共查询到20条相似文献,搜索用时 30 毫秒
1.
Hyaluronic acid (HA), an anionic polysaccharide, is one of the major components of the natural extracellular matrix (ECM). Although HA has been widely used for tissue engineering applications, it does not support cell attachment and spreading and needs chemical modification to support cellular adhesion. Here, we present a simple approach to functionalize photocrosslinked HA hydrogels by deposition of poly(l-lysine) (PLL) and HA multilayer films made by the layer-by-layer (LbL) technique. PLL/HA multilayer film formation was assessed by using fluorescence microscopy, contact angle measurements, cationic dye loading and confocal microscopy. The effect of polyelectrolyte multilayer film (PEM) formation on the physicochemical and mechanical properties of hydrogels revealed polyelectrolyte diffusion inside the hydrogel pores, increased hydrophobicity of the surface, reduced equilibrium swelling, and reduced compressive moduli of the modified hydrogels. Furthermore, NIH-3T3 fibroblasts seeded on the surface showed improved cell attachment and spreading on the multilayer functionalized hydrogels. Thus, modification of HA hydrogel surfaces with multilayer films affected their physicochemical properties and improved cell adhesion and spreading on these surfaces. This new hydrogel/PEM composite system may offer possibilities for various biomedical and tissue engineering applications, including growth factor delivery and co-culture systems. 相似文献
2.
Monge C Ren K Berton K Guillot R Peyrade D Picart C 《Tissue engineering. Part A》2012,18(15-16):1664-1676
The use of surface coating on biomaterials can render the original substratum with new functionalities that can improve the chemical, physical, and mechanical properties as well as enhance cellular cues such as attachment, proliferation, and differentiation. In this work, we combined biocompatible polydimethylsiloxane (PDMS) with a biomimetic polyelectrolyte multilayer (PEM) film made of poly(L-lysine) and hyaluronic acid (PLL/HA) for skeletal muscle tissue engineering. By microstructuring PDMS in grooves of a different width (5, 10, 30, and 100?μm) and by modulating the stiffness of the (PLL/HA) films, we guided skeletal muscle cell differentiation into myotubes. We found optimal conditions for both the formation of parallel-oriented myotubes and their maturation. Significantly, the myoblasts were collectively prealigned to the grooves before their differentiation. Before fusion, the highest aspect ratio and orientation of nuclei were observed for the 5 and 10?μm wide micropatterns. The formation of myotubes was observed regardless of the size of the micropatterns, and we found that their typical width was 10-12?μm. Their maturation was characterized by the immunolabeling of type II isomyosin. The amount of myosin striation was not affected by the topography, except for the 5?μm wide micropatterns. We highlighted the spatial constraints that led to an important nuclei deformation and further impairment of maturation within the 5?μm grooves. Altogether, our results show that the PEM film combined with PDMS is a powerful tool that is used for skeletal muscle engineering. This work opens perspectives for the development of skeletal muscle tissue in contact with films containing bioactive peptides or growth factors as well as for the study of pathogenic myotubes. 相似文献
3.
Vodouhê C Schmittbuhl M Boulmedais F Bagnard D Vautier D Schaaf P Egles C Voegel JC Ogier J 《Biomaterials》2005,26(5):545-554
We studied in vitro cell-substrate interaction of motoneurons with functionalized polylectrolyte films. Thin polylectrolyte films were built on glass by alternating polycations, poly(ethylene-imine) PEI, poly(L-lysine) PLL, or poly(allylamine hydrochloride) PAH, and polyanions, poly(sodium-4-styrenesulfonate) PSS or poly(L-glutamic acid) (PGA). These architectures were functionalized with Brain Derived Neurotrophic Factor (BDNF) or Semaphorin 3A (Sema3A). We used Optical Waveguide Lightmode Spectroscopy (OWLS) and Atomic Force Microscopy (AFM) to characterize the architectures. The viability of motoneurons was estimated by the acid phosphatase method, and morphometrical measures were performed to analyse the influence of different architectures on cell morphology. Motoneurons appeared to adhere and spread on all the architectures tested and preferentially on PSS ending films. The viability of motoneurons on polyelectrolyte multilayers was higher compared to polyelectrolyte monolayers. BDNF and Sema3A embedded in the films remained active and thereby create functionalized nanofilms. 相似文献
4.
Vodouhê C Le Guen E Garza JM Francius G Déjugnat C Ogier J Schaaf P Voegel JC Lavalle P 《Biomaterials》2006,27(22):4149-4156
A surface coating based on polylysine/hyaluronic acid multilayers was designed and acted as a reservoir for an antiproliferative agent, paclitaxel (Taxol). Absolutely no chemical modification of polyelectrolytes or of the drug was needed and the final architecture was obtained in an extremely simple way using the layer-by-layer method. The paclitaxel dose available for human colonic adenocarcinoma cells HT29 seeded on the films could be finely tuned. Moreover, the accessibility of the drugs was controlled by adding on the top of the drug reservoir a capping made of synthetic polyelectrolyte multilayers. This capping was also required to allow adhesion of HT29 cells. Paclitaxel activity was maintained after embedding in the polyelectrolyte multilayers and cellular viability could be reduced by about 80% 96 h after seeding. The strategy described in this paper could be valuable for various other drug/cell systems. 相似文献
5.
The capacity to engineer the extracellular matrix is critical to better understand cell function and to design optimal cellular environments to support tissue engineering, transplantation and repair. Stacks of adsorbed polymers can be engineered as soft wet three dimensional matrices, with properties tailored to support cell survival and growth. Here, we have developed a combinatorial method to generate coatings that self assemble from solutions of polyelectrolytes in water, layer by layer, to produce a polyelectrolyte multilayer (PEM) coating that has enabled high-throughput screening for cellular biocompatibility. Two dimensional combinatorial PEMs were used to rapidly identify assembly conditions that promote optimal cell survival and viability. Conditions were first piloted using a cell line, human embryonic kidney 293 cells (HEK 293), and subsequently tested using primary cultures of embryonic rat spinal commissural neurons. Cell viability was correlated with surface energy (wettability), modulus (matrix stiffness), and surface charge of the coatings.Our findings indicate that the modulus is a crucial determinant of the capacity of a surface to inhibit or support cell survival. 相似文献
6.
Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films
Tryoen-Tóth P Vautier D Haikel Y Voegel JC Schaaf P Chluba J Ogier J 《Journal of biomedical materials research》2002,60(4):657-667
The aim of this study was to develop new biocompatible coatings for bone implants by the alternating deposition of oppositely charged polyelectrolytes. Polyelectrolyte films were built up with different terminating layers on which SaOS-2 osteoblast-like cells and human periodontal ligament (PDL) cells were grown. The terminating layer was made of one of the following polyelectrolytes: poly(ethylene imine) (PEI), poly(sodium 4-styrenesulfonate) (PSS), poly(allylamine hydrochloride) (PAH), poly(L-glutamic acid) (PGA), or poly(L-lysine) (PLL). Cell adherence, viability, stability of osteoblast phenotype, and inflammatory response were studied. Adherence and viability were good on all terminating layers except the PEI-terminating layer, which was cytotoxic. Maintenance of osteoblast phenotype marker expression was observed on PSS- and PGA-terminating films for both cell types, whereas downregulation, associated with the induction of Interleukin-8 (IL-8) secretion, was detected on PEI and PAH for both cell types and on PLL for PDL cells. These results suggested a good biocompatibility of PSS- and PGA-ending films for PDL cells and of PSS-, PGA-, and PLL-terminating films for SaOS-2 cells. As a result, polyelectrolyte multilayer films could emerge as new alternatives for implant coatings. 相似文献
7.
Cellular patterning on biomaterial surfaces is important in fundamental studies of cell–cell and cell–substrate interactions, and in biomedical applications such as tissue engineering, cell-based biosensors, and diagnostic devices. In this study, we combined the layer-by-layer polyelectrolyte multilayer deposition and photolithographic technique to create an easy and versatile technique for cell patterning. Poly(acrylic acid) (PAA) conjugated with 4-azidoaniline was interwoven in PAA/polyacrylamide (PAM) multilayer films. After UV irradiation through a photo mask, the UV-exposed areas were crosslinked and the unexposed areas were rinsed away by alkaline water, resulting in micropatterns. Cell patterns were formed when the cell adhesion was limited to the base substrate, but not on the multilayer films. The stability of cell patterns could be modulated by simply modification of the surface chemistry of base substrate and PEM films with conjugation of bioactive macromolecules. This technique can be also applied to other PEM systems with proper rinsing protocol, and many types of substrates. Cell co-culture systems can be also achieved by this technique. 相似文献
8.
Rinckenbach S Hemmerlé J Dieval F Arntz Y Kretz JG Durand B Chakfe N Schaaf P Voegel JC Vautier D 《Journal of biomedical materials research. Part A》2008,84(3):576-588
Layer-by-layer (LBL) polyelectrolyte films offer extensive potentials to enhance surface properties of vascular biomaterials. From the time of implantation, PET prostheses are continuously subjected to multiple mechanical stresses such as important distorsions and blood pressure. In this study, three LBL films, namely (1) poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride), (2) poly(L-lysine)/hyaluronan, and (3) poly(L-lysine)/poly(L-glutamic acid) were built on to isolated PET filaments, thread, and vascular prostheses. The three LBL films uniformly covered the surface of the PET samples with rough, totally smooth, and "wrinkled" appearances respectively for (PAH/PSS)(24), (PLL/HA)(24), and (PLL/PGA)(24) systems. We then assessed the behavior of these LBL films, in an aqueous environment [by environmental scanning electronic microscopy (ESEM)], when subjected to unidirectional longitudinal stretches. We found that stretching induces ruptures in the multilayer films on isolated filaments for longitudinal stretches of 14% for (PSS/PAH)(24), 13% for (PLL/PGA)(24), and 30% for (PLL/HA)(24) films. On threads, the rupture limit is enhanced to be respectively 26, 20, and 28%. Most interestingly, we found that on vascular prosthesis no rupture is visible in any of the three multilayers types, even for elongations of 200% (200% undergone by the PET prostheses is representative of those encountered during graft deployment) which by far exceeds elongations observed under physiological conditions (10-20%, blood pressure). In term of mechanical behaviors, these preliminary data constitute a first step toward the possible use of LBL film to coat and functionalize vascular prosthesis. 相似文献
9.
Polyethyleneimine (PEI) is a synthetic polymer commonly used as precursor base layer in polyelectrolyte multilayer films. However, the biological properties of this cationic macromolecule are poorly understood. The aim of this experimental investigation was to evaluate in vitro the biocompatibility of PEI towards two different human cell lines. The experimental investigation was undertaken on pure titanium (Ti) and nickel-titanium (NiTi) alloy samples with an average surface roughness of Ra=0.3microm. A biological study was undertaken at day 0 (2h after seeding), day 2, day 4 and day 7 to observe the cellular response of fibroblasts and osteoblasts cell lines in terms of morphology, adhesion (as observed by scanning electron microscopy), and viability (Mosmann's test). The results showed that PEI can be successfully deposited onto Ti or NiTi alloy, but generates a detrimental cellular response on both substrates as illustrated by a decrease of both fibroblast and osteoblast adhesion and proliferation over a 7-day culture period. These results suggest that PEI is potentially cytotoxic and may not be biocompatible enough in clinical applications using high molecular weight. As a consequence, polyelectrolyte multilayer films, which are promising in prosthesis and implantology fields, could not be coated with PEI at a high molecular weight. A lower molecular weight should be considered or a more biocompatible molecular base as precursor layer of polyelectrolyte multilayer films would be better to use for a good human bio-integration. 相似文献
10.
Successful tissue engineering requires optimization of scaffold stiffness for a given application and cell type. Here, we investigated the effect of scaffold stiffness on myoblast cells, demonstrating the ability of cells to affect and to sense their mechanical microenvironment. Myoblasts were cultured on composite three-dimensional poly-lactic acid (PLLA)/poly-lactic co glycolic acid (PLGA) porous scaffolds of varied elasticity. The elasticity was controlled by changing the ratio of PLLA versus PLGA in the scaffolds. Cell organization, myotube formation, and cell viability were affected by scaffold stiffness. PLLA-containing scaffolds (100% to 25% PLLA) provided stiffness that supported myotube formation, while neat PLGA scaffold failed to support myotube formation and cell viability. Furthermore, scaffold stiffness correlated to its size/area reduction upon culturing experiments, suggesting different shrinkage degree by cell forces. Inhibition of scaffold shrinking by affixing device resulted in spacious cell organization with normal cell morphology. This may suggest that scaffold shrinkage led to cellular degeneration and shape deformation. Our results indicate that compliant scaffolds are insufficient to withstand cell forces. On the other hand, excessively firm scaffold could not lead to parallel oriented myotube organization. Hence, optimal scaffold stiffness can be tailored by PLLA/PLGA blending to direct specific stages of myoblast differentiation and organization. 相似文献
11.
Titanium (Ti) and its alloys are used extensively in orthopedic implants due to their excellent biocompatibility and mechanical properties. However, titanium-based implant materials have specific complications associated with their applications, such as the loosening of implant-host interface owing to unsatisfactory cell adhesion and the susceptibility of the implants to bacterial infections. Hence, a surface which displays selective biointeractivity, i.e. enhancing beneficial host cell responses but inhibiting pathogenic microbial adhesion, would be highly desirable. This present study aims to improve biocompatibility and confer long-lasting antibacterial properties on Ti via polyelectrolyte multilayers (PEMs) of hyaluronic acid (HA) and chitosan (CH), coupled with surface-immobilized cell-adhesive arginine-glycine-aspartic acid (RGD) peptide. The HA/CH PEM-functionalized Ti is highly effective as an antibacterial surface but the adhesion of bone cells (osteoblasts) is poorer than on pristine Ti. With additional immobilized RGD moieties, the osteoblast adhesion can be significantly improved. The density of the surface-immobilized RGD peptide has a significant effect on osteoblast proliferation and alkaline phosphatase (ALP) activity, and both functions can be increased by 100-200% over that of pristine Ti substrates while retaining high antibacterial efficacy. Such substrates can be expected to have good potential in orthopedic applications. 相似文献
12.
Matsusaki M Sakaguchi H Serizawa T Akashi M 《Journal of biomaterials science. Polymer edition》2007,18(6):775-783
Alginate (ALG) hydrogels incorporating vascular endothelial growth factor (VEGF) were nano-coated with polyelectrolyte multilayer (PEM) films composed of chitosan (CT) and dextran sulfate (DEX) in order to control the VEGF release from the hydrogels. When non- and nano-coated ALG hydrogels containing VEGF were incubated in phosphate-buffered saline (PBS) at 37 degrees C for the prescribed times, the nano-coated hydrogels were stable, even after incubation for a week, whereas the non-coated hydrogels collapsed after 6 h. The release profile of VEGF from the non- and nano-coated ALG hydrogels was evaluated by an enzyme-linked immunosorbent assay (ELISA). Although all of the VEGF incorporated into the non-coated ALG hydrogels was released within 6 h by the collapse, only a few percent of the VEGF incorporated in the nano-coated hydrogels was released. Furthermore, the incorporated VEGF in the nano-coated hydrogels was released continuously, even after a month, without any initial burst release. The release percentage of VEGF was easily controlled by the PEM film thickness on the surface of the ALG hydrogels. The VEGF released from the nano-coated hydrogels retained its activity without denaturation. Consequently, the nano-coating of hydrogel surfaces with PEM films may be useful for controlled and sustained drug-delivery systems. 相似文献
13.
Platinum nanoparticle-doped chitosan (CHIT) solution can be easily prepared by treating the CHIT solution with aqueous H2PtCl6 solution followed by chemical reduction of Pt(IV) with NaBH4. Multiwalled carbon nanotubes (MWCNT) are then dispersed in the nanoparticle-doped solution. The resulting Pt-CNT-CHIT material brings new capabilities for electrochemical devices by using the synergistic action of Pt nanaoparticles and CNT. Positively charged Pt-CNT-CHIT solution and negatively charged poly(sodium-p-styrenesulfonate) salt (PSS) have been employed to fabricate stable ultrathin multilayer films on gold electrode and quartz glass slides in a layer-by-layer fashion. Cyclic voltammetric and UV-vis adsorption spectroscopy confirms the consecutive growth of the multilayer films. The modified gold electrode allows low-potential detection of hydrogen peroxide with high sensitivity and fast response time. With the immobilization of cholesterol oxidase onto the electrode surface using glutaric dialdehyde, a biosensor that responds sensitively to cholesterol has been constructed. In pH 6.98 phosphate buffer, almost interference free determination of cholesterol has been realized at 0.1 V vs. SCE with a linear range from 0.01 to 3mM and response time<30s. With the immobilization of another cholesterol esterase enzyme layer, the biosensor was used to determine total cholesterol in serum samples with satisfactory results. 相似文献
14.
Fittkau MH Zilla P Bezuidenhout D Lutolf MP Human P Hubbell JA Davies N 《Biomaterials》2005,26(2):167-174
The ability of the biomimetic peptides YIGSR, PHSRN and RGD to selectively affect adhesion and migration of human microvascular endothelial cells (MVEC) and vascular smooth muscle cells (HVSMC) was evaluated. Cell mobility was quantified by time-lapse video microscopy of single cells migrating on peptide modified surfaces. Polyethylene glycol (PEG) hydrogels modified with YIGSR or PHSRN allowed only limited adhesion and no spreading of MVEC and HVSMC. However, when these peptides were individually combined with the strong cell binding peptide RGD in PEG hydrogels, the YIGSR peptide was found to selectively enhance the migration of MVEC by 25% over that of MVEC on RGD alone (p<0.05). No corresponding effect was observed for HVSMC. This suggests that the desired response of specific cell types to tissue engineering scaffolds could be optimized through a combinatory approach to the use of biomimetic peptides. 相似文献
15.
16.
Fibronectin terminated multilayer films: protein adsorption and cell attachment studies 总被引:1,自引:0,他引:1
Electrostatically driven layer-by-layer (LbL) assembly is a simple and robust method for producing structurally tailored thin film biomaterials, of thickness ca. 10nm, containing biofunctional ligands. We investigate the LbL formation of multilayer films composed of polymers of biological origin (poly(L-lysine) (PLL) and dextran sulfate (DS)), the adsorption of fibronectin (Fn)--a matrix protein known to promote cell adhesion--onto these films, and the subsequent spreading behavior of human umbilical vein endothelial cells (HUVEC). We employ optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microgravimetry with dissipation (QCMD) to characterize multilayer assembly in situ, and find adsorbed Fn mass on PLL-terminated films to exceed that on DS terminated films by 40%, correlating with the positive charge and lower degree of hydration of PLL terminated films. The extent and initial rate of Fn adsorption to both PLL and DS-terminated films exceed those onto the bare substrate, indicating the important role of electrostatic complexation between negatively charged protein and positively charged PLL at or near the film surface. We use phase-contrast optical microscopy to investigate the time-dependent morphological changes of HUVEC as a function of layer number, charge of terminal layer, and the presence of Fn. We observe HUVEC to attach, spread, and lose circularity on all surfaces. Positively charged PLL-terminated films exhibit a greater extent of cell spreading than do (negatively charged) DS-terminated films, and spreading is enhanced while circularity loss is suppressed by the presence of adsorbed Fn. The number of layers plays a significant role only for DS-terminated films with Fn, where spreading on a bilayer greatly exceeds that on a multilayer, and PLL-terminated films without Fn, where initial spreading is significantly higher on a monolayer. We observe initial cell spreading to be followed by retraction (i.e. decreased cell area and circularity with time) for films without Fn, and for DS-terminated films with Fn. Overall, the Fn-coated PLL monolayer and the Fn-coated PLL-terminated multilayer are the best performing films in promoting cell spreading. We conclude the presence of Fn to be an important factor (more so than film charge or layer number) in controlling the interaction between multilayer films and living cells, and thus to represent a promising strategy toward in vivo applications such as tissue engineering. 相似文献
17.
Use of polyelectrolyte multi-layers as biomaterials for cell attachment has been limited due to their gel-like characteristics. Herein, we attempt to improve the cellular adhesion properties of multi-layer films, reduce their gel-like nature and rigidify them through chemical cross-linking with genipin; a natural and non-cytotoxic compound. Chitosan (CH), hyaluronan (HA) and alginate (Alg) were used to assemble [CH–HA]n CH and [CH–Alg]n CH films, and the effects of genipin cross-linking on the cell adhesion properties of these multi-layers were investigated. Atomic force microscopy (AFM) confirmed that cross-linking affected each of the films differently. Quartz crystal microbalance with dissipation (QCM-D) revealed that [CH–HA]10 CH films were very viscoelastic, with thicknesses in the range 350–450 nm, while [CH–Alg]10 CH films only grew to thicknesses of ~100 nm. These differences were a result of the different growth regimes of these two polyelectrolyte systems. Cell adhesion studies using MC3T3 pre-osteoblasts and rat fibroblastic skin cells, carried out on both films demonstrated vast differences in cell adhesion. [CH–HA]n CH cross-linked films proved to be highly non-adhesive for pre-osteoblasts and fibroblastic skin cells. Conversely, cross-linking [CH–Alg]n CH films was shown to dramatically improve pre-osteoblast and rat fibroblastic skin cell adhesion, especially for high bi-layer numbers and using higher concentrations of cross-linker. 相似文献
18.
Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold 总被引:8,自引:0,他引:8
A biofunctional scaffold was constructed with human mesenchymal stem cells (hMSCs) encapsulated in polyelectrolyte complexation (PEC) fibers. Human MSCs were either encapsulated in PEC fibers and constructed into a fibrous scaffold or seeded on PEC fibrous scaffolds. The proliferation, chondrogenic and osteogenic differentiation of the encapsulated and seeded hMSCs were compared for a culture period of 5.5 weeks. Gene expression and extracellular matrix production showed evidences of chondrogenesis and osteogenesis in the cell-encapsulated scaffolds and cell-seeded scaffolds when the samples were cultured in the chondrogenic and osteogenic differentiation media, respectively. However, better cell proliferation and differentiation were observed on the hMSC-encapsulated scaffolds compared to the hMSC-seeded scaffolds. The study demonstrated that the cell-encapsulated PEC fibers could support proliferation and chondrogenic and osteogenic differentiation of the encapsulated-hMSCs. Together with our previous works, which demonstrated the feasibility of PEC fiber in controlled release of drug, protein and gene delivery, the reported PEC fibrous scaffold system will have the potential in composing a multi-component system for various tissue-engineering applications. 相似文献
19.
Yu DG Lin WC Lin CH Yeh YH Yang MC 《Journal of biomedical materials research. Part B, Applied biomaterials》2007,83(1):105-113
The improvement of hydrophilicity and hemocompatibility of thermoplastic polyurethane (TPU) film was developed using surface modification of polyelectrolyte multilayers (PEMs) deposition. The polysaccharide PEMs included chitosan (CS, as a positive-charged agent) and dextran sulfate (DS, as a negative-charged and an antiadhesive agent) that were successfully prepared on the aminolyzed TPU film in a layer-by-layer (LBL) self-assembly manner. X-ray photoelectron spectroscopy (XPS), field-emission scanning electronic microscopy (FE-SEM), and atomic force microscopy (AFM) data will verify the progressive buildup of the PEMs film. The obtained results showed that the contact angle and Zeta-potential reached the steady value after four bilayers of coating, hence proving that the full coverage of coating with PEM layers was achieved. It could be found that the PEMs-deposited TPU films with DS as the outmost layer could resist the platelet adhesion and human plasma fibrinogen (HPF) adsorption, thereby prolonging effectively the blood coagulation times. Besides, the results of growth inhibition index (GI) of L929 fibroblast proliferation suggested that the as-fabricated TPU films were noncytotoxic. Overall results demonstrated that such an easy, valid, shape-independent, and noncytotoxic processing should be potential for the ion of TPU substrate in the application of hemodialysis or cardiovascular devices. 相似文献
20.