首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
背景:功能化多肽框架材料由于良好的生物相容性及生物活性,可以用来促进血管生成的研究。 目的:设计并筛选出能够促进内皮细胞血管生成的功能化多肽框架材料。 方法:将设计和筛选出的功能多肽片断通过固相合成法复合在自组装多肽RADA16-I的C末端,将RADA16-I与功能化自主装多肽以1∶1的比例混合,加入无菌培养板在37 ℃下孵育过夜以促进其凝胶,通过换培养基调节pH值。在凝胶上对内皮细胞进行2D培养。观察功能化自组装多肽框架材料的圆二色谱、原子力显微镜照像,内皮细胞黏附、增殖情况。 结果与结论:功能化自组装多肽框架材料与Matrigel的形貌相似且是均一的纳米纤维材料。其中RAD/KLT和RAD/PRG具有促进内皮细胞黏附及增殖的功能。表明,功能化多肽框架材料RAD/KLT和RAD/PRG具有用于促内皮细胞血管生成的进一步研究的潜力。  相似文献   

2.
Controlling and guiding cell behavior requires scaffolding materials capable of programming the three-dimensional (3-D) extracellular environment. In this study, we devised a new self-assembling peptide template for synthesizing nanofibrous hydrogels containing cell-responsive ligands. In particular, the insertion of a matrix metalloproteinase-2 (MMP-2) labile hexapeptide into the self-assembling building blocks of arginine-alanine-aspartate-alanine (RADA) was investigated. A series of peptides, varied by the position of the MMP-2 hexapeptide substrate and the length of RADA blocks, were prepared by parallel synthesis. Their self-assembling capabilities were characterized and compared by circular dichroism spectroscopy and dynamical mechanical analysis. Among all the different insertion patterns, the sequence comprising a centrically positioned MMP-2 substrate was flanked with three RADA units on each side self-assembled into a hydrogel matrix, with mechanical properties and nanofiber morphology comparable to the native material built with (RADA)(4) alone. Exposure of the new gel to MMP-2 resulted in peptide cleavage, as confirmed by mass spectroscopy, and a decrease in surface hardness, as detected by nanoindentor, indicating that the enzyme mediated degradation was localized to the gel surface. The new design can be used for introducing biological functions into self-assembling peptides to create scaffolding materials with potential applications in areas such as tissue engineering and regenerative medicine.  相似文献   

3.
背景:自组装多肽类材料因其独特的设计及良好的生物相容性和可降解性在众多三维支架材料中脱颖而出。 目的:综述RADA类离子互补型自组装多肽支架材料的结构和功能化设计,从细胞三维培养方面探讨多肽类材料作为细胞载体材料在细胞治疗中的应用前景。 方法:由作者通过PubMed、Web of science数据库及CNKI数据库检索有关自组装多肽水凝胶的相关文献,检索词为“self-assembly peptide, tissue engineering;自组装多肽,组织工程”,检索文献量总计224篇,纳入包含多肽材料设计、功能化多肽材料、多肽材料用于细胞三维培养方面的研究,最终纳入48篇。 结果与结论:从物理结构角度讲,多肽材料可以在生理环境中自组装成具有纳米级纤维和较高孔隙率的水凝胶,最大程度上模拟细胞外基质的结构,保障细胞生存在一个真正的三维环境中。从生物功能角度讲,多肽材料可以根据不同需求复合特异性的生物活性短肽片断,赋予材料一定的细胞特异性,可以促进细胞的黏附、增殖或分化。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

4.
Genové E  Shen C  Zhang S  Semino CE 《Biomaterials》2005,26(16):3341-3351
A class of designed self-assembling peptide nanofiber scaffolds with more than 99% water content has been shown to be a good biological material for cell culture. Here, we report the functionalization of one of these peptide scaffolds, RAD16-I (AcN-RADARADARADARADA-CONH2), by direct solid phase synthesis extension at the amino terminal with three short-sequence motifs. These motifs are present in two major protein components of the basement membrane, laminin 1 (YIGSR, RYVVLPR) and collagen IV (TAGSCLRKFSTM). These motifs have been previously shown to promote specific biological activities including endothelial cell adhesion, spreading, and tubular formation. Therefore, the generic functionalized peptide developed was AcN-X-GG-RADARADARADARADA-CONH2 with each motif represented by "X". We show in this work that these tailor-made peptide scaffolds enhance the formation of confluent cell monolayers of human aortic endothelial cells (HAEC) in culture. Moreover, additional assays designed to evaluate endothelial cell function showed that HAEC monolayers obtained on these scaffolds not only maintained LDL uptake activity but also enhanced nitric oxide release and elevated laminin 1 and collagen IV deposition. These results suggest that this new scaffold provide a better physiological substrate for endothelial cell culture and suggest its further application for biomedical research, cancer biology and regenerative biology.  相似文献   

5.
RADA16 (RADARADARADARADA) is an amphiphilic polypeptide composed of 16 amino acids, which is composed of alternating positively charged arginine (R), hydrophobic alanine (A) and negatively charged aspartic acid (D) that repeat periodically throughout the composition. This structure allows RADA16 to form an extremely stable and highly ordered β-sheet structure by noncovalent bonding (ionic bonds, hydrogen bonds, hydrophobic action, π-π bonds, etc.). Moreover, it can form a three-dimensional (3D) nanofiber hydrogel scaffold in neutral pH with water content higher than 99% and with a physiological saline solution, having excellent biocompatibility and low immunogenicity, etc. Its degradation products are amino acids, which can reduce the possibility of an inflammatory reaction and have little effect on the normal healing process of damaged tissue. In addition, the special 3D structure of RADA16 facilitates the proliferation and differentiation of cells, making it widely used in cell culture scaffolds. Subsequent studies have found that the C-terminus or N-terminus of RADA16 is modified by a specific functional peptide, which not only retains the original function of RADA16 but also gives the RADA16 self-assembling hydrogel a more powerful function. In recent years, RADA16 and RADA16-based fusion peptides have been applied in biomedical fields, such as 3D cell culture, tissue repair, rapid hemostasis, and delivery systems, which have broad prospects. This review focuses on recent research and applications of RADA16 and RADA16-based self-assembling peptide nanofiber scaffold (SAPNS) in biomedicine.  相似文献   

6.
Appropriate choice of biomaterial supports is critical for the study of capillary morphogenesis in vitro as well as to support vascularization of engineered tissues in vivo. Self-assembling peptides are a class of synthetic, ionic, oligopeptides that spontaneously assemble into gels with an ECM-like microarchitecture when exposed to salt. In this paper, the ability of four different self-assembling peptide gels to promote endothelial cell adhesion and capillary morphogenesis is explored. Human umbilical vein endothelial cells (HUVECs) were cultured within ionic self-assembling peptide family members, RAD16-I ((RADA)(4)), RAD16-II ((RARADADA)(2)), KFE-8 ((FKFE)(2)), or KLD-12 ((KLDL)(3)). HUVECs suspended in RAD16-I or RAD16-II gels elongated and formed interconnected capillary-like networks resembling in vivo capillaries, while they remained round and formed clusters within KFE-8 or KLD-12 gels. As HUVECs attach to RAD16-I and RAD16-II significantly better than the other peptides, these differences appear to be explained by differences in cell adhesion. Although adhesion likely occurs via bound adhesion proteins, there appears to be no difference in protein binding to the peptides investigated. Results indicate that, although these oligopeptides have similar mechanisms of self- assembly, their primary sequence can greatly affect cell adhesion. Additionally, a subset of these biomimetic ECM-like materials support capillary morphogenesis and thus may be useful for supporting vascularization.  相似文献   

7.
Designer peptides with self-assembling properties form nanofibers which are further organized to form a hydrogel consisting of up to 99.5% water. We present here the encapsulation of neural stem cells into peptide nanofiber hydrogel scaffolds. This results in three-dimensional (3-D) neural tissue cultures in which neural stem cells differentiate into progenitor neural cells, neurons, astrocytes and oligodendrocytes when cultured in serum-free medium. Cell survival studies showed that neural cells in peptide hydrogels thrive for at least 5 months. In contrast, neural stem cells encapsulated in Collagen I were poorly differentiated and did not migrate significantly, thus forming clusters. We show that for culture periods of 1–2 weeks, neural stem cells proliferate and differentiate better in Matrigel. However, in long-term studies, the population of cells in Matrigel decreases whereas better cell survival rates are observed in neural tissue cultures in peptide hydrogels. Peptide functionalization with cell adhesion and cell differentiation motifs show superior cell survival and differentiation properties compared to those observed upon culturing neural cells in non-modified peptide hydrogels. These designed 3-D engineered tissue culturing systems have a potential use as tissue surrogates for tissue regeneration. The well-defined chemical and physical properties of the peptide nanofiber hydrogels and the use of serum-free medium allow for more realistic biological studies of neural cells in a biomimetic 3-D environment.  相似文献   

8.
背景:3D自组装肽纳米纤维凝胶支架能很好模拟体内的微环境,提供一种能促进细胞生长、改善细胞功能、具有合理构成细胞外基质的结构模式。 目的:综述自组装多肽纳米纤维支架的基础研究及其在神经组织工程中的研究现状。 方法:检索2000至2013年PubMed数据库、维普数据库有关自组装多肽纳米纤维支架研究进展的文献,关键词为“自组装多肽,纳米纤维支架,神经组织工程,神经干细胞;self-assembling peptide,nanofiber scaffold,RADA16,Nerve tissue engineering,Neural stem cell”。 结果与结论:自组装多肽纳米纤维支架作为新型组织工程支架材料不仅解决了材料与细胞相容性差的问题,而且在维持材料的三维特性、促进细胞活性、模仿细胞外基质等方面均优于其他支架材料,是一种理想的组织工程材料,为神经损伤修复研究提供了新的方法。但自组装多肽领域内仍面临一些挑战,短期的问题包括自组装多肽与新型生物高分子的整合,以及与相对成熟传统移植物的整合;长期问题涉及如何更好地应对体内免疫系统,如何对细胞内的靶点进行治疗,以及如何预测未来高整合支架的发展方向等。  相似文献   

9.
Luo Z  Wang S  Zhang S 《Biomaterials》2011,32(8):2013-2020
We previously reported a class of designer self-assembling peptides that form 3-dimensional nanofiber scaffolds using only l-amino acids. Here we report that using d-amino acids, the chiral self-assembling peptide d-EAK16 also forms 3-dimensional nanofiber scaffold that is indistinguishable from its counterpart l-EAK16. These chiral peptides containing all d-amino acids, d-EAK16, self-assemble into well-ordered nanofibers. However with alternating d- and l-amino acids, EAK16 and EAK16, showed poor self-assembling properties. To fully understand individual molecular building blocks and their structures, assembly properties and dynamic behaviors for rapid hemostasis, we used circular dichroism, atomic force microscopy and scanning electron microscopy to study in detail the peptides. We also used rheological measurement to study the hydrogel gelation property. Furthermore, we used an erythrocyte-agglutination test and a rabbit liver wound healing model, particularly in the transverse rabbit liver experiments, to examine rapid hemostasis. We showed that 1% d-EAK16 for the liver wound hemostasis took ~20 s, but using 1% of EAK16 and EAK16 that have alternating chiral d- and l-amino acids took ~70 and ~80 s, respectively. We here propose a plausible model not only to provide insights in understanding the chiral assembly properties for rapid hemostasis, but also to aid in further design of self-assembling d-form peptide scaffolds for clinical applications.  相似文献   

10.
In this study, a new functionalized peptide RLN was designed containing the bioactive motif link N, the amino terminal peptide of link protein. A link N nanofiber scaffold (LN-NS) was self-assembled by mixing peptide solution of RLN and RADA16. The characterization of LN-NS was tested using atomic force microscopy (AFM). The biocompatibility and bioactivity of this nanofiber scaffold for rabbit nucleus pulposus cells (NPCs) were also evaluated. This designer functionalized nanofiber scaffold exhibited little cytotoxicity and promoted NPCs adhesion obviously. In three-dimensional cell culture experiments, confocal reconstructed images testified that the functionalized LN-NS-guided NPCs migration from the surface into the hydrogel considerably, in which the RADA16 scaffold did not. Moreover, the functionalized LN-NS significantly stimulated the biosynthesis of extracelluar matrices (ECM) by NPCs. Our findings demonstrate that the functionalized nanofiber scaffold containing link N had excellent biocompatibility and bioactivity with rabbit NPCs and could be useful in the nucleus pulposus regeneration.  相似文献   

11.
Three-dimensional (3?D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells. Herein, various blends and thicknesses of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogels were synthesized, flash frozen, and dried by lyophilization to create scaffolds with multiscale porosity. Environmental scanning electron microscopy (ESEM) images demonstrated that lyophilization induced microporous voids in the PEGDMA hydrogels while swelling studies show the hydrogels retain their innate swelling properties. Change in pore size was observed between drying methods, polymer blend, and thickness when imaged in the hydrated state. Human adipose-derived stem cells (hASCs) were seeded on lyophilized and non-lyophilized hydrogels to determine if the scaffolds would support cell attachment and proliferation of a clinically relevant cell type. Cell attachment and morphology of the hASCs were evaluated using fluorescence imaging. Qualitative observations in cell attachment and morphology of hASCs on the surface of the different hydrogel spatial configurations indicate these multiscale porosity hydrogels create a suitable scaffold for hASC culture. These findings offer another factor of tunability in creating biomimetic hydrogels for various tissue engineering applications including tissue repair, regeneration, wound healing, and controlled release of growth factors.  相似文献   

12.
We evaluated the osteogenic differentiation of mesenchymal stem cells (MSCs) using a new class of synthetic self-assembling peptide hydrogels, RADA 16, as a scaffold for three-dimensional culture. MSCs derived from rat bone marrow were culture-expanded and seeded into the hydrogel and further cultured in osteogenic medium containing beta-glycerophosphate, ascorbic acid, and dexamethasone for 2-4 weeks. High alkaline phosphatase activity and osteocalcin (OC) contents were detected at both the protein and gene expression levels during the culture periods. Both calcium and the OC contents increased over time, indicating the growth of a mineralized extracellular matrix within the hydrogel. Moreover, the process of the growth of the mineralized matrix determined by three-dimensional microarchitecture images was obtained by confocal laser scanning microscopy. The findings show that MSCs can differentiate into mature osteoblasts to form mineralized matrices within the hydrogel scaffold. Importantly, the differentiation can occur three dimensionally within the hydrogel, indicating that RADA 16 can be considered attractive synthetic biomaterial for use in bone tissue engineering.  相似文献   

13.
Some of the problems raised by the combination of porous scaffolds and self-assembling peptide (SAP) gels as constructs for tissue engineering applications are addressed for the first time. Scaffolds of poly(ethyl acrylate) and the SAP gel RAD16-I were employed. The in situ gelation of the SAP gel inside the pores of the scaffolds was studied. The scaffold-cum-gel constructs were characterized morphologically, physicochemically and mechanically. The possibility of incorporating an active molecule (bovine serum albumin, taken here as a model molecule for others) in the gel within the scaffold’s pores was assessed, and the kinetics of its release in phosphate-buffered saline was followed. Cell seeding and colonization of these constructs were preliminarily studied with L929 fibroblasts and subsequently checked with sheep adipose-tissue-derived stem cells intended for further preclinical studies. Static (conventional) and dynamically assisted seedings were compared for bare scaffolds and the scaffold-cum-gel constructs. The SAP gel inside the pores of the scaffold significantly improved the uniformity and density of cell colonization of the three-dimensional (3-D) structure. These constructs could be of use in different advanced tissue engineering applications, where, apart from a cell-friendly extracellular matrix -like aqueous environment, a larger-scale 3-D structure able to keep the cells in a specific place, give mechanical support and/or conduct spatially the tissue growth could be required.  相似文献   

14.
背景:RADA16是较成熟的自组装纳米短肽材料,在亲水面往复形成互补离子键,可组装为纳米纤维,并且能够促MC3T3 E1细胞的黏附、伸展和增殖。 目的:观察新型自组装多肽水凝胶NBD/RADA16对小鼠前成骨细胞MC3T3 E1成骨分化能力的影响。 方法:将MC3T3 E1细胞分别接种于自组装多肽水凝胶NBD/RADA16与RADA16水凝胶中,进行成骨诱导培养,以单纯成骨诱导培养的细胞为对照。诱导培养1,3,6 d检测细胞碱性磷酸酶活性;诱导培养7 d后,Western Blot检测细胞骨形态发生蛋白2的表达;诱导培养21 d后,茜素红染色观察细胞钙化结节。 结果与结论:MC3T3 E1细胞在NBD/RADA16多肽水凝胶上生长状态良好,优于在RADA16上生长的细胞。自组装多肽水凝胶NBD/RADA16上MC3T3 E1细胞的碱性磷酸酶活性高于RADA16水凝胶上及单纯成骨诱导培养的细胞(P < 0.01)。自组装多肽水凝胶NBD/RADA16上MC3T3 E1细胞的矿化基质沉积、骨形态发生蛋白2表达高于RADA16水凝胶上的细胞(P < 0.01)。结果提示NBD/RADA16自组装多肽水凝胶较RADA16水凝胶更能促进MC3T3 E1细胞的成骨分化。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

15.
Chen K  Sahoo S  He P  Ng KS  Toh SL  Goh JC 《Tissue engineering. Part A》2012,18(13-14):1399-1409
While silk-based microfibrous scaffolds possess excellent mechanical properties and have been used for ligament tissue-engineering applications, the microenvironment in these scaffolds is not biomimetic. We hypothesized that coating a hybrid silk scaffold with an extracellular matrix (ECM)-like network of self-assembling peptide nanofibers would provide a biomimetic three-dimensional nanofibrous microenvironment and enhance ligament tissue regeneration after bone marrow-derived mesenchymal stem cell (BMSC)-seeding. A novel scaffold possessing a triple structural hierarchy comprising macrofibrous knitted silk fibers, a silk microsponge, and a peptide nanofiber mesh was developed by coating self-assembled RADA16 peptide nanofibers on a silk microfiber-reinforced-sponge scaffold. Compared with the uncoated control, RADA-coated scaffolds showed enhanced BMSC proliferation, metabolism, and fibroblastic differentiation during the 3 weeks of culture. BMSC-seeded RADA-coated scaffolds showed an increasing temporal expression of key fibroblastic ECM proteins (collagen type I and III, tenascin-C), with a significantly higher tenascin-C expression compared with the controls. BMSC-seeded RADA-coated scaffolds also showed a temporal increase in total collagen and glycosaminoglycan production (the amount produced being higher than in control scaffolds) during 3 weeks of culture, and possessed 7% higher maximum tensile load compared with the BMSC-seeded control scaffolds. The results indicate that the BMSC-seeded RADA-coated hybrid silk scaffold system has the potential for use in ligament tissue-engineering applications.  相似文献   

16.
Amyloids are highly ordered protein/peptide aggregates associated with human diseases as well as various native biological functions. Given the diverse range of physiochemical properties of amyloids, we hypothesized that higher order amyloid self-assembly could be used for fabricating novel hydrogels for biomaterial applications. For proof of concept, we designed a series of peptides based on the high aggregation prone C-terminus of Aβ42, which is associated with Alzheimer's disease. These Fmoc protected peptides self assemble to β sheet rich nanofibrils, forming hydrogels that are thermoreversible, non-toxic and thixotropic. Mechanistic studies indicate that while hydrophobic, π–π interactions and hydrogen bonding drive amyloid network formation to form supramolecular gel structure, the exposed hydrophobic surface of amyloid fibrils may render thixotropicity to these gels. We have demonstrated the utility of these hydrogels in supporting cell attachment and spreading across a diverse range of cell types. Finally, by tuning the stiffness of these gels through modulation of peptide concentration and salt concentration these hydrogels could be used as scaffolds that can drive differentiation of mesenchymal stem cells. Taken together, our results indicate that small size, ease of custom synthesis, thixotropic nature makes these amyloid-based hydrogels ideally suited for biomaterial/nanotechnology applications.  相似文献   

17.
Cell transplantation is currently limited by poor graft retention and survival in the postinfarction scar. Because this issue could potentially be addressed by embedding cells in bioinjectable scaffolds and boosting cell survival pathways, we induced a myocardial infarction in 72 rats to assess the effects of different self-assembling peptides with or without platelet-derived growth factor (PDGF-BB) on survival of transplanted skeletal myoblasts. Two weeks after coronary artery ligation, rats were randomized to receive in-scar injections of culture medium (controls, n = 11), self-assembling peptide (RAD16-I) nanofibers (NF, n = 9), skeletal myoblasts (n = 12), or skeletal myoblasts in combination with NF (n = 8). In separate experiments with different self-assembling peptides (RAD16-II), rats received in-scar injections of culture medium (controls, n = 6), skeletal myoblasts (n = 10), PDGF-loaded peptides (n = 7), or skeletal myoblasts (5 x 10(6)) in combination with PDGF-loaded peptides (n = 9). After 1 month, left ventricular function, as assessed by echocardiography, was not improved in either of the experimental groups compared with controls. This correlated with the failure of RAD16-I peptides or PDGF-loaded RAD16-II peptides to improve myoblast survival despite a greater angiogenesis. In vitro experiments confirmed that the number of myoblasts decreased over time when seeded on nanofiber gels. These data suggest that the optimal use of biomaterial scaffolds for survival of transplanted cells will require specific tailoring of the biomaterial to the cell type.  相似文献   

18.
Silicon is known to have an influence on calcium phosphate deposition and on the differentiation of bone precursor cells. This study explores the effect of the incorporation of silanol (Si-OH) groups into polymeric scaffolds on the osteogenic differentiation of human adipose stem cells (hASC) cultured under dynamic and static conditions. A blend of corn starch with polycaprolactone (30/70wt.%, SPCL) was used to produce three-dimensional fibre meshes scaffolds by the wet-spinning technique, and a calcium silicate solution was used as a non-solvent to develop an in situ functionalization with Si-OH groups. In vitro assessment, using hASC, of functionalized and non-functionalized scaffolds was evaluated in either α-MEM or osteogenic medium under static and dynamic conditions (provided by a flow perfusion bioreactor). The functionalized materials, SPCL-Si, exhibit the capacity to sustain cell proliferation and induce their differentiation into the osteogenic lineage. The formation of mineralization nodules was observed in cells cultured on the SPCL-Si materials. Culturing under dynamic conditions using a flow perfusion bioreactor was shown to enhance the hASC proliferation and differentiation and a better distribution of cells within the material. The present work demonstrates the potential of these functionalized materials for future applications in bone tissue engineering. Additionally, these results highlight the simplicity, economic and reliable production process of those materials.  相似文献   

19.
RADARADARADARADA (RADA16-I) peptide, consisting of 16 alternating hydrophobic and hydrophilic (also alternating negative and positive charges) amino acids, forms extremely stable beta-pleated sheet structure and then self-assembles into nanofibers to produce high-order interwoven nanofiber scaffold hydrogel. To investigate its therapeutic effects, a burn model of partial thickness-deep dermal injury (the deep second degree burns) was performed at the dorsal skin of female Sprague-Dawley rats with an electrical scalding machine. The wounds treated with either RADA16-I or control materials were carefully examined at morphological, histological and cellular levels. We found that RADA16-I can advance the time of eschar appearance and the time of eschar disappearance both by 3-5 days, and speed up wound contraction by 20-30% compared with contrast groups (chitosan, poly(DL)-lactic acid (PDLA), collagen I and the blank) without obvious edema. Immunohistochemical studies showed that both FGF and EGF were obviously expressed in nascent tissue such as epidermis and glands when wounds were treated with the RADA16-I after injury. When peptide stock solution was diluted from 10 to 0.17 mg/mL, atomic force microscopy (AFM) observation showed that the shape of peptide nanofibers changed from the globular-pieces-clustered filaments with 4.8 +/- 0.38 nm in height, 61.6 +/- 6.10 nm in width and 708 +/- 80.2 nm in length, to general filaments with 1.4 +/- 0.36 nm, 17.5 +/- 1.13 nm and 1108 +/- 184 nm. The nanofiber surface porosity gradually decreased from 49-70% to 12-28%. These characteristics contribute to wound healing by offering an "ideal dressing" moist healing microenvironment and a nanofiber 3D scaffold. These results suggest that the self-assembling peptide might be a promising wound dressing with being simple, effective, and affordable.  相似文献   

20.
Abstract

Biomaterials have been widely used in bone infection and osteomyelitis resulting from their versatile functionalities. As far as we know, the appearance of osteomyelitis was mainly caused by bacteria. Therefore, a biomaterial that can cure bone infection and promote osteogenesis may become an ideal candidate for the treatment of osteomyelitis. Cationic antimicrobial peptides (AMPs) have been proved to have an excellent ability to kill bacteria, fungi, viruses, and parasites. However, the application of AMPs in bone infection and osteomyelitis is quite limited. Here, we designed a new hydrogel that has an inhibitory effect on the proliferation of S. aureus and enhances osteogenesis. RADA16 self-assembling peptide has been applied for AMPs delivery. In this study, we demonstrated that RADA16 could form a stable structure and afford the sustained release of AMPs. The interwoven nanofiber morphology was detected by field emission scanning electron microscopy. The sustained release study revealed that the release of AMPs could be obtained until 28 days. In vitro research showed this new self-assembling hydrogel could promote the proliferation of bone mesenchymal stem cells (BMSCs) and inhibited the growth of S. aureus. More importantly, the results in vivo also proved that RADA16-AMP self-assembling peptide had an excellent effect on bone formation. Our findings implied that we successfully combined RADA16 and AMPs together and laid the foundation for the application of this new hydrogel and open new avenues for biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号