首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtexture and chemistry of implant surfaces are important variables for modulating cellular responses. Surface chemistry and wettability are connected directly. While each of these surface properties can influence cell response, it is difficult to decouple their specific contributions. To address this problem, the aims of this study were to develop a surface wettability gradient with a specific chemistry without altering micron scale roughness and to investigate the role of surface wettability on osteoblast response. Microtextured sandblasted/acid-etched (SLA, Sa?=?3.1?μm) titanium disks were treated with oxygen plasma to increase reactive oxygen density on the surface. At 0, 2, 6, 10, and 24?h after removing them from the plasma, the surfaces were coated with chitosan for 30?min, rinsed and dried. Modified SLA surfaces are denoted as SLA/h in air prior to coating. Surface characterization demonstrated that this process yielded differing wettability (SLA0?相似文献   

2.
The microstructure and wettability of titanium (Ti) surfaces directly impact osteoblast differentiation in vitro and in vivo. These surface properties are important variables that control initial interactions of an implant with the physiological environment, potentially affecting osseointegration. The objective of this study was to use polyelectrolyte thin films to investigate how surface chemistry modulates response of human MG63 osteoblast-like cells to surface microstructure. Three polyelectrolytes, chitosan, poly(L-glutamic acid), and poly(L-lysine), were used to coat Ti substrates with two different microtopographies (PT, Sa = 0.37 μm and SLA, Sa = 2.54 μm). The polyelectrolyte coatings significantly increased wettability of PT and SLA without altering micron-scale roughness or morphology of the surface. Enhanced wettability of all coated PT surfaces was correlated with increased cell numbers whereas cell number was reduced on coated SLA surfaces. Alkaline phosphatase specific activity was increased on coated SLA surfaces than on uncoated SLA whereas no differences in enzyme activity were seen on coated PT compared to uncoated PT. Culture on chitosan-coated SLA enhanced osteocalcin and osteoprotegerin production. Integrin expression on smooth surfaces was sensitive to surface chemistry, but microtexture was the dominant variable in modulating integrin expression on SLA. These results suggest that surface wettability achieved using different thin films has a major role in regulating osteoblast response to Ti, but this is dependent on the microtexture of the substrate.  相似文献   

3.
Titanium (Ti) osseointegration is critical for the success of dental and orthopedic implants. Previous studies have shown that surface roughness at the micro- and submicro-scales promotes osseointegration by enhancing osteoblast differentiation and local factor production. Only relatively recently have the effects of nanoscale roughness on cell response been considered. The aim of the present study was to develop a simple and scalable surface modification treatment that introduces nanoscale features to the surfaces of Ti substrates without greatly affecting other surface features, and to determine the effects of such superimposed nano-features on the differentiation and local factor production of osteoblasts. A simple oxidation treatment was developed for generating controlled nanoscale topographies on Ti surfaces, while retaining the starting micro-/submicro-scale roughness. Such nano-modified surfaces also possessed similar elemental compositions, and exhibited similar contact angles, as the original surfaces, but possessed a different surface crystal structure. MG63 cells were seeded on machined (PT), nano-modified PT (NMPT), sandblasted/acid-etched (SLA), and nano-modified SLA (NMSLA) Ti disks. The results suggested that the introduction of such nanoscale structures in combination with micro-/submicro-scale roughness improves osteoblast differentiation and local factor production, which, in turn, indicates the potential for improved implant osseointegration in vivo.  相似文献   

4.
This study aimed to evaluate the effects of microrough and hierarchical hybrid micro/nanorough surface implants on osseointegration in ovariectomized rats at different time points. Implants with machined, microrough and hierarchical hybrid micro/nanorough surfaces were inserted into the distal femurs of ovariectomized Sprague-Dawley female rats. At weeks 0, 4, and 12 following implantation, in vivo microcomputed tomography (micro-CT) scanning was used to assess bone microarchitectural changes. After 12 weeks, all the rats were sacrificed, and the femurs with implants were harvested for histological analysis and pull-out test. For the Micro-CT analysis, the trabecular number and the bone volume ratio increased significantly in the microrough group (p < 0.01) and micro/nanorough group (p < 0.01) compared with the machined group. The trabecular separation decreased significantly in the micro/nanorough group (p < 0.01) compared with the other two groups. For the maximum pull-out forces and the bone-implant-contact analyses, significant statistical differences were found among the three groups, with the following sequence: micro/nanorough group > microrough group > machined group. The results indicate that the microrough and the hierarchical hybrid micro/nanorough surfaces of the implant can be beneficial to osseointegration under osteoporotic conditions, and the hierarchical hybrid micro/nanorough surface is more efficient.  相似文献   

5.
Titanium (Ti) has been widely used as an implant material due to the excellent biocompatibility and corrosion resistance of its oxide surface. Biomaterials must be sterile before implantation, but the effects of sterilization on their surface properties have been less well studied. The effects of cleaning and sterilization on surface characteristics were bio-determined using contaminated and pure Ti substrata first manufactured to present two different surface structures: pretreated titanium (PT, Ra=0.4 μm) (i.e. surfaces that were not modified by sandblasting and/or acid etching); (SLA, Ra=3.4 μm). Previously cultured cells and associated extracellular matrix were removed from all bio-contaminated specimens by cleaning in a sonicator bath with a sequential acetone-isopropanol-ethanol-distilled water protocol. Cleaned specimens were sterilized with autoclave, gamma irradiation, oxygen plasma, or ultraviolet light. X-ray photoelectron spectroscopy (XPS), contact angle measurements, profilometry, and scanning electron microscopy were used to examine surface chemical components, hydrophilicity, roughness, and morphology, respectively. Small organic molecules present on contaminated Ti surfaces were removed with cleaning. XPS analysis confirmed that surface chemistry was altered by both cleaning and sterilization. Cleaning and sterilization affected hydrophobicity and roughness. These modified surface properties affected osteogenic differentiation of human MG63 osteoblast-like cells. Specifically, autoclaved SLA surfaces lost the characteristic increase in osteoblast differentiation seen on starting SLA surfaces, which was correlated with altered surface wettability and roughness. These data indicated that recleaned and resterilized Ti implant surfaces cannot be considered the same as the first surfaces in terms of surface properties and cell responses. Therefore, the reuse of Ti implants after resterilization may not result in the same tissue responses as found with never-before-implanted specimens.  相似文献   

6.
Strontium (Sr) has been successfully used for the treatment of osteoporotic bone, increasing new bone formation while reducing bone resorption by stimulating proliferation and differentiation of osteoblastic cells and inhibiting osteoclast function. In this study, Sr-incorporated Ti oxide layer was produced on clinically relevant osteoconductive implant surface, that is, a grit-blasted microrough Ti surface, by a simple hydrothermal treatment with the expectation of utilizing the osteoblast response enhancement effect of Sr for the future applications as a more osteoconductive surface of the permanent load-bearing endosseous implants, without altering the original microrough surface features of grit-blasted Ti at the micron-scale. This surface exhibits a hierarchical structure (i.e., a nanoscale surface architecture of the Sr-incorporated Ti oxide layer (SrTiO(3)) imposed on micron-scale rough Ti structure) and Sr ion release into physiological solution. In vitro experiments using primary mouse bone marrow stromal cells (BMSCs) revealed that the hydrothermally produced SrTiO(3) coating promotes both the early and late cell response of BMSCs grown on a microrough Ti surface, with notably enhanced attachment, spreading, focal adhesion, alkaline phosphatase activity, and expression of critical integrins and osteoblastic phenotype genes. These results indicate that a hydrothermally produced SrTiO(3) coating improves the osteoconductivity of the microrough Ti surface by enhancing both the early and late cell response of BMSCs.  相似文献   

7.
The topography of titanium implants has been identified as an important factor affecting the osseointegration of surgically placed dental implants. Further modification to produce a hydrophilic microrough titanium implant surface has been shown to increase osseointegration compared with microrough topology alone. This study aimed to determine possible molecular mechanisms to explain this clinical observation by examining differences in the whole genome mRNA expression profile of primary human osteoblasts in response to sand-blasted acid-etched (SLA) and hydrophilic SLA (modSLA) titanium surfaces. A decrease in osteoblast proliferation associated with the titanium surfaces (modSLA > SLA > control) correlated with an increase in expression of the osteogenic differentiation markers BSPII and osteocalcin. Pathway analysis demonstrated that a number of genes associated with the TGFβ?BMP signalling cascade (BMP2, BMP6, SP1, CREBBP, RBL2, TBS3, ACVR1 and ZFYVE16) were significantly differentially up-regulated with culture on the modSLA surface. BMP2 was shown to have the largest fold change increase in expression which was subsequently confirmed at the protein level by ELISA. Several other genes associated with the functionally important mechanisms relevant to bone healing, such as Wnt signalling (CTNNA1, FBX4, FZD6), angiogenesis (KDR), osteoclastogenesis (HSF2, MCL1) and proteolysis (HEXB, TPP1), were also differentially regulated. These results suggest that chemical (hydrophilic) modification of the SLA surface may result in more successful osseointegration through BMP signalling.  相似文献   

8.
The purpose of this study was to define the surface properties of prepared titanium (Ti) disks, which served as a model system, and to contrast the biologic response of MG63 cells exposed to Ti disks with different levels of surface roughness. The surface properties interact with each other, resulting in a change of other surface qualities in addition to roughness due to the surface roughening procedure. The machined Ti disks were roughened by sandblasting and electric glow discharging. The surface properties of the Ti specimens were inspected through a comprehensive surface analysis. MG63 cell behaviors were compared along with cell number, alkaline phosphatase (ALP) activity, Runx2 gene expression, and type I collagen production. Statistics were evaluated, using analysis of variance (ANOVA). The sandblasted Ti disks demonstrated well-controlled surface roughness features and meaningful average roughness ranges, including the surface roughness of the "modern" microrough implant, used clinically. With increasing Ti surface roughness, the cell number decreased, while the ALP activity, type I collagen production, and Runx2 gene expression increased significantly. The rougher the Ti surface was, the sooner the Runx2 gene was expressed. Based on these results, we suggest that the microrough Ti surfaces of the 1-3 mum range may contribute effectively to osteogenic differentiation and proliferation in MG63 cells.  相似文献   

9.
Surface topography of Titanium (Ti) dental implants strongly influences osseointegration. In the present work, we have analyzed the influence of two Ti implant surfaces characterized by similar microtopography but different nanotopography and chemistry on the osteoblastic phenotype of Dental Pulp Stem Cells (DPSCs). The effect on osteogenic differentiation, extracellular matrix (ECM) and cell adhesion molecules production have been evaluated by means of molecular biology analyses. The morphology of the cells grown onto these surfaces has been analyzed with SEM and immunofluorescence (IF), and the safety of the surfaces has been tested by using karyotype analysis, Ames test and hemocompatibility assay. Results showed that starting from 15 days of DPSCs culture, a substantial expression of osteoblast specific markers and a strong increase of cell adhesion molecules can be detected. In particular, when DPSCs are seeded on the Ti implants expression of microRNA (miRNA)-196a, which is involved in osteoblastic commitment of stem cells, and of Vascular Cell Adhesion Molecule 1 (VCAM1), a factor involved in angiogenesis, is strongly enhanced.  相似文献   

10.
Zhao G  Raines AL  Wieland M  Schwartz Z  Boyan BD 《Biomaterials》2007,28(18):2821-2829
OBJECTIVE: Surface roughness and surface free energy are two important factors that regulate cell responses to biomaterials. Previous studies established that titanium (Ti) substrates with micron-scale and submicron scale topographies promote osteoblast differentiation and osteogenic local factor production and that there is a synergistic response to micro-rough Ti surfaces that have retained their high surface energy via processing that limits hydrocarbon contamination. This study tested the hypothesis that the synergistic response of osteoblasts to these modified surfaces depends on both surface micro-structure and surface energy. METHODS: Ti disks were manufactured to present three different surface structures: smooth pretreatment (PT) surfaces with R(a) of 0.2 microm; acid-etched surfaces (A) with a submicron roughness R(a) of 0.83 microm; and sandblasted/acid-etched surfaces (SLA) with R(a) of 3-4 microm. Modified acid-etched (modA) and modified sandblasted/acid-etched (modSLA) Ti substrates, which have low contamination and present a hydroxylated/hydrated surface layer to retain high surface energy, were compared with regular low surface energy A and SLA surfaces. Human osteoblast-like MG63 cells were cultured on these substrates and their responses, including cell shape, growth, differentiation (alkaline phosphatase, osteocalcin), and local factor production (TGF-beta1, PGE(2), osteoprotegerin (OPG)) were analyzed (N=6 per variable). Data were normalized to cell number. RESULTS: There were no significant differences between smooth PT and A surfaces except for a small increase in OPG. Compared to A surfaces, MG63 cells produced 30% more osteocalcin on modA, and 70% more on SLA. However, growth on modSLA increased osteocalcin by more than 250%, which exceeded the sum of independent effects of surface energy and topography. Similar effects were noted when levels of latent TGF-beta1, PGE(2) and OPG were measured in the conditioned media. CONCLUSIONS: The results demonstrate a synergistic effect between high surface energy and topography of Ti substrates and show that both micron-scale and submicron scale structural features are necessary.  相似文献   

11.
The surface characteristics of a calcium ion (Ca)-incorporated titanium (Ti) surface, produced by hydrothermal treatment using an alkaline Ca-containing solution, and its effects on osteoblastic differentiation were investigated. MC3T3-E1 pre-osteoblastic cells were cultured on machined or grit-blasted Ti surfaces with and without Ca incorporation. The MTT assay was used to determine cell proliferation, and real-time PCR was used for quantitative analysis of osteoblastic gene expression. Hydrothermal treatment with a Ca-containing solution produced a crystalline CaTiO(3) nanostructure of approximately 100 nm in dimension, preserving original micron-scaled surface topographies and microroughness caused by machining, blasting, or blasting and etching treatments. After immersion in Hank's balanced salt solution, considerable apatite formation was observed on all surfaces of the Ca-incorporated samples. Significantly more cell proliferation was found on Ca-incorporated Ti surfaces than on untreated Ti surfaces (p < 0.001). Quantitative real-time PCR analysis showed notably higher alkaline phosphatase, osteopontin, and osteocalcin mRNA levels in cells grown on Ca-incorporated blasted surfaces than on other surfaces at an early time point. Thus, Ca incorporation may have a beneficial effect on osseointegration of microstructured Ti implants by accelerating osteoblast proliferation and differentiation during the early healing phase following implantation.  相似文献   

12.
This study investigated the influence of nanoscale implant surface features on osteoblast differentiation. Titanium disks (20.0 × 1.0 mm) with different nanoscale materials were prepared using sol–gel-derived coatings and characterized by scanning electron microscopy, atomic force microscopy and analyzed by X-ray Photoelectron Spectrometer. Human Mesenchymal Stem Cells (hMSCs) were cultured on the disks for 3–28 days. The levels of ALP, BSP, Runx2, OCN, OPG, and OSX mRNA and a panel of 76 genes related to osteogenesis were evaluated. Topographical and chemical evaluation confirmed nanoscale features present on the coated surfaces only. Bone-specific mRNAs were increased on surfaces with superimposed nanoscale features compared to Machined (M) and Acid etched (Ac). At day 14, OSX mRNA levels were increased by 2-, 3.5-, 4- and 3-fold for Anatase (An), Rutile (Ru), Alumina (Al), and Zirconia (Zr), respectively. OSX expression levels for M and Ac approximated baseline levels. At days 14 and 28 the BSP relative mRNA expression was significantly up-regulated for all surfaces with nanoscale coated features (up to 45-fold increase for Al). The PCR array showed an up-regulation on Al coated implants when compared to M. An improved response of cells adhered to nanostructured-coated implant surfaces was represented by increased OSX and BSP expressions. Furthermore, nanostructured surfaces produced using aluminum oxide significantly enhanced the hMSC gene expression representative of osteoblast differentiation. Nanoscale features on Ti implant substrates may improve the osseointegration response by altering adherent cell response.  相似文献   

13.
The Wnt signaling pathway inhibitor Dickkopf-2 (Dkk2) regulates osteoblast differentiation on microstructured titanium (Ti) surfaces, suggesting involvement of Wnt signaling in this process. To test this, human osteoblast-like MG63 cells were cultured on tissue culture polystyrene or Ti (smooth PT (Ra=0.2 μm), sand-blasted and acid-etched SLA (Ra=3.22 μm), modSLA (hydrophilic SLA)). Expression of Wnt pathway receptors, activators and inhibitors was measured by qPCR. Non-canonical pathway ligands, receptors and intracellular signaling molecules, as well as bone morphogenetic proteins BMP2 and BMP4, were upregulated on SLA and modSLA, whereas canonical pathway members were downregulated. To confirm that non-canonical signaling was involved, cells were cultured daily with exogenous Wnt3a (canonical pathway) or Wnt5a (non-canonical pathway). Alternatively, cells were cultured with antibodies to Wnt3a or Wnt5a to validate that Wnt proteins secreted by the cells were mediating cell responses to the surface. Wnt5a, but not Wnt3a, increased MG63 cell differentiation and BMP2 and BMP4 proteins, suggesting Wnt5a promotes osteogenic differentiation through production of BMPs. Effects of exogenous and endogenous Wnt5a were synergistic with surface microstructure, suggesting the response also depends on cell maturation state. These results indicate a major role for the non-canonical, calcium-dependent Wnt pathway in differentiation of osteoblasts on microstructured titanium surfaces during implant osseointegration.  相似文献   

14.
《Acta biomaterialia》2014,10(8):3363-3371
The use of spinal implants for spine fusion has been steadily increasing to avoid the risks of complications and donor site morbidity involved when using autologous bone. A variety of fusion cages are clinically available, with different shapes and chemical compositions. However, detailed information about their surface properties and the effects of such properties on osteogenesis is lacking in the literature. Here we evaluate the role of surface properties for spinal implant applications, covering some of the key biological processes that occur around an implant and focusing on the role of surface properties, specifically the surface structure, on osseointegration, drawing examples from other implantology fields when required. Our findings revealed that surface properties such as microroughness and nanostructures can directly affect early cell behavior and long-term osseointegration. Microroughness has been well established in the literature to have a beneficial effect on osseointegration of implants. In the case of the role of nanostructures, the number of reports is increasing and most studies reveal a positive effect from the nanostructures alone and a synergistic effect when combined with microrough surfaces. Long-term clinical results are nevertheless necessary to establish the full implications of surface nanomodifications.  相似文献   

15.
Chitosan, a derivative of the bio-polysaccharide chitin, has shown promise as a bioactive material for implant, tissue engineering and drug-delivery applications. The aim of this study was to evaluate the contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Rough ground titanium (Ti) coupons were solution cast and bonded to 91.2% de-acetylated chitosan (1 wt% chitosan in 0.2% acetic acid) coatings via silane reactions. Non-coated Ti was used as controls. Samples were sterilized by ethylene oxide gas prior to experiments. Contact angles on all surfaces were measured using water. 5 x 10(4) cells/ml of ATCC CRL 1486 human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, were used for the cell attachment study. SEM evaluations were performed on cells attached to all surfaces. Contact angles and cell attachment on all surfaces were statistically analyzed using ANOVA. The chitosan-coated surfaces (76.4 +/- 5.1 degrees) exhibited a significantly greater contact angle compared to control Ti surfaces (32.2 +/- 6.1 degrees). Similarly, chitosan-coated surfaces exhibited significantly greater (P < 0.001) albumin adsorption, fibronectin adsorption and cell attachment, as compared to the control Ti surfaces. Coating chitosan on Ti surfaces decreased the wettability of the Ti, but increased protein adsorption and cell attachment. Increased protein absorption and cell attachment on the chitosan-coated Ti may be of benefit in enhancing osseointegration of implant devices.  相似文献   

16.
The current study characterized the in vitro surface reactions of microroughened bioactive glasses and compared osteoblast cell responses between smooth and microrough surfaces. Three different bioactive glass compositions were used and surface microroughening was obtained using a novel chemical etching method. Porous bioactive glass specimens made of sintered microspheres were immersed in simulated body fluid (SBF) or Tris solutions for 1, 6, 24, 48, or 72 h, and the formation of reaction layers was studied by means of a scanning electron microscope/energy dispersive X-ray analysis (SEM/EDXA). Cell culture studies were performed on bioactive glass disks to examine the influence of surface microroughness on the attachment and proliferation of human osteoblast-like cells (MG-63). Cell attachment was evaluated by means of microscopic counting of in situ stained cells. Cell proliferation was analyzed with a nonradioactive cell proliferation assay combined with in situ staining and laser confocal microscopy. The microroughening of the bioactive glass surface increased the rate of the silica gel layer formation during the first hours of the immersion. The formation of calcium phosphate layer was equal between control and microroughened glass surfaces. In cell cultures on bioactive glass, the microrough surface enhanced the attachment of osteoblast-like cells but did not have an effect on the proliferation rate or morphology of the cells as compared with smooth glass surface. In conclusion, microroughening significantly accelerated the early formation of surface reactions on three bioactive glasses and had a positive effect on initial cell attachment.  相似文献   

17.
Chitosan, a derivative of the bio-polysaccharide chitin, has shown promise as a bioactive material for implant, tissue engineering and drug-delivery applications. The aim of this study was to evaluate the contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Rough ground titanium (Ti) coupons were solution cast and bonded to 91.2% de-acetylated chitosan (1 wt% chitosan in 0.2% acetic acid) coatings via silane reactions. Non-coated Ti was used as controls. Samples were sterilized by ethylene oxide gas prior to experiments. Contact angles on all surfaces were measured using water. 5 × 104 cells/ml of ATCC CRL 1486 human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, were used for the cell attachment study. SEM evaluations were performed on cells attached to all surfaces. Contact angles and cell attachment on all surfaces were statistically analyzed using ANOVA. The chitosan-coated surfaces (76.4 ± 5.1°) exhibited a significantly greater contact angle compared to control Ti surfaces (32.2±6.1°). Similarly, chitosan-coated surfaces exhibited significantly greater (P < 0.001) albumin adsorption, fibronectin adsorption and cell attachment, as compared to the control Ti surfaces. Coating chitosan on Ti surfaces decreased the wettability of the Ti, but increased protein adsorption and cell attachment. Increased protein absorption and cell attachment on the chitosan-coated Ti may be of benefit in enhancing osseointegration of implant devices.  相似文献   

18.
The osteoconductive property of titanium (Ti) surfaces is important in orthopedic and dental implant devices. Surface modifications of Ti have been proposed to further improve osseointegration. In this study, three different materials, silicon (Si), silicon oxide (SiO(2)), and titanium oxide (TiO(2)), were used to construct nanofibers for surface coating of Ti alloy Ti-6Al-4 V (Ti alloy). MC3T3-E1 osteoprogenitor cells were seeded on nanofiber-coated discs and cultured for 42 days. DNA, alkaline phosphatase, osteocalcin, and mineralization nodules were measured using PicoGreen, enzyme-linked immunosorbent assay, and calcein blue staining to detect the attachment, proliferation, differentiation, and mineralization of MC3T3-E1 cells, respectively. The results demonstrated that the initial cell attachments on nanofiber-coated discs were significantly lower, although cell proliferation on Si and SiO(2) nanofiber-coated discs was better than on Ti alloy surfaces. TiO(2) nanofibers facilitated a higher cellular differentiation capacity than Ti alloy and tissue culture-treated polystyrene surfaces. Thus, surface modification using nanofibers of various materials can alter the attachment, proliferation, and differentiation of osteoprogenitor cells in vitro.  相似文献   

19.
The present study aimed to evaluate the osteoblast response on Ti- and Zr-based BMG surfaces sand blasted with different grit corundums for implant application, with mechanically polished disks before sand blasting as control groups. The surface properties were characterized by scanning electron microscopy (SEM), contact angle, and roughness measurements. Further evaluation of the surface bioactivity was conducted by MG63 cell attachment, proliferation, morphology, and alkaline phosphatase (ALP) activity on the sample surfaces. It was found that corundum sand blasting surfaces significantly increased the surface wettability and MG63 cell attachment, cell proliferation, and ALP activity in comparison with the control group surfaces. Besides, the sample surface treated by large grit corundum is more favorable for cell attachment, proliferation, and differentiation than samples treated by small grit corundum, indicating that it might be effective for improving implant osseointegration in vivo. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.  相似文献   

20.
Nanoscale surface modification of titanium dental implants with calcium phosphate (CaP) has been shown to achieve superior bone wound healing and osseointegration compared with smooth or microrough titanium surfaces alone. As bone healing has been shown to be influenced by the action of cytokines, this study examined whether changes in cytokine gene expression from RAW 264.7 cells cultured on commercially pure and titanium alloy (Ti-6Al-4V) microrough or nanoscale crystalline CaP-modified surfaces, may influence downstream events in bone wound healing and osseointegration. Whilst no significant difference in the attachment or proliferation of RAW 264.7 cells was observed, the nanoscale CaP-modified surface elicited a gene expression profile with marked down-regulation of a number of pro-inflammatory cytokines and chemokines. Inflammatory cytokine gene expression was further influenced by chemical composition, with lower levels of pro-inflammatory markers noted following exposure of the macrophage-like cells to titanium alloy (Ti-6Al-4V) compared with the commercially pure titanium surface. Down-regulation of pro-inflammatory cytokine gene expression (confirmed at the protein level for TNFα and CCL5), may thus facilitate the enhanced bone wound healing and osseointegration observed clinically with nanoscale calcium phosphate-modified implant surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号