首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
INTRODUCTION: The development of neuroprotective strategies is a crucial issue for Parkinson's disease, since up to now only symptomatic therapies are available. The clinical evaluation of neuroprotective drugs is difficult considering the long-term effect of anti-Parkinsonian medication that nearly make impossible accurate measurement of the "true" clinical stage of the disease in the early years of progression. BACKGROUND: Two recent functional imaging studies (CALM-PD and REAL-PET) using positron emission tomography (PET) or single photon emission computed tomography (SPECT), suggest that dopamine agonist may have a neuroprotective effect compared to L-Dopa. CONCLUSION: These results are still controversial, notably because of the lack of clinical-imaging correlations, the absence of a placebo group and some important methodological considerations. Nevertheless, these studies are encouraging and give some arguments for the potential neuroprotective role of dopamine agonists. The aim of this work is first to present the pros and cons of these studies and second to propose guidelines in order to improve the design and methodology for future studies designed to assess the neuroprotective properties of new drugs in Parkinson's disease.  相似文献   

3.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is increasingly used to treat advanced Parkinson's disease (PD). The optimal method for targeting the STN before implanting the definitive DBS electrode is still a matter of debates. Beside methods of direct visualization of the nucleus based on stereotactic magnetic resonance imaging (MRI), the most often used technique for targeting STN consists in recording single-cell activity along exploratory tracks of 10-15mm in length, centered on the theoretical or MRI-defined target coordinates. Single-unit recordings with a microelectrode present various drawbacks. They are time-consuming if correctly performed and a single-cell precision is probably superfluous, taking into account the size of the implanted electrode. In this study, we present an original method of recording and quantification of a multi-unit signal recorded intraoperatively with a semi-microelectrode for targeting the STN. Twelve patients with advanced PD have been included and assessed clinically before and one year after bilateral STN-DBS electrode implantation guided by multi-unit electrophysiological recordings. After one year of chronic stimulation, all patients showed a marked clinical improvement. The motor score of the unified Parkinson's disease rating scale decreased by more than 57% and the required levodopa-equivalent daily dose by 59.5% in on-stimulation off-medication condition compared to off-stimulation off-medication condition. The accuracy of STN-DBS lead placement was confirmed on postoperative computed tomography (CT) scans, which were fused to preoperative T2-weighted MRI. The boundaries of the STN were easily determined by an increase in multi-unit signal amplitude, which was observed on average from 0.492mm below the rostral border of the STN down to 0.325mm above its caudal border. Signal amplitude significantly increased at the both rostral and caudal STN margins (P<0.05) and the level of neuronal activity easily distinguished inside from outside the nucleus. This study showed that STN boundaries could be adequately determined on the basis of intraoperative multi-unit recording with a semi-microelectrode. The accuracy of our method used for positioning DBS electrodes into the STN was confirmed both on CT-MRI fusion images and on the rate of therapeutic efficacy.  相似文献   

4.
High frequency stimulation (HFS) (130 Hz) of the subthalamic nucleus (STN) provides beneficial effects in patients suffering from severe parkinsonism, but the mechanisms underlying these clinical results remain to be clarified. To date, very little is known concerning the effects of STN-HFS on neurochemical transmission in the different basal ganglia nuclei and in particular the striatum. This study examines the effects of STN-HFS in intact and hemiparkinsonian rats on extracellular striatal glutamate (Glu) and GABA levels by means of intracerebral microdialysis. Unilateral STN-HFS was found to induce a significant bilateral increase of striatal Glu and GABA both in intact and in dopamine-lesioned animals. In intact rats, these increases were reversed by local administration of the D1 antagonist SCH 23390, but were potentiated by the D2 antagonist sulpiride. Potentiation was also observed after local administration of both D1 and D2 antagonists whose amplitude was similar to that measured in hemiparkinsonian rats. These data furnish the first evidence that STN-HFS influences striatal amino-acid transmission and that this influence is modulated by dopamine. They provide evidence that the effects of STN-HFS are not only restricted to the direct STN targets, but also involve adaptive changes within other structures of the basal ganglia circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号