首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Previous studies from this laboratory suggested that a solution model (Flory-Huggins equation) modified by a free volume model (Vrentas equation) could satisfactorily describe water absorption into an amorphous solid composed of a sugar or a polymer. This paper has extended the studies of single solutes to binary mixtures of trehalose-and sucrose-poly(vinyl pyrrolidone) (trehalose-PVP and sucrose-PVP, respectively) either co-lyophilized or individually lyophilized and then physically mixed. Water vapor absorption isotherms of the binary mixtures were determined at 30 degrees C. Co-lyophilized PVP-sugar mixtures take up essentially the same amount of water as predicted by the weight average of individual isotherms, whereas sugar crystallization is significant retarded in the molecular dispersions. The sugar-PVP interaction, as reflected in the Flory-Huggins chi interaction parameter, was estimated by fitting the high relative pressure (p/p(0)) region of the isotherm, at which the system is in a liquid state, with a three-component Flory-Huggins-type model. The estimated sugar-water PVP-water, and sugar-PVP interaction parameters suggest that the solute-water interactions are not significantly affected by the sugar-PVP interaction; that is, the solute-water interaction parameters in a binary solute system are similar to those in the corresponding single solute systems. Based on these interaction parameters, the sucrose-PVP interaction appears to be stronger than that of trehalose-PVP. Manipulation of the interaction parameters suggest that the water vapor absorption isotherm is not a sensitive indicator of possible sugar-PVP interactions. Density, glass transition temperature, T(g), and the heat capacity change, DeltaC(p), at T(g) were determined to estimate the excess water absorption energy due to the plasticizing effect of water using the structural relaxation model, as described by Vrentas. Results suggest that PVP is a better antiplasticizer for sucrose than for trehalose. Consequently, the excess free energy arising from structural relaxation was disproportionally reduced by the presence of PVP in these molecular dispersions. Finally, the entire isotherms of co-lyophilized sugar-PVP mixtures are reasonably described with an extended three-component Flory-Huggins model and Vrentas glass structural relaxation model.  相似文献   

2.
Purpose. To measure the water vapor absorption behavior of sucrose-poly(vinyl pyrrolidone) (PVP) and sucrose-poly(vinyl pyrrolidone co-vinyl acetate) (PVP/VA) mixtures, prepared as amorphous solid solutions and as physical mixtures, and the effect of absorbed water on the amorphous properties, i.e., crystallization and glass transition temperature, Tg, of these systems. Methods. Mixtures of sucrose and polymer were prepared by co-lyophilization of aqueous sucrose-polymer solutions and by physically mixing amorphous sucrose and polymer. Absorption isotherms for the individual components and their mixtures were determined gravimetrically at 30°C as a function of relative humidity. Following the absorption experiments, mixtures were analyzed for evidence of crystallization using X-ray powder diffraction. For co-lyophilized mixtures showing no evidence of crystalline sucrose, Tg was determined as a function of water content using differential scanning calorimetry. Results. The absorption of water vapor was the same for co-lyophilized and physically mixed samples under the same conditions and equal to the weighted sums of the individual isotherms where no sucrose crystallization was observed. The crystallization of sucrose in the mixtures was reduced relative to sucrose alone only when sucrose was molecularly dispersed (co-lyophilized) with the polymers. In particular, when co-lyophilized with sucrose at a concentration of 50%, PVP was able to maintain sucrose in the amorphous state for up to three months, even when the Tg was reduced well below the storage temperature by the absorbed water. Conclusions. The water vapor absorption isotherms for co-lyophilized and physically mixed amorphous sucrose-PVP and sucrose-PVP/VA mixtures at 30°C are similar despite interactions between sugar and polymer which are formed when the components are molecularly dispersed with one another. In the presence of absorbed water the crystallization of sucrose was reduced only by the formation of a solid-solution, with PVP having a much more pronounced effect than PVP/VA. The effectiveness of PVP in preventing sucrose crystallization when significant levels of absorbed water are present was attributed to the molecular interactions between sucrose, PVP and water.  相似文献   

3.
Amorphous drug dispersions are frequently employed to enhance solubility and dissolution of poorly water-soluble drugs and thereby increase their oral bioavailability. Because these systems are metastable, phase separation of the amorphous components and subsequent drug crystallization may occur during storage. Computational methods to determine the likelihood of these events would be very valuable, if their reliability could be validated. This study investigates amorphous systems of indomethacin (IMC) in poly(vinylpyrrolidone) (PVP) and their molecular interactions by means of molecular dynamics (MD) simulations. IMC and PVP molecules were constructed using X-ray diffraction data, and force-field parameters were assigned by analogy with similar groups in Amber-ff03. Five assemblies varying in PVP and IMC composition were equilibrated in their molten states then cooled at a rate of 0.03 K/ps to generate amorphous glasses. Prolonged aging dynamic runs (100 ns) at 298 K and 1 bar were then carried out, from which solubility parameters, the Flory-Huggins interaction parameter, and associated hydrogen bonding properties were obtained. Calculated glass transition temperature (Tg) values were higher than experimental results because of the faster cooling rates in MD simulations. Molecular mobility as characterized by atomic fluctuations was substantially reduced below the Tg with IMC–PVP systems exhibiting lower mobilities than that found in amorphous IMC, consistent with the antiplasticizing effect of PVP. The number of IMC–IMC hydrogen bonds (HBs) formed per IMC molecule was substantially lower in IMC–PVP mixtures, particularly the fractions of IMC molecules involved in two or three HBs with other IMC molecules that may be potential precursors for crystal growth. The loss of HBs between IMC molecules in the presence of PVP was largely compensated for by the formation of IMC–PVP HBs. The difference (6.5 MPa1/2) between the solubility parameters in amorphous IMC (25.5 MPa1/2) and PVP (19.0 MPa1/2) suggests a small, positive free energy of mixing, although it is close to the criterion for miscibility (< 7 MPa1/2). In contrast to the solubility-parameter method, the calculated Flory-Huggins interaction parameter (? 0.61 ± 0.25), which takes into account the IMC–PVP interaction energy, predicts complete miscibility at all PVP compositions, in agreement with experimental observations. These results from MD simulations were combined with experimental values for the crystalline γ-polymorph of IMC and amorphous IMC to estimate the solubility of IMC in amorphous PVP dispersions and the theoretical enhancement in the aqueous solubility of IMC molecularly dispersed in PVP at various volume fractions. © 2012Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:876–891, 2013  相似文献   

4.
To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.  相似文献   

5.
The objective of this study was to investigate the effect of different polymeric carriers in solid dispersions with an active pharmaceutical ingredient (API) on their water vapour sorption equilibria and the influence of the API–polymer interactions on the dissolution rate of the API. X-ray diffraction, scanning electron microscopy (SEM), moisture sorption analysis, infrared (IR) spectroscopy and dissolution tests were performed on various API–polymer systems (Valsartan as API with Soluplus, PVP and Eudragit polymers) after production of amorphous solid dispersions by spray drying. The interactions between the API and polymer molecules caused the water sorption isotherms of solid dispersions to deviate from those of ideal mixtures. The moisture sorption isotherms were lower in comparison with the isotherms of physical mixtures in all combinations with Soluplus and PVP. In contrast, the moisture sorption isotherms of solid dispersions containing Eudragit were significantly higher than the corresponding physical mixtures. The nature of the API–polymer interaction was explained by shifts in the characteristic bands of the IR spectra of the solid dispersions compared to the pure components. A correlation between the dissolution rate and the water sorption properties of the API–polymer systems has been established.  相似文献   

6.
The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC–PVP and IMC–PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.  相似文献   

7.
The purpose of this study was to understand the combined effect of two polymers showing drug–polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%–40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug–polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3511–3523, 2014  相似文献   

8.
Purpose. To investigate the effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) (PVP) on indomethacin (IMC) crystallization from the amorphous state using particle size effects to identify possible mechanisms of crystallization inhibition. Methods. Different particle sizes of amorphous IMC and 1, 2, and 5% PVP were stored dry at 30°C for 84 days. PXRD was used to calculate the rate and extent of crystallization and the polymorph formed. Results. Crystallization from amorphous IMC and IMC/PVP molecular dispersions yielded the polymorph of IMC. Crystallization rates were reduced at larger particle size and in the presence of 1, 2, and 5%PVP. Crystallization did not reach completion in some IMC/PVP samples, with the quantity of uncrystallized amorphous phase proportional to particle size. Conclusions. Low concentrations of molecularly dispersed PVP affected IMC crystallization from the amorphous state. Formation of -IMC at rates dependent on particle size indicated that surface nucleation predominated in both the absence and presence of PVP. Excellent correlation was seen between the extent of crystallization and simulated depths of crystal penetration, supporting the hypothesis that increasing local PVP concentration inhibits crystal growth from surface nuclei into the amorphous particle.  相似文献   

9.
Properties of solid dispersions of piroxicam in polyvinylpyrrolidone.   总被引:5,自引:0,他引:5  
Solid dispersions of piroxicam were prepared with polyvinylpyrrolidone (PVP) K-17 PF and PVP K-90 by solvent method. The physical state and drug:PVP interaction of solid dispersions and physical mixtures were characterized by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR analysis demonstrated the presence of intermolecular hydrogen bonding between piroxicam and PVP in solid dispersions. These interactions reflected the changes in crystalline structures of piroxicam. The amorphousness within the PVP moeity might be predicted in piroxicam dispersions by the disappearance of N-H or O-H peak of piroxicam. Dissolution studies indicated a significant increase in dissolution of piroxicam when dispersed in PVP. The better results were obtained with the lower molecular weight PVP K-17 than with higher molecular weight PVP K-90. The non-amorphous solid dispersions in PVP K-17 showed almost equally fast dissolution rates to amorphous dispersions in PVP K-90. The mechanism of dissolution of solid dispersion in PVP K-90 is predominantly diffusion-controlled due to the very high viscosity of PVP K-90. Dissolution was maximum with the amorphous solid dispersions containing drug:PVP K-17 1:5 and 1:6 which showed a 40-fold increase in dissolution in 5 min as compared with pure drug. Copyright  相似文献   

10.
Amorphous nifedipine-PVP and phenobarbital-PVP solid dispersions with various drug contents were prepared by melting and subsequent rapid cooling of mixtures of PVP and nifedipine, or phenobarbital. Chemical shifts and spin-lattice relaxation times (T(1)) of PVP, nifedipine, and phenobarbital carbons were determined by (13)C-CP/MAS NMR to elucidate drug-PVP interactions and the localized molecular mobility of drug and PVP in the solid dispersions. The chemical shift of the PVP carbonyl carbon increased as the drug content increased, appearing to reach a plateau at a molar ratio of drug to PVP monomer unit of approximately 1:1, suggesting hydrogen bond interactions between the PVP carbonyl group and the drugs. T(1) of the PVP carbonyl carbon in the solid dispersions increased as the drug content increased, indicating that the mobility of the PVP carbonyl carbon was decreased by hydrogen bond interactions. T(1) of the drug carbons increased as the PVP content increased, and this increase in T(1) became less obvious when the molar ratio of PVP monomer unit to drug exceeded approximately 1:1. These results suggest that the localized motion of the PVP pyrrolidone ring and the drug molecules is reduced by hydrogen bond interactions. Decreases in localized mobility appear to be one of the factors that stabilize the amorphous state of drugs.  相似文献   

11.
Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance.  相似文献   

12.
PURPOSE: The purpose of the current study is to evaluate the solubility advantage offered by celecoxib (CEL) amorphous systems and to characterize and correlate the physical and thermodynamic properties of CEL and its amorphous molecular dispersions containing poly(vinylpyrrolidone) (PVP). METHODS: The measurement of crystalline content, glass transition temperatures, and enthalpy relaxation was performed using differential scanning calorimetry. Solubility and dissolutions studies were conducted at 37 degrees C to elucidate release mechanisms. Further, the amorphous systems were characterized by polarized light microscopy and X-ray powder diffraction studies. RESULTS: The PVP content has a prominent effect on the stability and solubility profiles of amorphous systems. A dispersion of 20% w/w PVP with CEL resulted in a maxima in terms of solubility enhancement and lowering of relaxation enthalpy. The release of drug from amorphous molecular dispersions was found to be drug-dependent and independent of the carrier. CONCLUSIONS: The solubility enhancement and enthalpy relaxation studies with respect to PVP concentration helped in a better prediction of role of carrier and optimization of concentration in the use of solid dispersions or amorphous systems. The drug release mechanism is drug-controlled rather than carrier-controlled.  相似文献   

13.
Indomethacin (IMC) and three types of poly-(vinylpyrrolidone) (PVP 12PF, PVP K30 and PVP K90) were studied in the form of solid dispersion, prepared with the solvent evaporation method, by spectroscopic (Raman, FT-IR, X-ray diffraction), thermal (differential scanning calorimetry, thermogravimetry, hot-stage microscopy), fractal and image analysis. Raman and FT-IR micro-spectroscopy indicated the occurrence of drug/polymer interaction and the presence of an amorphous form of IMC, as also resulting from X-ray diffractometry. Hot-stage microscopy suggested that the interaction between IMC and the polymer occurring on heating of a physical mixture, is common to other acidic compounds and causes a depression of the temperature of the appearance of a molten phase. Co-evaporated particles were coated by spray-congealing process with molten stearic acid for gastroprotection, but also for stabilization of the amorphous structure of the drug: the final particles were spherically shaped. Dissolution tests carried out on the final microparticles showed that the coating with stearic acid prevents IMC release at acidic pH and also protects against recovery of the IMC crystallinity, at least after 9 months of aging: the extent and mode of the release, before and after aging, overlap perfectly. The test revealed a notable improvement of the drug release rate from the solid dispersion at suitable pH, with respect to pure IMC. The comparison of the present solid dispersion with IMC/PVP (surface) solid dispersion obtained by freeze-drying of an aqueous suspension, where IMC maintained its crystalline state, revealed that there was no difference concerning the release rate, but suggested a superior quality of this last process as a mean of improving IMC availability for the easiness of preparation and stability, due to the absence of the amorphous state of the drug, as a possible instability source of the system. Finally, the coating with stearic acid is discussed as a determining process for the practical application of solid dispersions.  相似文献   

14.
Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions as a function of composition and temperature were obtained from the Flory-Huggins theory and the Gordon-Taylor equation and were found to be comparable for the two APIs. Intrinsic dissolution studies in aqueous media revealed that dissolution rates increased in the following order: physical mix of unprocessed materials < physical mix of processed material < coprocessed materials. This last result showed that production of amorphous dispersions by co-milling can significantly enhance the dissolution of poorly soluble drugs to a similar magnitude as co-spray dried systems.  相似文献   

15.
Solid dispersions were prepared with the extremely poorly water soluble drug, probucol and the water soluble polymers, polyvinyl pyrrolidone (PVP), polyacrylic acid (PAA) or polyethylene oxide (PEO) and blends of these polymers. The solid dispersions were prepared either by the solvent evaporation method, or by compression moulding into films. The materials were characterised by a combination of thermal analysis and FT-Raman spectroscopy. The physical state of the drug was observed to be dependent on the carrier, thus the PVP solid dispersions contained amorphous probucol, whilst the PAA and PEO systems contained the crystalline polymorph II. The method of production was not found to greatly influence the state of the drug in the solid dispersion. The greatest extent of release into solution was observed for the binary blend of drug and PEO, and the blending of polymers was not found to have any advantageous effects in this study.  相似文献   

16.

Purpose

To correlate the polymer’s degree of precipitation inhibition of indomethacin in solution to the amorphous stabilization in solid state.

Methods

Precipitation of indomethacin (IMC) in presence of polymers was continuously monitored by a UV spectrophotometer. Precipitates were characterized by PXRD, IR and SEM. Solid dispersions with different polymer to drug ratios were prepared using solvent evaporation. Crystallization of the solid dispersion was monitored using PXRD. Modulated differential scanning calorimetry (MDSC), IR, Raman and solid state NMR were used to explore the possible interactions between IMC and polymers.

Results

PVP K90, HPMC and Eudragit E100 showed precipitation inhibitory effects in solution whereas Eudragit L100, Eudragit S100 and PEG 8000 showed no effect on IMC precipitation. The rank order of precipitation inhibitory effect on IMC was found to be PVP K90?>?Eudragit E100?>?HPMC. In the solid state, polymers showing precipitation inhibitory effect also exhibited amorphous stabilization of IMC with the same rank order of effectiveness. IR, Raman and solid state NMR studies showed that rank order of crystallization inhibition correlates with strength of molecular interaction between IMC and polymers.

Conclusions

Correlation is observed in the polymers ability to inhibit precipitation in solution and amorphous stabilization in the solid state for IMC and can be explained by the strength of drug polymer interactions.  相似文献   

17.
In the present study the release mechanism of the sparingly water-soluble drug felodipine (FELO) from particulate solid dispersions in PVP or PEG was investigated. FT-IR data indicated that a N-H...O hydrogen bond is formed between FELO and polymers. The drug-polymer interaction was theoretically studied with the density functional theory with the B3LYP exchange correlation function. The interaction energies have been estimated at -31.8 kJ/mol for PVP and -18.8 kJ/mol for PEG. Also, detailed vibrational analysis of the complexes showed that the red shift of the N-H bond stretching in FELO molecule due to H-bonding was higher in the FELO-PVP complex than in the FELO-PEG complex. Both the experimental and theoretical data indicated that a stronger interaction of FELO with PVP than with PEG was developed. The interactions of FELO with the polymer appeared to control the physical state (amorphous or crystalline) and the particle size of FELO in the solid dispersions. In the FELO/PVP dispersions, the drug is found as amorphous nanoparticles whereas in FELO/PEG dispersions the drug is dispersed as crystalline microparticles. The size of drug particles in the dispersion was also influenced by drug proportion, with an increase in drug content of the dispersion resulting in increased drug particle size. The particle size of drug, the proportion of drug in the dispersion and the properties of the polymer (molecular weight) appeared to determine the mechanism of drug release from the solid dispersions, which was drug diffusion (through the polymer layer)-controlled at low drug contents and drug dissolution-controlled at high drug contents. In situ DLS measurements indicate that the large initial particles of FELO/PVP and FELO/PEG solid dispersions with low drug content (10-20 wt%) are very rapidly decreased to smaller particles (including nanoparticles) during dissolution, leading to the observed impressive enhancement of FELO release rate from these dispersions.  相似文献   

18.
PURPOSE: To determine the influence of hydrogen bonding and solubility parameter on the glass transition temperature (T(g)) of various drug-poly(vinylpyrrolidone) blends. METHODS: The T(g) of PVP films containing either acetaminophen, naproxen, salicylamide, carbamazepine, griseofulvin or propranolol hydrochloride were measured using differential scanning calorimetry. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction was used to characterize the specific interactions between the drug-PVP blends and the physical state of the films, respectively. The total solubility parameter and its individual components were calculated using the method of Van Krevelen. RESULTS: Salicylamide displayed the greatest plasticizing effect, depressing the T(g) to the minimum. This was consistent with the FTIR data, which indicated the presence of hydrogen bonding with PVP. Griseofulvin showed the least plasticizing effect due to lack of interaction with PVP. All the drugs except griseofulvin were amorphous within the film up to 30% (w/w) drug composition. The correlation between the various components of the solubility parameters and the plasticizing effect of drugs was very poor. CONCLUSIONS: Spectroscopic investigation for the presence of interaction between the drugs and PVP proved to be extremely predictive of the plasticizing effect of various drugs. In contrast, solubility parameters appeared to be far less sensitive indicators of drug-PVP miscibility.  相似文献   

19.
This study compares the physicochemical properties of carbamazepine (CBZ) solid dispersions prepared by either a conventional solvent evaporation versus a supercritical fluid process. Solid dispersions of carbamazepine in polyvinylpyrrolidone (PVP) K30 with either Gelucire 44/14 or Vitamin E TPGS, NF (d-alpha-tocopheryl polyethylene glycol 1000 succinate) were prepared and characterized by intrinsic dissolution, differential scanning calorimetry, powder X-ray diffraction and Fourier transform infrared spectroscopy. CBZ/PVP K30 and CBZ/PVP K30/TPGS solid dispersions showed increased dissolution rate. The best intrinsic dissolution rate (IDR) was obtained for supercritically processed CBZ/PVP K30 that was four-fold higher than pure CBZ. Thermograms of various solid dispersions did not show the melting peak of CBZ, indicating that CBZ was in amorphous form inside the carrier system. This was further confirmed by X-ray diffraction studies. Infrared spectroscopic studies showed interaction between CBZ and PVP K30 in solid dispersions. The amorphous state of CBZ coupled with presence of interaction between drug and PVP K30 suggests fewer, if any, stability problems. Because the supercritical-based process produced solid dispersions with IDR better than conventional solid dispersions augmented with amphiphilic carriers, stability issues associated with lipid carriers do not apply, which, in turn, implies easier scale up under current Good Manufacturing Practice for this technique.  相似文献   

20.
The inhibition of crystallization of amorphous acetaminophen (ACTA) by polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) was studied using amorphous solid dispersions prepared by melt quenching. Co-melting with PVP and PAA decreased the average molecular mobility, as indicated by increases in glass transition temperature and enthalpy relaxation time. The ACTA/PAA dispersion exhibited much slower crystallization than the ACTA/PVP dispersion with a similar glass transition temperature value, indicating that interaction between ACTA and polymers also contributed to the stabilizing effect of these polymers. The carboxyl group of PAA may interact with the hydroxyl group of ACTA more intensely than the carbonyl group of PVP does, resulting in the stronger stabilizing effect of PAA. Dielectric relaxation spectroscopy showed that the number of water molecules tightly binding to PVP per monomer unit was larger than that to PAA. Furthermore, a small amount of absorbed water decreased the stabilizing effect of PVP, but not that of PAA. These findings suggest that the stronger stabilizing effect of PAA is due to the stronger interaction with ACTA. The ability of PAA to decrease the molecular mobility of solid dispersion was also larger than that of PVP, as indicated by the longer enthalpy relaxation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号