首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human neuroblastoma (NB) is a highly heterogeneous childhood cancer that is aggressively malignant or can undergo spontaneous regression that may involve apoptosis. NB-derived cell lines were tested for their sensitivity to apoptosis induced by the tumor-selective ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Noninvasive S-type cell lines (NB cell lines of substrate adherent phenotype) are highly sensitive to TRAIL, whereas invasive N-type cell lines (NB cell lines of neuronal phenotype) are resistant. Whereas both S- and N-type cell lines express TRAIL-R2, FADD, and caspase-3 and -10, only S-type cells express caspase-8. Reduced levels of caspase-8 protein were also observed in a malignant stage IV NB tumor when compared with a benign ganglioneuroma. The caspase-8 gene is not deleted in either N-type NB cell lines or high-stage NB tumors. Caspase-8 expression can be induced by demethylation with 5-aza-2'deoxycytidine, which enhances sensitivity to TRAIL. Therefore, caspase-8 expression is silenced in malignant NB, which correlates to tumor severity and resistance to TRAIL-induced apoptosis.  相似文献   

2.
There is growing body of evidence linking the cellular response to heat stress with the response of the immune system to cancer. The anti-tumor immune response can be markedly enhanced by treatment with hyperthermia particularly in the fever range. In addition, the heat shock proteins (hsp) which are produced in abundant quantities in cells exposed to heat are potent immune modulators and can lead to stimulation of both the innate and adaptive immune responses to tumors. Immunostimulation by hyperthermia involves both direct effects of heat on the behavior of immune cells as well as indirect effects mediated through hsp release. In addition, the hsp can be deployed as components of antitumor vaccines in protocols that do not include hyperthermia. Understanding these process may permit the effective deployment of hyperthermia and hsp based vaccines in tumor treatment.  相似文献   

3.
4.
PURPOSE: This study investigated whether hyperthermia can enhance TRAIL-induced apoptotic death. METHODS: Human prostate adenocarcinoma DU-145, human pancreatic carcinoma MIA PaCa-2 and BxPC-3, human colon fibroblast CCD-33Co and rat prostate endothelial YPEN-1 cells were treated with various concentrations of TRAIL (0-200 ngml(-1)) with hyperthermia (40-42 degrees C). RESULTS: It was observed in human cancer cells, but not in normal cells, that TRAIL induced apoptotic death and also that hyperthermia (40-42 degrees C) promoted TRAIL-induced apoptotic death. Enhancement of TRAIL-mediated apoptosis by hyperthermia was detected by an increase in PARP cleavage, the hallmark feature of apoptosis, as well as by activation of caspases. There were no significant changes in the intra-cellular levels of death receptors (DRs), decoy receptors (DcRs) and anti-apoptotic proteins. Interestingly, data from in vitro enzyme kinetics assay demonstrated that hyperthermia promoted caspase enzyme activity. CONCLUSIONS: These data suggest that cancer cells are more susceptible to TRAIL in the condition of hyperthermia (40-42 degrees C). The promotion of caspase enzyme activity by hyperthermia may be responsible for enhancement of TRAIL-induced apoptotic death.  相似文献   

5.
Squamous cell carcinoma (SCC) cell lines (MIT7-x(L), MIT8, and MIT16) that overexpress Bcl-x(L) have been demonstrated to show resistance to multiple chemotherapeutic drugs. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which belongs to the TNF family of proteins, induces apoptosis in tumor, but not in normal, cells. In the present study, we examined whether etoposide sensitizes tumor cells with multiple-drug-resistance to TRAIL-induced apoptosis. Sequential treatment with etoposide and TRAIL resulted in a synergistically induced cell death in the two resistant lines (MIT7-x(L) and MIT16) but not MIT8, as assessed by WST-8 assay. As expected, MIT7 cells (a drug-sensitive line) were sensitive to the combined treatment. The cell death caused by both etoposide and TRAIL appears to involve apoptosis, since the combined treatment caused a loss in mitochondrial membrane potential (DeltaPsim), which is closely associated with apoptosis induction. The density of the TRAIL-receptors (TRAIL-Rs) was not appreciably modulated by the etoposide treatment, suggesting that etoposide targets molecule(s) downstream of the TRAIL-Rs. Regardless of the molecular mechanisms underlying the cell death, sequential treatment with etoposide and TRAIL could be useful in the design of treatment modalities for patients with SCC, especially those with elevated levels of Bcl-x(L).  相似文献   

6.
IFN-alpha regulates tumor cell growth at least through induction of apoptosis. We have recently demonstrated that IFN-alpha causes apoptosis through upregulation of TNF-related apoptosis-inducing ligand (TRAIL) in Daudi B lymphoma and U266 myeloma cells. However, other cell lines such as Ramos and RPMI 8226 underwent apoptosis without any apparent involvement of TRAIL following IFN-alpha stimulation. In this study, we examined whether the IFN-alpha-induced upregulation of TRAIL is essential for the induction of apoptosis. IFN-alpha-induced early phase (48 h) of loss of DeltaPsim was substantially prevented in Daudi B lymphoma cells overexpressing the dominant-negative form of Fas-associated death domain (dnFADD) compared with vector control, whereas a late phase (72 h) of DeltaPsim was comparable to the control. The IFN-alpha-induced early phase of apoptosis was also reduced in the dnFADD-expressing cells, while the late phase of apoptosis was unaffected. IFN-alpha-induced upregulation of TRAIL protein in the dnFADD-expressing Daudi or U266 cells was comparable to their control cells, suggesting that FADD is not involved in the IFN-alpha-induced upregulation of TRAIL. Moreover, the early phase of mitochondrial depolarization was severely prevented by the presence of fusion protein of TRAIL receptor 1 and Fc portion of immunoglobulin (TRAIL-R1:Fc) and TRAIL-R2:Fc. Together, IFN-alpha induces apoptosis in a TRAIL-dependent or -independent manner, depending on the course of the apoptotic process.  相似文献   

7.
Nesterov A  Ivashchenko Y  Kraft AS 《Oncogene》2002,21(7):1135-1140
TRAIL is a pro-apoptotic cytokine believed to selectively kill cancer cells without harming normal ones. However, we found that in normal human prostate epithelial cells (PrEC) TRAIL is capable of inducing apoptosis as efficiently as in some tumor cell lines. At the same time, TRAIL did not cause apoptosis in several other human primary cell lines: aorta smooth muscle cells, foreskin fibroblasts, and umbilical vein endothelial cells. Compared to these primary cells, PrEC were found to contain significantly fewer TRAIL receptors DcR1 and DcR2 which are not capable of conducting the apoptotic signal. This result suggests that the unusual sensitivity of PrEC to TRAIL may result from their deficiency in anti-apoptotic decoy receptors. The protein synthesis inhibitor cycloheximide significantly enhanced TRAIL toxicity toward PrEC as measured by tetrazolium conversion but had little or no effect on other TRAIL-induced apoptotic responses. Although cycloheximide did not further accelerate the processing of caspases 3 and 8, it significantly enhanced cleavage of the caspase 3 substrate gelsolin, indicating that in PrEC a protein(s) with a short half-life may inhibit the activity of the executioner caspases toward specific substrates. As the majority of prostate cancers are derived from epithelial cells, our data suggest the possibility that TRAIL could be a useful treatment for the early stages of prostate cancer.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a new cytokine that was proposed to specifically induce apoptosis of cancer cells. In tumor cells that are resistant to the cytokine, subtoxic concentrations of chemotherapeutic drugs can restore the response to TRAIL. The present study further explores the mechanisms that determine tumor cell sensitivity to TRAIL by comparing four human colon carcinoma cell lines We show that colon cancer cell sensitivity to TRAIL-induced apoptosis and cytotoxicity correlates with the expression of the death receptors TRAIL-R1 and TRAIL-R2 at the cell surface, as determined by now cytometry, whereas the two decoy receptors TRAIL-R3 and TRAIL-R4 can be detected only in permeabilized cells. Clinically relevant concentrations of cisplatin and doxorubicin sensitize the most resistant colon cancer cell lines to TRAIL-induced cell death without modifying the expression nor the localization of TRAIL receptors in these cells. TRAIL induces the activation of procaspase-8 and triggers caspase-dependent apoptosis off colon cancer cells. Cytotoxic drugs lower the signaling threshold required for TRAIL-induced procaspase-8 activation. In turn, caspase-8 cleaves Bid, a BH3 domain-containing proapoptotic molecule of the Bcl-2 family and activates effector caspases. Together, these data indicate that chemotherapeutic drugs sensitize colon tumor cells to TRAIL-mediated caspase-8 activation and apoptosis.  相似文献   

9.
10.
Resistance to apoptosis has been implicated in the poor response of cancer cells to various anti-tumor agents. Caspase-8 is a family member of executioner caspases associated with tumor necrosis factor (TNF) family death receptors-mediated apoptotic signaling cascade. In this study, to specify caspase-8-mediated apoptotic activity, we examined the anti-tumor effect of adenoviral vector expressing caspase-8 (Adv-caspase-8) in combination with TNF-related apoptosis-inducing ligand (TRAIL) which induces specifically caspase-8 activation. First, we demonstrated that expression procaspase-8 is related to apoptosis sensitivity to TRAIL in pancreatic and colonic cancer cells. In human pancreatic cancer cell line Panc1 which demonstrates low expression of procaspase-8, Adv-caspase-8 transfection strongly augmented TRAIL-induced apoptosis. Adv-caspase-8 similarly enhanced the susceptibility of human colonic cancer cell line Colo320DM to TRAIL. These results suggest that Adv-caspase-8 may be a good combination partner of TRAIL and enables TRAIL to be a more potent anticancer agent in a wide range of adenocarcinoma cells which demonstrate low expression of caspase-8.  相似文献   

11.
Yang X  Thiele CJ 《Cancer letters》2003,197(1-2):137-143
The identification of the tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) a few years ago generated considerable enthusiasm for it as a potential cancer therapeutic agent. This is because TRAIL shows potent apoptosis inducing activity in a wide spectrum of transformed cell lines but not in cell lines derived from normal tissue origin. As the details in the signal transduction pathway of TRAIL-induced apoptosis are clarified, various defects of TRAIL pathway have been identified in TRAIL resistant cancer cells. Neuroblastoma is the most common extracranial solid tumor in children and those with a poor prognosis require more sensitive therapies. Unlike other cancer cells, most neuroblastoma cell lines are resistant to TRAIL induced apoptosis and the resistance correlates with caspase 8 deficiency, which is attributed to the methylation of the gene. Interferon (IFN)-gamma induces caspase 8 expression in most neuroblastoma cell lines regardless of the methylation status but fails to sensitize most NB to TRAIL. Further analysis indicates a TRAIL receptor deficiency contributes to TRAIL resistance in NB. Multiple lesions suggest that this path may play an important role in tumorigenesis and/ or evasion from therapies. Furthermore it indicates that the clinical application of TRAIL in NB will require a multi-modality approach. Important questions remain unanswered: How does IFN-gamma induce caspase 8 and why is the induction heterogeneous? How to stimulate the caspase 8 induction in cells that fail to respond to IFN-gamma? How to target other TRAIL pathway lesions with the clinically feasible approaches?  相似文献   

12.
Jung EM  Park JW  Choi KS  Park JW  Lee HI  Lee KS  Kwon TK 《Carcinogenesis》2006,27(10):2008-2017
Death receptor DR5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we showed that curcumin, a plant product containing the phenolic phytochemical, is a potent enhancer of TRAIL-induced apoptosis through upregulation of DR5 expression. Both treatment with DR5/Fc chimeric protein and silencing of DR5 expression using small interfering RNA (siRNA) attenuated curcumin plus TRAIL-induced apoptosis, showing that the critical role of DR5 in this cell death. Curcumin also induced the expression of a potential pro-apoptotic gene, C/EBP homologous protein (CHOP), both at its mRNA and protein levels. However, suppression of CHOP expression by small interfering RNA did not abrogate the curcumin-mediated induction of DR5 and the cell death induced by curcumin plus TRAIL, demonstrating that CHOP is not involved in curcumin-induced DR5 upregulation. Taken together, the present study demonstrates that curcumin enhances TRAIL-induced apoptosis by CHOP-independent upregulation of DR5.  相似文献   

13.
Osteoprotegerin (OPG) is a useful receptor in inhibiting Receptor Activator of NFkappaB Ligand (RANKL) in inducing osteoclastogenesis. Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) is a potent apoptosis-inducing ligand in ameloblastomas. Since OPG has been reported to bind to TRAIL as well, the effect of OPG in TRAIL's function in inducing apoptosis should also be investigated. To investigate on the expression of OPG in ameloblastomas, immuhistochemistry, immunofluorescence and Western blot were performed. From the immunohistochemistry results, we found that OPG was expressed in ameloblastoma tissues. Expression of OPG was clearly seen in AM-1 cells by immunofluorescence as well. Additionally, Western blot analysis confirmed OPG expression in ameloblastoma tissues and AM-1 cells. To investigate on the potential of TNFalpha, TRAIL and RANKL in inducing apoptosis, we performed an apoptosis assay. From the apoptosis assay, we found that TRAIL had the highest potential in inducing apoptosis compared to TNFalpha and RANKL. To investigate the binding of OPG with RANKL and TRAIL, we performed a binding assay. We noticed that OPG preferably bind with RANKL than TRAIL. However, at low levels of RANKL, marked binding of OPG with TRAIL was seen. As we suspected that the binding of OPG and TRAIL might cause the effect of TRAIL in inducing apoptosis in ameloblastomas, we combined the treatment of OPG and TRAIL in AM-1 cells. From the apoptosis assay, we found that under treatment of OPG, TRAIL's function in inducing apoptosis was suppressed. These data suggest that by binding with TRAIL, OPG suppressed TRAIL's function in inducing apoptosis in ameloblastomas.  相似文献   

14.
15.
Glioblastoma is the most malignant form of primary brain tumor in adults, with no effective therapy and a low survival rate. TRAIL is a member of the TNF family, which selectively induces apoptosis in certain neoplastic cells, but not normal cells. In this study, we investigated the sensitivity of 7 human glioblastoma cell lines to TRAIL and the expression in them of TRAIL receptors. TRAIL exhibited significant cytotoxicity in 5 of 7 glioma cell lines. These glioblastoma cell lines expressed TRAIL-R2, but not TRAIL-R1, R3, or R4. However, no correlation was observed between the TRAIL sensitivity and the TRAIL-R2 expression level, suggesting that there is an additional determinant of TRAIL sensitivity. Treatments with NF-kappaB inhibitors, such as LLnL, MG132, and SN50, significantly increased the sensitivity of glioma cells to TRAIL. These results suggested that activation of NF-kappaB is a protective mechanism against TRAIL-induced cell death in some glioma cells, and thus NF-kappaB inhibitors may be useful to improve the clinical treatment of glioblastoma with TRAIL.  相似文献   

16.
17.
Jung EM  Lim JH  Lee TJ  Park JW  Choi KS  Kwon TK 《Carcinogenesis》2005,26(11):1905-1913
Curcumin exhibits anti-inflammatory and antitumor activities.Although its functional mechanism has not been elucidated sofar, numerous studies have shown that curcumin induces apoptosisin cancer cells. In the present study, we show that subtoxicconcentrations of curcumin sensitize human renal cancer cellsto the tumor necrosis factor-related apoptosis inducing ligand(TRAIL)-mediated apoptosis. This apoptosis induced by the combinationof curcumin and TRAIL is not interrupted by Bcl-2 overexpression.We found that treatment with curcumin significantly inducesdeath receptor 5 (DR5) expression both at its mRNA and proteinlevels, accompanying the generation of the reactive oxygen species(ROS). Not only the pretreatment with N-acetylcystine but alsothe ectopic expression of peroxiredoxin II, an antioxidativeprotein, dramatically inhibited the apoptosis induced by curcuminand TRAIL in combination, blocking the curcumin-mediated DR5upregulation. Taken together, the present study demonstratesthat curcumin enhances TRAIL-induced apoptosis by ROS-mediatedDR5 upregulation.  相似文献   

18.
Although the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to play an important role in the immunosurveillance of neoplasia, apoptotic factors that modulate the sensitivity of cancer cells to TRAIL are poorly understood. The inhibitor of apoptosis proteins (IAPs) have generated considerable interest as potential targets for cancer therapy, but the lack of a phenotype in X-linked IAP (XIAP) knockout mice has generated speculation that IAP function may be redundant. Using gene targeting technology, we show that disruption of the gene encoding XIAP in human cancer cells did not interfere with basal proliferation, but caused a remarkable sensitivity to TRAIL. These results demonstrate that XIAP is a nonredundant modulator of TRAIL-mediated apoptosis and provide a rationale for XIAP as a therapeutic target.  相似文献   

19.
Patients with malignant gliomas have a very poor prognosis. To explore a novel and more effective approach for the treatment of malignant gliomas, a strategy that combined tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy and radiation treatment (RT) was designed in this study. Plasmid pE4-GFP was constructed by including the radioinducible early growth response gene 1 (Egr-1) promoter, and it yielded the best response with fractionated RT. Plasmid pE4-TRAIL was constructed by including the Egr-1 promoter and evaluated using U251 and U87 glioma cells. In the assay of apoptosis and killing activities, pE4-TRAIL exhibited radioresponse. pE4-TRAIL combined with RT is capable of inducing cell death synergistically. The expression of TRAIL death receptors was evaluated; which may be influenced by RT. Glioma cells with wild-type p53 showed upregulated expression of death receptors, and more synergistic effects on killing activities are expected. pE4-TRAIL was transfected into the subcutaneous U251 glioma cells in nude mice by the in vivo electroporation method. In the mice treated with pE4-TRAIL and RT, apoptotic cells were detected in pathological sections, and a significant difference of tumor volumes was observed when compared with the other groups (P<0.001). Our results indicate that radioresponsive gene therapy may have great potential as a novel therapy because this therapeutic system can be spatially or temporally controlled by exogenous RT and provides specificity and safety.  相似文献   

20.
Lee MW  Park SC  Kim JH  Kim IK  Han KS  Kim KY  Lee WB  Jung YK  Kim SS 《Cancer letters》2002,180(1):75-82
To identify specific allelic losses that might correlate with postoperative mortality of breast cancer patients treated with high-dose adjuvant chemotherapy consisting of cyclophosphamide, methotrexate and fluorouracil, we examined tumors from a cohort of 150 such patients, who were followed clinically for 5 years postoperatively, for allelic losses (loss of heterozygosity, LOH) among 18 microsatellite markers throughout the genome. Patients whose tumors had lost an allele at 8p22 had significantly higher risks of mortality than those whose tumors retained both alleles at those loci. At 8p22, the 5-year mortality rate was 31% among patients with losses vs. 8% with retention (P=0.0354). No other region showed correlation between LOH and prognosis. The data indicate that LOH at 8p22 is a significant predictor of postoperative mortality for breast cancer patients who received high-dose postoperative adjuvant chemotherapy. Thus, LOH at 8p22 can serve as a negative prognostic indicator to guide postoperative management of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号