth muscle cells. 6. In arteries from hypertensive rats, an increase in membrane excitability and the number of gap junctions between smooth muscle cells and impaired endothelial function are the main factors responsible for the modulation of tension oscillation.  相似文献   

10.
1. The aims of the present study were to investigate the effects of fresh garlic and one of its active metabolites, allicin, on rat isolated pulmonary arteries (RPA). 2. In endothelium-intact and phenylephrine-precontracted RPA, the addition of a water or a 5% ethanol extract of fresh garlic (1-500 microg/mL) resulted in a dose-dependent relaxation reaching a maximum (mean +/- SEM) of -91 +/- 3 and -93 +/- 2%, respectively, with an ED(50) of 113 +/- 12 and 106 +/- 10 microg/mL, respectively. The vasorelaxation was readily reversible upon washing and no tachyphylaxis was noted. 3. An extract of the external garlic storage leaf produced a significantly greater relaxation than the inner stem. Microfiltration of extracts with a 10,000 molecular sieve did not attenuate relaxation. Inactivation of alliinase and allicin formation, with either boiling of the garlic clove for 30 min or 100% ethanol treatment, completely abolished relaxation. In contrast, similar treatment of crushed garlic with formed allicin retained the relaxation response. 4. Pure allicin produced a similar relaxation as garlic extract, with an EC(50) of approximately 0.8 microg/mL. Disruption of endothelium or N(G)-nitro-L-arginine methyl ester pretreatment attenuated the relaxation, whereas indomethacin had no effect. 5. Prior garlic (500 microg/mL) treatment enhanced acetylcholine relaxation by shifting the response curve to the left, but had no effect on nitric oxide (NO) donor-induced responses. 6. These results demonstrate that garlic and the active metabolite allicin are capable of eliciting a NO-dependent relaxation in RPA and that this response is likely to be mediated via garlic activation of NO formation rather than its stabilization.  相似文献   

11.

Aim:

Para-aminosalicylic acid (PAS) is effective in the treatment of manganism-induced neurotoxicity (manganism). In this study we investigated the roles of P-glycoprotein (MDR1a) and multidrug resistance protein (MRP) in transporting PAS and its N-acetylated metabolite AcPAS through blood-brain barrier.

Methods:

MDR1a-null or wild-type mice were intravenously injected with PAS (200 mg/kg). Thirty minutes after the injection, blood samples and brains were collected, and the concentrations of PAS and AcPAS in brain capillaries and parenchyma were measured using HPLC. Both MDCK-MDR1 and MDCK-MRP1 cells that overexpressed P-gp and MRP1, respectively, were used in two-chamber Transwell transport studies in vitro.

Results:

After injection of PAS, the brain concentration of PAS was substantially higher in MDR1a-null mice than in wild-type mice, but the brain concentration of AcPAS had no significant difference between MDR1a-null mice and wild-type mice. Concomitant injection of PAS with the MRP-specific inhibitor MK-571 (50 mg/kg) further increased the brain concentration of PAS in MDR1a-null mice, and increased the brain concentration of AcPAS in both MDR1a-null mice and wild-type mice. Two-chamber Transwell studies with MDCK-MDR1 cells demonstrated that PAS was not only a substrate but also a competitive inhibitor of P-gp, while AcPAS was not a substrate of P-gp. Two-chamber Transwell studies with the MDCK-MRP1 cells showed that MRP1 had the ability to transport both PAS and AcPAS across the BBB.

Conclusion:

P-gp plays a major role in the efflux of PAS from brain parenchyma into blood in mice, while MRP1 is involved in both PAS and AcPAS transport in the brain.  相似文献   

12.
Quercetin, a member of the bioflavonoids family, has been proposed to have anti-atherogenic, anti-inflammatory, and anti-hypertensive properties leading to the beneficial effects against cardiovascular diseases. It was recently demonstrated that quercetin 3-O-β-D-glucuronide (Q3GA) is one of the major quercetin conjugates in human plasma, in which the aglycone could not be detected. Although most of the in vitro pharmacological studies have been carried out using only the quercetin aglycone form, experiments using Q3GA would be important to discover the preventive mechanisms of cardiovascular diseases by quercetin in vivo. Therefore we examined the effects of the chemically synthesized Q3GA, as an in vivo form, on vascular smooth muscle cell (VSMC) disorders related to the progression of arteriosclerosis. Platelet-derived growth factor-induced cell migration and proliferation were inhibited by Q3GA in VSMCs. Q3GA attenuated angiotensin II-induced VSMC hypertrophy via its inhibitory effect on JNK and the AP-1 signaling pathway. Q3GA scavenged 1,1-diphenyl-2-picrylhydrazyl radical measured by the electron paramagnetic resonance method. In addition, immunohistochemical studies with monoclonal antibody 14A2 targeting the Q3GA demonstrated that the positive staining specifically accumulates in human atherosclerotic lesions, but not in the normal aorta. These findings suggest Q3GA would be an active metabolite of quercetin in plasma and may have preventative effects on arteriosclerosis relevant to VSMC disorders.  相似文献   

13.
AIMS: To predict the drug interactions of amiodarone and other drugs, the inhibitory effects and inactivation potential for human cytochrome P450 (CYP) enzymes by amiodarone and its N-dealkylated metabolite, desethylamiodarone were examined. METHODS: The inhibition or inactivation potency of amiodarone and desethylamiodarone for human CYP activities were investigated using microsomes from B-lymphoblastoid cell lines expressing CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. The in vivo drug interactions of amiodarone and desethylamiodarone were predicted in vitro using the 1+Iu/Ki values. RESULTS: Amiodarone weakly inhibited CYP2C9, CYP2D6, and CYP3A4-mediated activities with Ki values of 45.1-271.6 microm. Desethylamiodarone competitively inhibited the catalytic activities of CYP2D6 (Ki=4.5 microm ) and noncompetitively inhibited CYP2A6 (Ki=13.5 microm ), CYP2B6 (Ki=5.4 microm ), and CYP3A4 (Ki=12.1 microm ). The catalytic activities of CYP1A1 (Ki=1.5 microm, alpha=5.7), CYP1A2 (Ki=18.8 microm, alpha=2.6), CYP2C9 (Ki=2.3 microm, alpha=5.9), and CYP2C19 (Ki=15.7 microm, alpha=4.5) were inhibited by desethylamiodarone with mixed type. The 1+Iu/Ki values of desethylamiodarone were higher than those of amiodarone. Amiodarone inactivated CYP3A4, while desethylamiodarone inactivated CYP1A1, CYP1A2, CYP2B6, and CYP2D6. CONCLUSIONS: The interactions between amiodarone and other drugs might occur via the inhibition of CYP activities by its N-dealkylated metabolite, desethylamiodarone, rather than by amiodarone itself. In addition, the inactivation of CYPs by desethylamiodarone as well as by amiodarone would also contribute to the drug interactions.  相似文献   

14.
  1. We investigated the response to pressure (myogenic tone) and flow of rat mesenteric resistance arteries cannulated in an arteriograph which allowed the measurement of intraluminal diameter for controlled pressures and flows. Rats were treated for 3 weeks with NG-nitro-L-arginine methyl ester (L-NAME, 50 mg kg−1 day−1) or L-NAME plus the angiotensin I converting enzyme inhibitor (ACEI) quinapril (10 mg kg−1 day−1).
  2. Mean blood pressure increased significantly in chronic L-NAME-treated rats (155±4 mmHg, n=8, vs control 121±6 mmHg, n=10; P<0.05). L-NAME-treated rats excreted significantly more dinor-6-keto prostaglandin F (dinor-6-keto PGF), the stable urinary metabolite of prostacyclin, than control rats. The ACEI prevented the rise in blood pressure and the rise in urinary dinor-6-keto PGF due to L-NAME.
  3. Isolated mesenteric resistance arteries, developed myogenic tone in response to stepwise increases in pressure (42±6 to 847±10 mN mm−1, from 25 to 150 mmHg, n=9). Myogenic tone was not significantly affected by the chronic treatment with L-NAME or L-NAME+ACEI.
  4. Flow (100 μl min−1) significantly attenuated myogenic tone by 50±6% at 150 mmHg (n=10). Flow-induced dilatation was significantly attenuated by chronic L-NAME to 22±6% at 150 mmHg (n=10, P=0.0001) and was not affected in the L-NAME+ACEI group.
  5. Acute in vitro NG-nitro-L-arginine (L-NOARG, 10 μM) significantly decreased flow-induced dilatation in control but not in L-NAME or L-NAME+ACEI rats. Both acute indomethacin (10 μM) and acute NS 398 (cyclo-oxygenase-2 (COX-2) inhibitor, 1 μM) did not change significantly flow-induced dilatation in controls but they both decreased flow-induced dilatation in the L-NAME and L-NAME+ACEI groups. Acute Hoe 140 (bradykinin receptor inhibitor, 1 μM) induced a significant contraction of the isolated mesenteric arteries which was the same in the 3 groups.
  6. Immunofluorescence analysis of COX-2 showed that the enzyme was expressed in resistance mesenteric arteries in L-NAME and L-NAME+ACEI groups but not in control. COX-1 expression was identical in all 3 groups.
  7. We conclude that chronic inhibition of nitric oxide synthesis is associated with a decreased flow-induced dilatation in resistance mesenteric arteries which was compensated by an overproduction of vasodilator prostaglandins resulting in part from COX-2 expression. The decrease in flow-induced dilatation was prevented by the ACEI, quinapril.
  相似文献   

15.
4-Vinylcyclohexene (VCH), an occupational chemical, causes destruction of small preantral follicles (F1) in mice. Previous studies suggested that VCH is bioactivated via cytochromes P450 (CYP450) to the ovotoxic, diepoxide metabolite, VCD. Whereas hepatic CYP450 isoforms 2E1, 2A, and 2B can metabolize VCH, the role of ovarian metabolism is unknown. This study investigated expression of these isoforms in isolated ovarian fractions (F1, 25-100 microm; F2, 100-250 microm; F3, >250 microm; interstitial cells, Int) from B6C3F1 mice dosed daily (15 days; ip) with vehicle, VCH (7.4 mmol/kg/day) or VCD (0.57 mmol/kg/day). Ovaries were removed and either isolated into specific ovarian compartments for mRNA analysis, fixed for immunohistochemistry, or prepared for enzymatic assays. mRNA and protein for all isoforms were expressed/distributed in all ovarian fractions from vehicle-treated mice. In the targeted F1 follicles, VCH or VCD dosing increased (p < 0.05) mRNA encoding CYP2E1 (645 +/- 14% VCH; 582 +/- 16% VCD), CYP2A (689 +/- 8% VCH; 730 +/- 22% VCD), and CYP2B (246 +/- 7% VCH) above control. VCH dosing altered (p < 0.05) mRNA encoding CYP2E1 in nontargeted F3 follicles (168 +/- 7%) and CYP2A in Int (207 +/- 19%) above control. Immunohistochemical analysis revealed the greatest staining intensity for all CYP isoforms in the Int. VCH dosing altered (p < 0.05) staining intensity in Int for CYP2E1 (19 +/- 2.4% below control) and CYP2A (39 +/- 5% above control). Staining intensity for CYP2B was increased (p < 0.05) above control in granulosa cells of small preantral (187 +/- 42%) and antral (63 +/- 8%) follicles. Catalytic assays in ovarian homogenates revealed that CYP2E1 and CYP2B were functional. Only CYP2E1 activity was increased (149 +/- 12% above control; p < 0.05) by VCH dosing. The results demonstrate that mRNA and protein for CYP isoforms known to bioactivate VCH are expressed in the mouse ovary and are modulated by in vivo exposure to VCH and VCD. Interestingly, there is high expression of these isoforms in the Int. Thus, the ovary may contribute to ovotoxicity by promoting bioactivation of VCH to the toxic metabolite, VCD.  相似文献   

16.
The objectives of this study were to characterize the pharmacokinetics of sertindole and its active metabolite dehydrosertindole in rats and to evaluate the central modulatory and behavioural pharmacodynamics including a competitive interaction model between the compounds. Following oral administration of sertindole or dehydrosertindole, the plasma concentration–time courses were determined in conjunction with striatal dopamine D2 receptor binding. In addition, the behavioural effects were recorded in the conditioned avoidance response (CAR) paradigm. A one‐compartment model with Michaelis‐Menten elimination best described the pharmacokinetics of sertindole. Formation of dehydrosertindole was incorporated into the pharmacokinetic model and exhibited first‐order elimination. PK/PD modelling after administration of dehydrosertindole resulted in potency estimates of 165 and 424 ng/ml for D2‐occupancy (Kd) and CAR measurements (EC50), respectively. The pharmacokinetics of the parent–metabolite system was integrated into a competitive pharmacodynamic Emax model in order to quantitate the potency of sertindole with the pharmacodynamic parameters of the metabolite taken into account. Based on this approach, effect compartment concentrations of sertindole needed to attain 50% occupancy and half‐maximal effect in the CAR paradigm were 133 and 338 ng/ml, respectively. The corresponding potency‐estimates obtained after conventional modelling of the sertindole data without accounting for the metabolite amounted to 102 and 345 ng/ml. Based on competitive PK/PD analysis of the parent–metabolite interaction, the relative contribution of dehydrosertindole to the overall pharmacological effect after sertindole administration in rats appeared to be of minor significance. This could mainly be ascribed to the relatively low extent of bioconversion of sertindole into dehydrosertindole in this species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Objectives It has been reported that hepatic cytochrome P450 (CYP)2C9 and CYP3A4 are responsible for the metabolism of sildenafil and formation of its metabolite, N‐desmethylsildenafil, in humans. However, in‐vivo studies in rats have not been reported. Methods Sildenafil (20 mg/kg) was administered intravenously to rats pretreated with sulfaphenazole, cimetidine, quinine hydrochloride or troleandomycin, inhibitors of CYP2C6, CYP2C11, CYP2D subfamily and CYP3A1/2, respectively. In‐vitro studies using rat liver microsomes were also performed. Key findings The area under the plasma‐concentration time curve (AUC) was increased and clearance of sildenafil decreased in rats pretreated with cimetidine or troleandomycin. The AUC ratio for N‐desmethylsildenafil (0–4 h): sildenafil (0–∞) was significantly decreased only in rats pretreated with cimetidine. Similar results were obtained in the in‐vitro study using rat liver microsomes. Conclusions Sildenafil is metabolised via hepatic CYP2C11 and 3A1/2, and N‐desmethylsildenafil is mainly formed via hepatic CYP2C11 in rats. Thus, rats could be a good model for pharmacokinetic studies of sildenafil and N‐desmethylsildenafil in humans.  相似文献   

18.
The cytotoxic effects of HMN-176 ((E)-4-{[2-N-[4-methoxybenzenesulfonyl] amino] stilbazole} 1-oxide; Figure 1}, a newly synthesized compound, were evaluated and compared with those of the clinically used antitumor agents cis-platinum, adriamycin, etoposide, taxol, and vincristine in 22 human tumor cell lines isolated from various organs. HMN-176 exhibited potent cytotoxicity with IC50 values in the nM range, and the variance of its cytotoxic efficacy was remarkably small. Drug-resistant cell lines also showed low cross-resistance to HMN-176 corresponding to overall resistance indices of less than 14.3. HMN-214 was synthesized as an oral prodrug because of the poor oral absorption of HMN-176 itself. Pharmacokinetic studies showed that HMN-214 was an acceptable oral prodrug of HMN-176. In the in vivo analysis of the schedule-dependency of HMN-214, the repeated administration for over 5 days elicited potent antitumor activity, as expected from the exposure-dependency of the cytotoxicity of HMN-176 and from the cytometric studies. The antitumor activity of HMN-214 against human tumor xenografts was equal or superior to that of clinically available agents, including cis-platinum, adriamycin, vincristine, and UFT without severe toxicity such as neurotoxicity. Because of its good activity in preclinical trials, HMN-214 has entered Phase I clinical trials in the USA.  相似文献   

19.
Objective To study the extent of in vivo inhibition by the antimalarial drug amodiaquine, its active metabolite N-desethylamodiaquine, or both, of the metabolism of four probe drugs of the enzymes CYP2D6, CYP2C19, CYP2C9 and CYP1A2.Methods Twelve healthy Swedish volunteers received a cocktail of four probe drugs (debrisoquine, omeprazole, losartan and caffeine) to determine their baseline metabolic capacities. After a washout period, they received a 600 mg oral dose of amodiaquine hydrochloride; and 2–3 h later the cocktail was administered again. One week after the intake of amodiaquine, the subjects received the cocktail a third time. The levels of probe drugs and their metabolites as well as amodiaquine and its metabolite were determined by HPLC.Results Plasma levels of amodiaquine and N-desethylamodiaquine could be followed in all subjects for 6 h and 28 days, respectively. Among the 12 subjects, a 3-fold variation in amodiaquine AUC and a 2-fold variation in N-desethylamodiaquine AUC, were observed. The CYP2D6 and CYP2C9 activities of the subjects were measured by debrisoquine and losartan phenotyping tests, respectively. There were significant mean increases in debrisoquine metabolic ratio (MR) between baseline and the second cocktail [MR2 h−MRbaseline 1.426 (95% confidence interval 1.159, 1.755), P=0.002; ANOVA, Fisher LSD test] and in mean losartan MR between baseline and the second cocktail [MR2 h−MRbaseline 1.724 (95% confidence interval 1.076, 2.762), P=0.026; ANOVA, Fisher LSD test]. The effects on CYP2D6 and CYP2C9 activities subsided within a week after intake of amodiaquine as tested by the phenotyping cocktail. The changes in omeprazole MRs and caffeine MRs were not statistically significant between any of the study phases.Conclusion A single dose of amodiaquine decreased CYP2D6 and CYP2C9 activities significantly compared to baseline values. Amodiaquine has the potential to cause drug-drug interactions and should be further investigated in malarial patients treated with drug combinations containing amodiaquine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号