首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Insulin-like growth factor-1 (IGF-1) is an important differentiation and survival factor for granulosa cells. The purpose of this study was to test the hypothesis that IGF-1 promotes survival of porcine granulosa cells by signaling though the phosphatidylinositol (PI) 3-kinase/Akt signal transduction pathway. Treatment with IGF-1 (100 ng/ml) for 10 min stimulated PI 3-kinase and Akt protein kinase activity. IGF-I stimulated the phosphorylation and activation of Akt in a time- and concentration-dependent manner. The PI 3-kinase inhibitors wortmannin and LY294002 blocked IGF-1 induced increases in PI 3-kinase activity and phosphorylation of Akt. Additionally, IGF-1 treatment prevented apoptosis. The survival response to IGF-I was blocked by treatment with either wortmannin or LY294002. These data suggest that IGF-I-induced phosphorylation of Akt is mediated through PI 3-kinase and that inactivation of this pathway results in granulosa cell apoptosis. We conclude that the P1 3-kinase/Akt signaling serves as a functional survival pathway in the ovary.  相似文献   

4.
目的 探讨促红细胞生成素(EPO)对血管紧张素Ⅱ(AngⅡ)诱导的心脏成纤维细胞(CF)中转化生长因子(TGF)-β1蛋白表达和胶原生成的影响,以及磷脂酰肌醇-3-激酶(PD-K)/Akt信号途径和一氧化氮合酶(NOS)在其中的作用.方法 应用胰酶和胶原酶双酶法分离培养新生大鼠CF细胞,应用EPO、Ang Ⅱ、PI3-K抑制剂LY294002、NOS抑制剂L-NAME等不同因素干预.ELISA法检测CF中Ⅰ型和Ⅲ型胶原的浓度.化学酶法检测CF培养液中的NO浓度以及NOS总的活性及其亚型的活性.Western blot检测Akt、p-Akt、内皮型一氧化氮合酶(eNOS)、iNOS和TGF-β1蛋白的表达.结果 EPO剂量依赖性的抑制Ang Ⅱ诱导的CF培养液中Ⅰ型和Ⅲ型胶原表达以及提高NO的浓度.10 U/ml的EPO对Ⅰ型和Ⅲ型胶原浓度的抑制分别达到了28%和46%,同时NO浓度则提高了154%.EPO也显著抑制了Ang Ⅱ促CF中TGF-β1蛋白的表达,同时Akt的磷酸化水平显著提高,并促进eNOS蛋白的表达.应用LY294002使eNOS蛋白表达水平明显下降,培养液中的NO浓度也随之下降.L-NAME不能降低eNOS蛋白表达,但抑制了NO的生成.EPO抑制Ang Ⅱ诱导的CF中TGF-β1蛋白的表达以及Ⅰ型和Ⅲ型胶原合成作用均能被二者阻断.结论 EPO可抑制Ang Ⅱ诱导的新生大鼠CF中TGF-β1的表达以及Ⅰ型和Ⅲ型胶原表达,可能是通过激活PI3-K/Akt信号途径促使CF中eNOS表达,从而促进NO的表达来实现.  相似文献   

5.
Different signal transduction cascades have been implicated in angiotensin II (Ang II)-mediated cell growth, such as the extracellular signal-regulated kinase 1/2 (ERK1/2) and the phosphatidylinositol 3-kinase (PI3K) pathways. To identify the downstream targets of PI3K involved in Ang II-induced proliferation, we used both rat aortic smooth muscle (RASM) cells and a CHO cell line stably expressing the rat AT1A receptor. The ERK1/2 and PI3K pathways are independently activated and implicated in Ang II-mediated DNA synthesis and cell number increase in these 2 cell lines. In addition, a specific inhibitor of Akt inhibited Ang II-induced Akt phosphorylation, DNA synthesis and proliferation in CHO-AT1A or RASM cells. A dominant-negative mutant of Akt was also found to selectively block Ang II-induced proliferation of CHO-AT1A cells. To further elucidate the signaling events leading to Akt activation, we used an AT1 receptor mutant (AT1AD74E), deficient for Gq protein coupling, and the intracellular calcium chelator BAPTA-AM. Although altered Akt and ERK1/2 activation was observed in the CHO-AT1AD74E cell line, blockade of intracellular calcium elevation did not affect phosphorylation of these kinases. These results provide the first evidence of a specific and necessary role of Akt in Ang II-induced proliferation through a Gq protein-dependent calcium-independent pathway.  相似文献   

6.
Insulin-like growth factor-1 (IGF-1) and beta-estradiol (E2) have vasodilatory effects, in part, through stimulation of vascular nitric oxide (NO) production. However, their interactive effects on endothelial nitric oxide synthase (eNOS) and NO production have not been previously studied in endothelial cells (EC). Employing rat aortic EC (RAEC), the effects of acute (20 and 30 minutes) and prolonged (4 hours) stimulation with 100 nmol/L IGF-1 and 1 nmol/L E2 (alone or in combination) were assessed with respect to protein levels and enzymatic activities for phosphatidyl inositol 3-kinase (PI3K) and serine/threonine kinase Akt (Akt), enzymes involved in eNOS activation. Exposure to IGF-1 for 30 minutes or E2 for 20 minutes increased insulin receptor substrate-1 (IRS-1) association with the regulatory (p85) subunit of PI3K, enhanced tyrosine phosphorylation of p85, and increased PI3K activity. Combined treatment had a greater effect on p85 phosphorylation and PI3K activity then either agonist alone. Moreover, IGF-1 and E2 enhanced Akt Ser(473) phosphorylation, with the effect of IGF-1 being much greater. Acute expose to both E2 (20 minutes) and IGF-1 (30 minutes) were associated with an increase in eNOS activity. Prolonged exposure (4 hours) to either IGF-1 or E2 increased expression of the p85 subunit as well as eNOS activity. Pretreatment with PI3K antagonist wortmannin (WT) prevented this increase in eNOS activity. The results suggest that IGF-1 and E2 may interact through PI3K/Akt-related pathways to increase eNOS activity.  相似文献   

7.
8.
Insulin is important in the regulation of muscle metabolism. However, its role in the regulation of muscle long-chain fatty acid (LCFA) metabolism, independent of glucose, is not clear. To determine whether insulin regulates LCFA metabolism independent of glucose and if so, via which signaling pathway, L6 myotubes were incubated, in the presence or absence of insulin (100 nM) and with either an inhibitor of phosphatidylinositol 3-kinase (PI3K) (wortmannin (W), 50 nM), protein kinase B (PKB)/Akt (A, 10 muM), or atypical protein kinase C-zeta (aPKC-zeta) (mP, 100 muM). LCFA kinetic parameters were measured via incubation with [1-(14)C]palmitate. Basal LCFA uptake was found to increase linearly with time (1-60 min) and concentration (50-750 muM). LCFA uptake increased in the presence of insulin and was maximum at 10 nM (P<0.05). Wortmannin prevented the insulin-induced increase in LCFA uptake and decrease in LCFA oxidation. While mP abolished the insulin-induced increase in LCFA uptake, it did not prevent the insulin-induced decrease in LCFA oxidation. None of the variables were affected by Akt inhibition. These results suggest a direct effect of insulin on LCFA metabolism in muscle cells, and that downstream of PI3K, aPKC-zeta, but not PKB/Akt mediates the effects of insulin on LCFA uptake but not oxidation.  相似文献   

9.
Akt/protein kinase B (Akt/PKB), which is activated by phosphatidylinositol-3 kinase (PI3-kinase), plays an important role in cell survival and cell proliferation. Using the well differentiated, clonal gonadotroph cell line, LbetaT2, we examined (1) whether Akt/PKB was activated by gonadotropin-releasing hormone (GnRH); (2) the contribution of PI3-kinase-Akt/PKB pathway in each of gonadotropin subunit gene expression; (3) crosstalk between extracellular signal-regulated kinase (ERK) and Akt/PKB pathways. Insulin-like growth factor-1 (IGF-1) was used as Akt/PKBs classic activator. Western blot analyses using antibodies specific for the phosphorylated forms of ERK and Akt/PKB demonstrated that both were rapidly phosphorylated following treatment with GnRH and IGF-1. Akt/PKB activation by GnRH and IGF-1 was completely eliminated in the presence of the PI3-kinase inhibitor, LY 294002, but not in the presence of an Akt/PKB inhibitor. Interestingly, the total amount of Akt/PKB protein was dramatically increased in the presence of LY 294002. Phosphorylation of ERK was significantly increased in the presence of LY 294002 alone, and was further increased when GnRH was used in combination with LY 294002. In experiments using a luciferase reporter construct containing the serum response element (SRE), a known target of the ERK pathway, LY 294002 but not the Akt/PKB inhibitor increased SRE-luciferase activity. GnRH-induced SRE-luciferase activity was significantly increased by LY 294002. GnRH stimulation resulted in gonadotropin LHbeta, FSHbeta, and alpha-subunit promoter activation, while IGF-1 failed to stimulate any of them. GnRH-induced gonadotropin promoter activities were not modulated in the presence of an Akt/PKB inhibitor, but treatment with LY 294002 or Wortmannin resulted in a significant increase in alpha- and FSHbeta-subunit promoter activation, both with and without GnRH. LY 294002, but not the Akt/PKB inhibitor, significantly inhibited cell proliferation. These results suggest that GnRH-induced gonadotropin gene expression is not regulated through the Akt/PKB pathway; however, PI3-kinase may be involved in the negative regulation of alpha- and FSHbeta-subunit gene expression as well as cell proliferation.  相似文献   

10.
11.
OBJECTIVE: Tyrosine kinases, typically associated with growth-signaling pathways, also play a role in Ang II-stimulated vascular contraction. However the specific kinases involved are unclear. We hypothesize here that c-Src, a non-receptor tyrosine kinase, is an important upstream regulator of vascular smooth muscle cell (VSMC) Ca2+ signaling and associated vascular contraction induced by Ang II. METHODS: Cultured VSMCs from resistance arteries of healthy subjects were studied. Human VSMCs electroporated with anti-c-Src antibody and c-Src-deficient VSMCs from small arteries of c-Src knockout mice (Src-/-mVSMCs) were also investigated. Intracellular free Ca2+ concentration ([Ca2+]i), c-Src activity and IP3 production were measured by fura 2, immunoblot and radioimmunoassay respectively. Contraction was examined in intact rat small arteries. RESULTS: Ang II rapidly increased VSMC c-Src activity, with peak responses obtained at 1 min. Ang II induced a biphasic [Ca2+]i response (Emax = 636 +/- 123 nmol/l). The initial [Ca2+]i transient, mediated primarily by Ca2+mobilization, was dose-dependently attenuated by the selective Src inhibitor, PP2, but not by PP3 (inactive analogue). Ang II-elicited [Ca2+]i responses were blunted in cells electroporated with anti-c-Src antibodies and in c-Src-/-mVSMCs. Src inhibition decreased Ang II-induced generation of IP3 in human VSMCs. Ang II dose-dependently increased vascular contraction (Emax = 40 +/- 6.5%). These responses were attenuated by PP2 (Emax = 7.8 +/- 0.08%) but not by PP3 (Emax = 35 +/- 4.5%). CONCLUSIONS: Our findings identify c-Src as an important regulator of VSMC [Ca2+]i signaling and implicate a novel contractile role for this non-receptor tyrosine kinase in Ang II-stimulated vascular smooth muscle.  相似文献   

12.
BACKGROUND: Increased growth and contraction of vascular smooth muscle cells (VSMCs) are major abnormalities in many vascular disorders. To investigate the signaling pathways that mediate these processes, we studied the expression of smooth muscle myosin light chain kinase (smMLCK) in VSMCs. METHODS: Primary cultured VSMCs isolated from normotensive Wistar-Kyoto (WKY) rats were treated with angiotensin II (Ang II). smMLCK expression was examined in the cells using western blot analysis. In vivo, a specific inhibitor of smMLCK or MAP kinase kinase (MEK) was delivered to spontaneously hypertensive rats (SHRs) using an osmotic pump, and their blood pressures were measured using tail-cuff sphygmomanometry. RESULTS: Expression of smMLCK protein is rapidly increased by Ang II, an important agonist responsible for increased vasoconstriction and vascular remodeling, in concert with increased myosin light chain phosphorylation. Inhibiting Ang II type 1 (AT1) receptor, Ras, or MEK blocked the Ang II-induced increase in smMLCK expression. In vivo, inhibiting MEK decreased smMLCK expression, blood pressure, and vascular thickening in SHRs. Moreover, inhibiting smMLCK activity decreased blood pressure and smooth muscle mass in arteries in SHRs. CONCLUSIONS: The regulation of smMLCK expression by Ang II via Ras signaling is important in the regulation of vascular remodeling and blood pressure. Targeting this pathway could be an effective strategy for developing novel therapeutics to treat hypertension.  相似文献   

13.
β-Arrestins是G蛋白耦联受体信号转导通路的负调节因子,越来越多的证据表明,β-arrestins也能作用于细胞内的多种信号分子,调节胰岛素/胰岛素样生长因子-1(IGF-1)信号转导通路.在胰岛素的刺激下,β-arrestin 2能够募集蛋白激酶B(Akt)和酪氨酸激酶Src到胰岛素受体,从而调节胰岛素介导的糖代谢效应;而β-arrestin 1则与胰岛素受体底物-1(IRS-1)竞争性结合泛素连接酶Mdm2,从而减少IRS-1的泛素化和降解,促进磷脂酰肌醇3激酶(PI3K)通路的信号转导.在IGF-1介导的信号转导通路中,β-arrestin 1结合并介导了IGF-1受体(IGF-1R)的内吞,促进胞外信号调节激酶活化,正性调节丝裂原活化蛋白激酶通路.此外,β-arrestin 1与IGF-1R相耦联后,能越过信号分子IRS-1而激活PI3K,进而活化Akt,表现出对P13K途径的正性调控作用.  相似文献   

14.
OBJECTIVE: The signaling pathways mediating proliferation and apoptosis in vascular smooth muscle cells (VSMC) are not well established. It has previously been shown that activation of the phosphoinositide 3-OH kinase (PI3K)/Akt pathway or the ERK 1/2 pathway can mediate anti-apoptotic function in different cell types. This study determined the specific contribution of the PI3K/Akt and ERK pathway in the regulation of apoptosis and proliferation of VSMC. METHODS AND RESULTS: Incubation of rat VSMC with FCS, insulin or IGF-1 time-dependently stimulated the phosphorylation of Akt, however FCS but not insulin or IGF-1 activated the MAP-kinase ERK 1/2. Moreover, insulin inhibited H(2)O(2)-induced apoptosis via the Akt pathway as demonstrated by pharmacological inhibition of the PI3K or overexpression of a dominant negative Akt mutant. In contrast, FCS inhibited H(2)O(2)-induced apoptosis via the Akt and also the ERK pathway. FCS, but not insulin or IGF-1 induced VSMC proliferation, suggesting that Akt activation is necessary but not sufficient for VSMC proliferation. FCS-induced proliferation of VSMC was only mediated via the Akt pathway and not the ERK pathway. CONCLUSIONS: These results define a link between cell proliferation and programmed cell death in VSMC via the same signal transduction pathway, namely activation of the serine/threonine kinase Akt, which may have significant implication for the development of vascular diseases or remodeling.  相似文献   

15.
Angiotensin II (Ang II) plays essential roles in vascular homeostasis, neointimal formation, and postinfarct remodeling. Although Ang II has been shown to regulate apoptosis in cardiomyocytes and vascular smooth muscle cells, its role in vascular endothelial cells (ECs) remains elusive. To address this issue, we first performed TUNEL and caspase-3 activity assays with porcine microvascular ECs challenged by serum deprivation. Ang II significantly reduced the ratio of apoptotic cells and caspase-3 activity. The Ang II type 1 receptor (AT1) was responsible for these effects. Among the signaling molecules downstream of AT1, we revealed that PI3-kinase/Akt pathway plays a predominant role in the antiapoptotic effect of Ang II. Interestingly, the expression of survivin, a central molecule of cell survival, increased after Ang II stimulation. Overexpression of a dominant-negative form of Akt abolished both Ang II-induced antiapoptosis and survivin protein expression. In a murine model of hyperoxygen-induced retinal vascular regression, AT1a knockout mice showed a significant increase in retinal avascular areas. Our data indicate that Ang II plays a critical antiapoptotic role in vascular ECs by a mechanism involving PI3-kinase/Akt activation, subsequent upregulation of survivin, and suppression of caspase-3 activity.  相似文献   

16.
BACKGROUND: The intracellular signaling pathways that control cardiomyocyte apoptosis have not been fully defined. Because insulin-like growth factor-1 (IGF-1) prevents cardiomyocyte apoptosis, we examined the role of its downstream signaling molecules in an in vitro model of hypoxia-induced cardiomyocyte apoptosis. METHODS AND RESULTS: Treatment of rat neonatal cardiomyocytes with IGF-1 increased activity of both phosphatidylinositol 3' (PI 3)-kinase and its downstream target, Akt (also known as protein kinase B or PKB). Cardiomyocytes were subjected to hypoxia for 24 hours, and apoptosis was assessed by DNA laddering, TUNEL staining, and ELISA for histone-associated DNA fragments. IGF-1 treatment (100 nmol/L) reduced cardiomyocyte apoptosis, and this effect was inhibited by simultaneous treatment with a PI 3-kinase inhibitor. Cardiomyocytes were infected with either a control adenovirus (Ad.EGFP) or adenoviruses carrying constitutively active forms of PI 3-kinase (Ad.BD110) or Akt (Ad. myr-Akt-HA). Ad.BD110 significantly inhibited apoptosis of hypoxic cardiomyocytes compared with Ad.EGFP (61.0+/-4.6% less DNA fragmentation than in Ad.EGFP-infected cells, P<0.0001). Ad. myr-Akt-HA even more dramatically inhibited apoptosis of hypoxic cardiomyocytes (90.9+/-1.4% less DNA fragmentation than in controls, P<0.0001). CONCLUSIONS: IGF-1 activates PI 3-kinase and Akt in cardiomyocytes. Activated PI 3-kinase and Akt are each sufficient to protect hypoxic cardiomyocytes against apoptosis in vitro. Adenoviral gene transfer provides a useful tool for investigating the role of these signaling pathways in cardiomyocyte apoptosis.  相似文献   

17.
In pituitary cells, prolactin (PRL) synthesis and release are controlled by multiple transduction pathways. In the GH4C1 somatolactotroph cell line, we previously reported that MAPK ERK-1/2 are a point of convergence between the pathways involved in the PRL gene regulation. In the present study, we focused on the involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the MAPK ERK-1/2 regulation and PRL secretion in pituitary cells. Either specific pharmacological PI3K and Akt inhibitors (LY294002, Akt I, and phosphoinositide analog-6) or Akt dominant-negative mutant (K179M) enhanced ERK-1/2 phosphorylation in unstimulated GH4C1 cells. Under the same conditions, PI3K and Akt inhibition also both increased Raf-1 kinase activity and the levels of GTP-bound (active form) monomeric G protein Rap1, which suggests that a down-regulation of the ERK-1/2 cascade is induced by the PI3K/Akt signaling pathway in unstimulated cells. On the contrary, ERK-1/2 phosphorylation, Raf-1 activity, and Rap1 activation were almost completely blocked in IGF-I-stimulated cells previously subjected to PI3K or Akt inhibition. Although the PRL promoter was not affected by either PI3K/Akt inhibition or activation, PRL release increased in response to the pharmacological PI3K/Akt inhibitors in unstimulated GH4C1 and rat pituitary primary cells. The IGF-I-stimulated PRL secretion was diminished, on the contrary, by the pharmacological PI3K/Akt inhibitors. Taken together, these findings indicate that the PI3K/Akt pathway exerts dual regulatory effects on both the Rap1/Raf-1/ERK-1/2 cascade and PRL release in pituitary cells, i.e. negative effects in unstimulated cells and positive ones in IGF-I-stimulated cells.  相似文献   

18.
BACKGROUND : Angiotensin II (Ang II) has been reported to inhibit insulin signaling at multiple levels in vascular smooth muscle cells (VSMC) in vitro. We have demonstrated that VSMC from spontaneously hypertensive rats (SHR) produce Ang II in a homogeneous culture. OBJECTIVE : In the current study, we investigated influences of endogenous Ang II on insulin signaling in VSMC from SHR. DESIGN AND METHODS : Phosphatidylinositol 3-kinase (PI3-kinase) activity, insulin receptor substrate-1 (IRS-1) associated tyrosine phosphorylation, and p85 subunit of PI3-kinase were measured in VSMC from SHR and normotensive Wistar-Kyoto (WKY) rats in the absence and presence of Ang II type 1 receptor antagonist RNH6270 and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor U0126. RESULTS : Insulin treatment increased PI3-kinase activity in VSMC from WKY rats in a dose-dependent manner. In contrast, insulin treatment of VSMC from SHR did not affect PI3-kinase activity. However, co-treatment of VSMC from SHR with RNH6270 and insulin, increased PI3-kinase activity. PI3-kinase activity, IRS-1-associated tyrosine phosphorylation and p85 subunit of PI3-kinase in VSMC from WKY rats decreased in response to treatment with Ang II and returned to control levels upon co-treatment with U0126. Basal levels of PI3-kinase activity, IRS-1-associated tyrosine phosphorylation, and p85 subunit of PI3-kinase were significantly lower in VSMC from SHR than in cells from WKY rats. U0126 treatment of VSMC from SHR significantly increased levels of PI3-kinase activity, IRS-1-associated tyrosine phosphorylation, and p85 subunit of PI3-kinase. CONCLUSION : These results indicate that endogenous Ang II suppresses insulin signaling in VSMC from SHR by activating extracellular signal-regulated kinase. These findings suggest that tissue Ang II may play a role in insulin resistance in hypertension.  相似文献   

19.
Insulin-like growth factor-I (IGF-I) plays an important role in regulating vascular smooth muscle cell (VSMC) proliferation, directed migration, differentiation, and apoptosis. The signaling mechanisms used by IGF-I to elicit these actions, however, are not well defined. In this study, we examined the role(s) of protein kinase C (PKC) in mediating the IGF-I actions in cultured porcine VSMCs. Out of the eleven known members of PKC family, PKC-alpha, -betaI, -epsilon, -eta, -lambda, -theta, and -zeta, were detectable by Western immunoblot analysis in these cells. Further analysis indicated that the subcellular distribution of several PKC isoforms is regulated by IGF-I. While IGF-I stimulated membrane translocation of PKC-eta, -epsilon, and -zeta and regulated the cytosolic levels of PKC-betaI, it had no such effect on PKC-alpha and -lambda. To examine whether PKC activation is required for the IGF-I-regulated biological responses, phorbol myristate acetate (PMA) and GF109203X were used to down-regulate or inhibit PKC activity. Both PMA (1 microM) and GF109203X (20 microM) nearly completely suppressed the total PKC activity after a 30-min incubation (> 90%), and this inhibition lasted for at least 24 h. Down-regulation or inhibition of PKC activity abolished the IGF-I-induced DNA synthesis, migration and IGFBP-5 gene expression. In contrast, the IGFBP-5 expression induced by forskolin was unaffected by PKC down-regulation or inhibition, suggesting that PKC activation is required for the IGF-regulated but not the cAMP-regulated events. Because the actions of IGF-I on DNA synthesis and IGFBP-5 gene expression in VSMCs have been shown to be mediated through the phosphatidylinositol 3-kinase (PI3 kinase) signaling pathway in porcine VSMCs, the potential role of PKC in IGF-I-induced activation of PI3 kinase and PKB/Akt were examined. Treatment with either PMA or GF109203X did not significantly affect the effects of IGF-I on PI3 kinase activation or PKB/Akt phosphorylation. These results indicated that PKC-betaI, -eta, -epsilon, and -zeta may play an essential role(s) in IGF-I regulation of VSMC migration, DNA synthesis and gene expression, and that these PKC isoforms may either act independently of the PI3 kinase pathway or act further downstream of PKB/Akt in the IGF signaling network.  相似文献   

20.
This study investigates the mechanisms whereby angiotensin II (Ang II) signaling contributes to cell growth and glucose metabolism in cultured vascular smooth muscle cells (VSMCs) from male Wistar fatty rats (WF) and their littermates (Wistar lean rats, WL). The levels of the medial outgrowth rate of VSMCs and Ang II type-1 receptors (AT1R) in aortae from WF were more enhanced than those in aortae from WL, but the level of Ang II type-2 receptors (AT2R) was not different. A mixture of insulin and Ang II additively increased the values of [(3)H]-thymidine incorporation in WF and WL, which was inhibited by olmesartan, an AT1 receptor blockade (ARB), but not by PD123,319, an AT2 receptor blockade. Similarly, insulin and Ang II phosphorylated extracellular-regulated protein kinase 1/2, retinoblastoma tumor suppressor protein, and cyclic AMP response element binding protein, and these levels were higher in WF than in WL. In contrast, the phosphorylation was suppressed by olmesartan but not PD123,319. Insulin-stimulated Akt phosphorylation and 2-deoxy-d-glucose uptake in WF were significantly reduced by Ang II, and the reduction was ameliorated by olmesartan but not PD123,319. Differently from the result of Akt, the phosphorylation of the insulin-stimulated insulin receptor beta-subunit was not affected by Ang II, olmesartan, or PD123,319. However, the phosphorylation of insulin-stimulated insulin-related substrate (IRS)-1 was suppressed by Ang II, and the suppression was ameliorated by olmesartan, but not PD123,319, in both WF and WL. In contrast, the phosphorylation of IRS-1 on Ser(307) was elevated by the Ang II, and the elevation was suppressed by olmesartan, but not by PD123,319, in both WF and WL. These findings demonstrated that Ang II signaling contributes to cell proliferation and inhibition of the insulin signaling pathways through AT1R, but not trough AT2R, in both non-diabetic and diabetic VSMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号