首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immobilized bisphosphonates (BPs) have been introduced to improve implant fixation, however, no information could be found about the efficiency of this approach in osteoporotic bone. This study was designed to evaluate the bone response to surface immobilized BPs on implants inserted in tibiae of ovariectomized (OVX) rats. Three months after bilateral ovariectomy, 40 rats were randomly assigned into four groups for implantation of hydroxyapatite-coated titanium implants with or without immobilized BPs: (1) control group (without BP treatments); (2) pamidronate (PAM) group (1 mg/ml of PAM immersing); (3) ibandronate group (1 mg/ml of ibandronate immersing); and (4) zoledronic acid (ZOL) group (1 mg/ml of ZOL immersing). After implantation periods of 3 months, the peri-implant–bone density, trabecular microstructure, bone–implant interface and mechanical fixation of implants were evaluated by dual energy X-ray absorptiometry, micro-computed tomography, histology and push-out test. We found that three BPs triggered pronounced bone–implant integration and early bone formation around implants in OVX rats, with a rank order of ZOL > ibandronate > PAM. These results provide new evidence that immobilized BPs have positive effects on implant fixation in osteoporotic bone, in addition to their well-documented potency to inhibit implant loosening in normal bone.  相似文献   

2.
Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO2 thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO2 (anatase), long-range-ordered hydrophilic mesoporous thin films with a pore size of 6 nm were obtained. Evaluation of the mechanical resistance showed that the films were robust enough to withstand the standard implantation procedure. In vitro apatite formation was studied using simulated body fluids, showing that the pores are accessible for ions and that formation of apatite was increased due to the presence of the mesopores. An in vivo study using a rabbit model was executed in which the removal torque and histomorphometry were evaluated. The results show that the biomechanical stability of the TiO2 coating was unaffected by the presence of mesopores and that osseointegration was achieved without any signs of inflammation.  相似文献   

3.
In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated + TGF-β1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0–500 μm; middle: 500–1000 μm; and outer: 1000–1500 μm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.  相似文献   

4.
《Acta biomaterialia》2014,10(2):986-995
Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50–100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (<10 μm) was achievable. The bone trabeculae interweaved with the pore struts, establishing a large contact area which might enable an improved load transfer and stronger implant/bone interface. Furthermore, there was a clear interconnection with the surrounding cortical bone, suggesting that mechanical interlocking of the coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol–gel-derived bioactive glass–ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth.  相似文献   

5.
For the improvement of surface roughness and mechanical interlocking with bone, titanium prostheses are grit-blasted with Al2O3 particles during manufacturing. Dislocated Al2O3 particles are a leading cause of third-body abrasive wear in the articulation of endoprosthetic implants, resulting in inflammation, pain and ultimately aseptic loosening and implant failure. In the present study, a new treatment for the removal of residual Al2O3 particles from grit-blasted, cementless titanium endoprosthetic devices was investigated in a rabbit model. The cleansing process reduces residual Al2O3 particles on titanium surfaces by up to 96%. The biocompatibility of the implants secondary to treatment was examined histologically, the bone–implant contact area was quantified histomorphometrically, and interface strength was evaluated with a biomechanical push-out test. Conventional grit-blasted implants served as control. In histological and SEM analysis, the Al2O3-free implant surfaces demonstrated uncompromised biocompatibility. Histomorphometrically, Al2O3-free implants exhibited a significantly increased bone–implant contact area (p = 0.016) over conventional implants between both evaluation points. In push-out testing, treated Al2O3-free implants yielded less shear resistance than conventional implants at both evaluation points (p = 0.018). In conclusion, the new surface treatment effectively removes Al2O3 from implant surfaces. The treated implants demonstrated uncompromised biocompatibility and bone apposition in vivo. Clinically, Al2O3-free titanium prostheses could lead to less mechanical wear of the articulating surfaces and ultimately result in less aseptic loosening and longer implant life.  相似文献   

6.
Advances have been achieved in the design and biomechanical performance of orthopedic implants in the last decades. These include anatomically shaped and angle-stable implants for fracture fixation or improved biomaterials (e.g. ultra-high-molecular-weight polyethylene) in total joint arthroplasty. Future modifications need to address the biological function of implant surfaces. Functionalized surfaces can promote or reduce osseointegration, avoid implant-related infections or reduce osteoporotic bone loss. To this end, polyelectrolyte multilayer structures have been developed as functional coatings and intensively tested in vitro previously. Nevertheless, only a few studies address the effect of polyelectrolyte multilayer coatings of biomaterials in vivo. The aim of the present work is to evaluate the effect of polyelectrolyte coatings of titanium alloy implants on implant anchorage in an animal model. We test the hypotheses that (1) polyelectrolyte multilayers have an effect on osseointegration in vivo; (2) multilayers of chitosan/hyaluronic acid decrease osteoblast proliferation compared to native titanium alloy, and hence reduce osseointegration; (3) multilayers of chitosan/gelatine increase osteoblast proliferation compared to native titanium alloy, hence enhance osseointegration. Polyelectrolyte multilayers on titanium alloy implants were fabricated by a layer-by-layer self-assembly process. Titanium alloy (Ti) implants were alternately dipped into gelatine (Gel), hyaluronic acid (HA) and chitosan (Chi) solutions, thus assembling a Chi/Gel and a Chi/HA coating with a terminating layer of Gel or HA, respectively. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bones’ response to polyelectrolyte surfaces in vivo. 48 rats were randomly assigned to three groups of implants: (1) native titanium alloy (control), (2) Chi/Gel and (3) Chi/HA coating. Mechanical fixation, peri-implant bone area and bone contact were evaluated by pull-out tests and histology at 3 and 8 weeks. Shear strength at 8 weeks was statistically significantly increased (p < 0.05) in both Chi/Gel and Chi/HA groups compared to the titanium alloy control. No statistically significant difference (p > 0.05) in bone contact or bone area was found between all groups. No decrease of osseointegration of Chi/HA-coated implants compared to non-coated implants was found. The results of polyelectrolyte coatings in a rat model showed that the Chi/Gel and Chi/HA coatings have a positive effect on mechanical implant anchorage in normal bone.  相似文献   

7.
The failure mechanisms of bone–implant constructs are still incompletely understood, because the role of the peri-implant bone in implant stability is unclear. We hypothesized that implant fixation failure is preceded by substantial peri-implant bone failure. A new device was developed that combines mechanical testing of large bone–implant constructs with high-resolution peripheral quantitative computed tomography, following the principles of image-guided failure assessment (IGFA). In this study, we investigated the push-in failure behavior of dynamic hip screws (DHS) implanted in human cadaveric femoral heads. For the first time the fixation failure of a clinically used implant in human trabecular bone could be experimentally visualized at the microstructural level. The ultimate force was highly correlated with the peri-implant bone volume fraction (R2 = 0.85). We demonstrated that primary fixation failure of DHS implants was accompanied by trabecular bone failure in the immediate peri-implant bone region only. Such experimental data are crucial to enhance the understanding on the quality of the bone–implant interface and of the trabecular bone in the process of implant fixation failure. We believe that this newly developed device will be beneficial for the development of new implant designs, especially for use in osteoporotic bone.  相似文献   

8.
The enzyme alkaline phosphatase (ALP) was recently proposed as an implant coating material in order to improve the biological performance of orthopedic and dental implants. The present study evaluated the in vivo bone response to electrosprayed coatings, consisting of ALP, calcium phosphate (CaP) or a combination thereof (composite coating: ALP + CaP) compared to non-coated controls (gritblasted and acid etched). A total of 80 implants (n = 10) with a gap of 1.0 mm, was implanted intramedullary and bilaterally into the femurs of 80 rats. After 1 and 4 weeks, bone response was evaluated qualitatively (histology) and quantitatively (histomorphometry). The results of this study show that all electrosprayed coatings (ALP, CaP, ALP + CaP) significantly improve osteoconduction compared to non-coated controls after 4 weeks of implantation, without significant differences among these coated groups. Consequently, the results indicate that ALP-coatings improve the osteogenic response to a comparable extent as CaP-coatings or an ALP + CaP composite coating. In conclusion, the current study proofs that ALP-coatings have potential as bone implant coatings, though long-term data remain to be obtained. From a clinical perspective, it was observed that the process of osteoconduction is related to positional determinants, which needs to be taken into account when analyzing data on bone response.  相似文献   

9.
《Acta biomaterialia》2014,10(12):5193-5201
Local release of Mg ions from titanium implant surfaces has been shown to enhance implant retention and integration. To clarify the biological events that lead to this positive outcome, threaded implants coated with mesoporous TiO2 thin films were loaded with Mg-ions and placed in the tibia of rabbits for 3 weeks, after surface characterization. Non-loaded mesoporous coated implants were used as controls. Peri-implant gene expression of a set of osteogenic and inflammatory assays was quantified by means of real-time quantitative polymerase chain reaction. The expression of three osteogenic markers (OC, RUNX-2 and IGF-1) was significantly more pronounced in the test specimens, suggesting that the release of Mg ions directly at the implant sites may stimulate an osteogenic environment. Furthermore, bone healing around implants was evaluated on histological slides and by diffraction-enhanced imaging (DEI), using synchrotron radiation. The histological analysis demonstrated new bone formation around all implants, without negative responses, with a significant increase in the number of threads filled with new bone for test surfaces. DEI analysis attested the high mineral content of the newly formed bone. Improved surface osteoconductivity and increased expression of genes involved in the bone regeneration were found for magnesium-incorporation of mesoporous TiO2 coatings.  相似文献   

10.
In this study, we report a hybrid organic–inorganic TEOS–MTES (tetraethylorthosilicate–methyltriethoxysilane) sol–gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO2 colloidal particles to the TEOS–MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass–ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10 mol.% SiO2 samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone.  相似文献   

11.
Implant loading can create micromotion at the bone–implant interface. The interfacial strain associated with implant micromotion could contribute to regulating the tissue healing response. Excessive micromotion can lead to fibrous encapsulation and implant loosening. Our objective was to characterize the influence of interfacial strain on bone regeneration around implants in mouse tibiae. A micromotion system was used to create strain under conditions of (1) no initial contact between implant and bone and (2) direct bone–implant contact. Pin- and screw-shaped implants were subjected to displacements of 150 or 300 μm for 60 cycles per day for 7 days. Pin-shaped implants placed in five animals were subjected to three sessions of 150 μm displacement per day, with 60 cycles per session. Control implants in both types of interfaces were stabilized throughout the healing period. Experimental strain analyses, microtomography, image-based displacement mapping, and finite element simulations were used to characterize interfacial strain fields. Calcified tissue sections were prepared and Goldner trichrome stained to evaluate the tissue reactions in higher and lower strain regions. In stable implants bone formation occurred consistently around the implants. In implants subjected to micromotion bone regeneration was disrupted in areas of high strain concentrations (e.g. >30%), whereas lower strain values were permissive of bone formation. Increasing implant displacement or number of cycles per day also changed the strain distribution and disturbed bone healing. These results indicate that not only implant micromotion but also the associated interfacial strain field contributes to regulating the interfacial mechanobiology at healing bone–implant interfaces.  相似文献   

12.
A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n = 5–6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC–bone interface was significantly higher (283.3 ± 55.3 N) than the shear force at interfaces of solid PMMA/bone (14.4 ± 11.0 N; p < 0.001) and Ti/bone (130.6 ± 22.2 N; p = 0.001). Histological observation revealed new bone growth into the porous surface structure of FRC implants. Solid PMMA and Ti implants were encapsulated mostly with fibrous connective tissue. Finite element analysis (FEA) revealed that porous FRC implants had mechanical properties which could be tailored to smooth the shear stress distribution at the bone–implant interface and reduce the stress-shielding effect.  相似文献   

13.
Previous studies have shown that bone-to-implant attachment of titanium implants to cortical bone is improved when the surface is modified with hydrofluoric acid. The aim of this study was to investigate if biological factors are involved in the improved retention of these implants. Fluoride was implemented in implant surfaces by cathodic reduction with increasing concentrations of HF in the electrolyte. The modified implants were placed in the cortical bone in the tibias of New Zealand white rabbits. After 4 weeks of healing, wound fluid collected from the implant site showed lower lactate dehydrogenase activity and less bleeding in fluoride-modified implants compared to control. A significant increase in gene expression levels of osteocalcin and tartrate-resistant acid phosphatase (TRAP) was found in the cortical bone attached to Ti implants modified with 0.001 and 0.01 vol.% HF, while Ti implants modified with 0.1% HF showed only induced TRAP mRNA levels. These results were supported by the performed micro-CT analyses. The volumetric bone mineral density of the cortical bone hosting Ti implants modified with 0.001% and 0.01% HF was higher both in the newly woven bone (<100 μm from the interface) and in the older Haversian bone (>100 μm). In conclusion, the modulation of these biological factors by surface modification of titanium implants with low concentrations of HF using cathodic reduction may explain their improved osseointegration properties.  相似文献   

14.
Dynamic implant cut-out is a frequent complication associated with surgical fracture fixation. In this in vitro study, we investigated the influence of the local trabecular bone microstructure on the rate and path of implant migration. Dynamic hip screws were implanted into six human femoral head specimens with a wide range of bone volume fractions. The specimens were subjected to image-guided failure assessment using physiological dynamic hip loading. Mechanical testing was used intermittently with high-resolution computed tomography scanning. A high correlation was found between the bone volume fraction and implant migration (R2 = 0.95). Profiles of the bone-implant interface were computed based on the positions of the screw and the femoral head. With a larger interface, the implant migration rate was smaller. The bone-implant interface was significantly smaller on the approximated screw migration path than if it had been on a straight line in loading direction. We thus hypothesize that implants migrate on a path of least resistance. This would indicate a relevant mechanism for targeted surgical intervention.  相似文献   

15.
A sandblasting process with round zirconia (ZrO2) particles might be an alternative surface treatment to enhance the osseointegration of titanium dental implants. Our previous study on sheep compared smooth surface titanium implants (control) with implant surfaces sandblasted with two different granulations of ZrO2. As the sandblasted surfaces proved superior, the present study further compared the ZrO2 surface implant with other surface treatments currently employed: machined titanium (control), titanium oxide plasma sprayed (TPS) and alumina sandblasted (Al-SL) at different times after insertion (2, 4 and 12 weeks). Twelve sheep were divided into three groups of four animals each and underwent implant insertion in tibia cortical bone under general anaesthesia. The implants with surrounding tissues were subjected to histology, histomorphometry, scanning electron microscopy and microhardness tests. The experimentation indicated that at 2 weeks Zr-SL implants had the highest significant bone ingrowth (p < 0.05) compared to the other implant surfaces, and a microhardness of newly formed bone inside the threads significantly higher than that of Ti. The present work shows that the ZrO2 treatment produces better results in peri-implant newly formed bone than Ti and TPS processing, whereas its performance is similar to the Al-SL surface treatment.  相似文献   

16.
《The Knee》2014,21(1):209-215
BackgroundSome follow-up studies of high flexion total knee arthoplasties report disturbingly high incidences of femoral component loosening. Femoral implant fixation is dependant on two interfaces: the cement–implant and the cement–bone interface. The present finite-element model (FEM) is the first to analyse both the cement–implant interface and cement–bone interface. The cement–bone interface is divided into cement–cancellous and cement–cortical bone interfaces, each having their own strength values. The research questions were: (1) which of the two interfaces is more prone to failure? and (2) what is the effect of different surgical preparation techniques for cortical bone on the risk of early failure.?MethodsFEM was used in which the posterior-stabilized PFC Sigma RP-F (DePuy) TKA components were incorporated. A full weight-bearing squatting cycle was simulated (ROM = 50°–155°). An interface failure index (FI) was calculated for both interfaces.ResultsThe cement-bone interface is more prone to failure than the cement implant interface. When drilling holes through the cortex behind the anterior flange instead of unprepared cortical bone, the area prone to early interface failure can be reduced from 31.3% to 2.6%.ConclusionThe results clearly demonstrate high risk of early failure at the cement–bone interface. This risk can be reduced by some simple preparation techniques of the cortex behind the anterior flange.Clinical relevanceHigh-flexion TKA is currently being introduced. Some reports show high failure rates. FEM can be helpful in understanding failure of implants.  相似文献   

17.
A major problem which hinders the applications of neural prostheses is the inconsistent performance caused by tissue responses during long-term implantation. The study investigated a new approach for improving the electrode–neural tissue interface. Hydrogel poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PVA/PAA IPNs) were synthesized and tailored as coatings for poly(dimethylsiloxane) (PDMS) based neural electrodes with the aid of plasma pretreatment. Changes in the electrochemical impedance and maximum charge injection (Qinj) limits of the coated iridium oxide microelectrodes were negligible. Protein adsorption on PDMS was reduced by ~85% after coating. In the presence of nerve growth factor (NGF), neurite extension of rat pheochromocytoma (PC12) cells was clearly greater on PVA/PAA IPN films than on PDMS substrates. Furthermore, the tissue responses of PDMS implants coated with PVA/PAA IPN films were studied by 6-week implantation in the cortex of rats, which found that the glial fibrillary acidic protein (GFAP) immunoreactivity in animals (n = 8) receiving coated implants was significantly lower (p < 0.05) compared to that of uncoated implants (n = 7) along the entire distance of 150 μm from the outer skirt to the implant interface. The coated film remained on the surface of the explanted implants, confirmed by scanning electron microscopy (SEM). All of these suggest the hydrogel coating is feasible and favorable to neural electrode applications.  相似文献   

18.
Statins are known to stimulate osteoblast activity and bone formation. This study examines whether local application of fluvastatin enhances osteogenesis around titanium implants in vivo. Ten-week-old rats received a vehicle gel (propylene glycol alginate (PGA)) or PGA containing fluvastatin (3, 15, 75 or 300 μg) in their tibiae just before insertion of the implants. For both histological and histomorphometric evaluations undecalcified ground sections were obtained and the bone–implant contact (BIC), peri-implant osteoid volume and mineralized bone volume (MBV) were calculated after 1, 2 and 4 weeks. Using the same models mechanical push-in tests were also performed to evaluate the implant fixation strength. After 1 week the MBV and push-in strength were significantly lower in the 300 μg fluvastatin-treated group than in the other groups (P < 0.01). At 2 weeks, however, the BIC and MBV were both significantly higher in the 75 μg fluvastatin-treated group than in the non-fluvastatin-treated groups (P < 0.01). Similar tendencies were observed at week 4. Furthermore, the data showed a good correlation between the MBV and the push-in strength. These results demonstrate positive effects of locally applied fluvastatin on the bone around titanium implants and suggest that this improvement in osseointegration may be attributed to calcification of the peri-implant bone.  相似文献   

19.
20.
Vitamin D plays a central role in bone regeneration, and its insufficiency has been reported to have profound negative effects on implant osseointegration. The present study aimed to test the in vitro biological effect of titanium (Ti) implants coated with UV-activated 7-dehydrocholesterol (7-DHC), the precursor of vitamin D, on cytotoxicity and osteoblast differentiation. Fourier transform infrared spectroscopy confirmed the changes in chemical structure of 7-DHC after UV exposure. High-pressure liquid chromatography analysis determined a 16.5 ± 0.9% conversion of 7-DHC to previtamin D3 after 15 min of UV exposure, and a 34.2 ± 4.8% of the preD3 produced was finally converted to 25-hydroxyvitamin D3 (25-D3) by the osteoblastic cells. No cytotoxic effect was found for Ti implants treated with 7-DHC and UV-irradiated. Moreover, Ti implants treated with 7-DHC and UV-irradiated for 15 min showed increased 25-D3 production, together with increased ALP activity and calcium content. Interestingly, Rankl gene expression was significantly reduced in osteoblasts cultured on 7-DHC-coated Ti surfaces when UV-irradiated for 15 and 30 min to 33.56 ± 15.28% and 28.21 ± 4.40%, respectively, compared with the control. In conclusion, these findings demonstrate that UV-activated 7-DHC is a biocompatible coating of Ti implants, which allows the osteoblastic cells to produce themselves active vitamin D, with demonstrated positive effects on osteoblast differentiation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号