首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The KCa3.1 channel (KCNN4) is an important modulator of microglia responses in rodents, but no information exists on functional expression on microglia from human adults. We isolated and cultured microglia (max 1% astrocytes, no neurons or oligodendrocytes) from neocortex surgically removed from epilepsy patients and employed electrophysiological whole‐cell measurements and selective pharmacological tools to elucidate functional expression of KCa3.1. The channel expression was demonstrated as a significant increase in the voltage‐independent current by NS309, a KCa3.1/KCa2 activator, followed by full inhibition upon co‐application with NS6180, a highly selective KCa3.1 inhibitor. A major fraction (79%) of unstimulated human microglia expressed KCa3.1, and the difference in current between full activation and inhibition (ΔKCa3.1) was estimated at 292 ± 48 pA at −40 mV (n = 75), which equals at least 585 channels per cell. Serial KCa3.1 activation/inhibition significantly hyperpolarized/depolarized the membrane potential. The isolated human microglia were potently activated by lipopolysaccharide (LPS) shown as a prominent increase in TNF‐α production. However, incubation with LPS neither changed the KCa3.1 current nor the fraction of KCa3.1 expressing cells. In contrast, the anti‐inflammatory cytokine IL‐4 slightly increased the KCa3.1 current per cell, but as the membrane area also increased, there was no significant change in channel density. A large fraction of the microglia also expressed a voltage‐dependent current sensitive to the KCa1.1 modulators NS1619 and Paxilline and an inward‐rectifying current with the characteristics of a Kir channel. The high functional expression of KCa3.1 in microglia from epilepsy patients accentuates the need for further investigations of its role in neuropathological processes. GLIA 2016;64:2065–2078  相似文献   

2.
Na(+) currents were measured in myocytes from a fetus with congenital myotonic dystrophy type 1 (DM1) using the patch-clamp whole-cell technique. Steady-state activation and inactivation properties of Na(+) channels were not substantially different between these cells and age-matched control cells. However, a decrease in Na(+) channel density and a faster rate of recovery from inactivation were found in myocytes from congenital DM1 suggesting that changes in functional Na(+) channels may affect cell excitability of muscle cells of patients with this disorder.  相似文献   

3.
As Purkinje neurons mature during postnatal development, they change from electrically quiescent to active and exhibit high frequency spontaneous action potentials. This change in electrical activity is determined by both alteration in ion channel expression and the acquisition of synaptic input. To gain a better understanding of the development the intrinsic electrical properties of these neurons, acutely isolated Purkinje neurons from mice aged postnatal day 4 (P4) to P18 were examined. This included recording action potential frequency, threshold, height and slope, and input resistance and capacitance. Changes in a number of these properties were observed, suggesting significant changes in voltage-gated Na(+) currents. Because voltage-gated Na(+) currents, including the transient, resurgent and persistent currents, are known to play important roles in generating spontaneous action potentials, the developmental changes in these currents were examined. A large increase in the density of transient current, resurgent current and persistent current was observed at times corresponding with changes in action potential properties. Interestingly, the developmental up-regulation of the persistent current and resurgent current occurred at rate which was faster than the up-regulation of the transient current. Moreover, the relative amplitudes of the persistent and resurgent currents increased in parallel, suggesting that they share a common basis. The data indicate that developmental up-regulation of Na(+) currents plays a key role in the acquisition of Purkinje neuron excitability.  相似文献   

4.
BACKGROUND: Some experiments have demonstrated that injecting orphanin FQ (OFQ) into lateral ventricle, which can obviously decrease the pain threshold. It is indicated that OFQ is an anti-opiate substance. However, whether OFQ has effects on sensory neuron ion channel in cerebral cortex needs to be further studied. OBJECTIVE: To investigate the effects of OFQ, morphine or their combination on sodium channel current of somatosensory neurons in rat cerebral cortex. DESIGN: Repeated measurement trial. SETTING: Department of Physiology, Harbin Medical University. MATERIALS: Fifty healthy Wistar rats, aged 12–16 days, of either gender, were provided by the Experimental Animal Center, Second Hospital Affiliated to Harbin Medical University. OFQ was purchased from Sigma-Aldrich Company, and morphine was provided by the Shenyang First Pharmaceutical Factory. PC2C patch clamp amplifier and LabmasterTL1were purchased from Yibo Life Science Instrument Co.,Ltd. of Huazhong University of Science and Techgnology. METHODS: This experiment was carried out in the Department of Physiology (provincial laboratory), Harbin Medical University between January 2005 and May 2006. Cortical neurons were acutely isolated from rats, and prepared into cell suspension following culture. ①Sodium channel current of somatosensory neurons in rat cerebral cortex was recorded before and after administration by whole-cell Patch clamp technique after 50 nmol/L OFQ being added to extracellular fluid. ②The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex was recorded before and after administration by the same method after 20 μmol/L morphine being added to extracellular fluid, and then the change of sodium channel current was recorded after 50 nmol/L OFQ being added. MAIN OUTCOME MEASURES: The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex following the administration of OFQ, morphine separately or their combination.. RESULTS: ①The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex was significantly lower after administration of 50 nmol/L OFQ than before at the clampe of the voltage of –30 mV (P < 0.05). ②The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex was significantly lower after administration of 20 μmol/L morphine than before at the clampe of the voltage of –30 mV (P < 0.05). The sodium channel current recovered to –(2 345.24±174.18)pA after 50 nmol/L OFQ was administrated. There were significant differences in the amplitude of Na+ channel current between two interventions (P < 0.05). CONCLUSION: Morphine and OFQ can respectively reduce the amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex, and OFQ can reverse the effect of morphine partly. It is indicated that OFQ can produce antiopioid activity in the central nervous system by influencing sodium channel current.  相似文献   

5.
Endolymphatic ion composition in the adult inner ear is characterized by high K(+) and low Na(+) concentration. This unique ion composition is essential for proper functioning of sensory processing. Although a lot has been learned in recent years about molecules involved in K(+) transport in inner ear, the molecules involved in Na(+) transport are only beginning to emerge. The epithelial Na(+) channel (ENaC) is a highly selective Na(+) channel that is expressed in many Na(+)-reabsorbing tissues. The aim of our study was to investigate whether ENaC is expressed in inner ear of rats and could account for Na(+) reabsorption from endolymph. We detected mRNA for the three channel-forming subunits (alpha, beta and gamma ENaC) in cochlea, vestibular system and endolymphatic sac. mRNA abundance increased during the first 12 days of life in cochlea and vestibular system, coinciding with decreasing Na(+) concentration in endolymph. Expression was strongest in epithelial cells lining scala media, most notably Claudius' cells. As these cells are characterized by a very negative resting potential they would be ideally suited for reabsorption of Na(+). mRNA abundance in endolymphatic sac decreased during the first 6 days of life, suggesting that ENaC might be implicated in reabsorption of endolymph in the endolymphatic sac of neonatal animals. Together, our results suggest that the epithelial Na+ channel is a good candidate for a molecule involved in Na(+) homeostasis in inner ear.  相似文献   

6.
7.
Muscle from the proximal smooth muscle (SM) oesophagus of the cat demonstrates contractions of greater amplitude and greater sensitivity to cholinergic stimulation than muscle from the distal SM oesophagus. In the light of the central role of calcium influx in SM contractility, we hypothesized that regional differences in oesophageal contractility may be associated with differential expression of L-type calcium channels (L(Ca)) along the SM oesophagus. L(Ca) expression was compared between proximal and distal regions of the circular SM oesophagus by Western blots. Patch clamp technique was utilized to study L(Ca) currents. Muscle strip studies assessed L(Ca) contribution to contractile activity. The protein expression of L(Ca) and L(Ca) current density was greater in the proximal than distal region. L(Ca) voltage and time-dependent activation and inactivation curves were similar in cells from both regions. Stimulation of muscle strips with acetylcholine (ACh) in the presence of tetrodotoxin resulted in contractions of greater amplitude in the proximal region. The L(Ca) agonist Bay K 8644 caused a greater increase in ACh-induced contraction amplitude in muscle strips from the proximal region. Therefore, regional myogenic differences in L(Ca) expression along the circular SM oesophageal body exist and may contribute to the nature of oesophageal contractions.  相似文献   

8.
9.
Na+ channels in the dendrites of rat CA1 pyramidal neurons display a profound activity-dependent inactivation, termed slow inactivation, that limits excitability in the dendrites even at low physiological rates of firing. The magnitude of this slow inactivation is powerfully modulated by a protein kinase C-dependent process. Because activation of kinases is a rapid and common feature of a number of seizure models, we hypothesized that a loss of slow inactivation of Na+ channels might exacerbate other changes in excitability. Thus, we observed the effects of a brief (5 min) chemical convulsant treatment on Na+ currents and action potentials in hippocampal slices. We found that slow inactivation decreased significantly and remained decreased for at least 30 min after return to control conditions. Pretreatment with either chelerythrine, a protein kinase C inhibitor, or U0126, a mitogen-activated protein kinase/extracellular signal regulated kinase kinase (MEK) inhibitor, blocked this reduction of slow inactivation. These results demonstrate that a brief period of hyperexcitability leads to a rapid, protein kinase-dependent loss of slow inactivation of Na+ channels that would contribute to and perhaps prolong the hyperexcitable state.  相似文献   

10.
Schwartz-Jampel syndrome: II. Na+ channel defect causes myotonia   总被引:5,自引:0,他引:5  
Skeletal muscle fibers from a patient with Schwartz-Jampel syndrome were studied in vitro. The fibers had normal resting membrane potentials, but their resting [Ca2+]i was elevated. The resting potentials were unstable and spontaneous depolarizations caused twitching in all fibers. Stimulated contractions were characterized by markedly slowed relaxation which was due to electrical after-activity. Neither curare (0.7 microM), tocainide (50 microM), nor phenytoin (80 microM) had an effect on the myotonic activity. In contrast, procainamide (200 microM) suppressed the hyperexcitability without affecting the twitch amplitude. The steady-state current-voltage relation was normal in 5 fibers, but altered in 3 others. These latter fibers had an increased specific membrane resistance owing to a decreased Cl- conductance. The Na+ channels were investigated in the cell-attached patch clamp mode. In all patches on either type of fiber, depolarizing pulses elicited delayed, synchronized openings of Na+ channels. These abnormal openings occurred even after the surface membrane repolarized. We hypothesize that these altered membrane conductances are responsible for the hyperexcitability and the associated slowed relaxation.  相似文献   

11.
Neurons preserve stable electrophysiological properties despite ongoing changes in morphology and connectivity throughout their lifetime. This dynamic compensatory adjustment, termed 'homeostatic plasticity', may be a fundamental means by which the brain normalizes its excitability, and is possibly altered in disease states such as epilepsy. Despite this significance, the cellular mechanisms of homeostatic plasticity are incompletely understood. Using field potential analyses, we observed a compensatory enhancement of neural excitability after 48 h of activity deprivation via tetrodotoxin (TTX) in hippocampal slice cultures. Because activity deprivation can enhance voltage-gated sodium channel (VGSC) currents, we used Western blot analyses to probe for these channels in control and activity-deprived slice cultures. A significant upregulation of VGSCs expression was evident after activity deprivation. Furthermore, immunohistochemistry revealed this upregulation to occur along primarily pyramidal cell dendrites. Western blot analyses of cultures after 1 day of recovery from activity deprivation showed that VGSC levels returned to control levels, indicating that multiple molecular mechanisms contribute to enhanced excitability. Because of their longevity and in vivo-like cytoarchitecture, we conclude that slice cultures may be highly useful for investigating homeostatic plasticity. Furthermore, we demonstrate that enhanced excitability involves changes in channel expression with a targeted localization likely profound transform the integrative capacities of hippocampal pyramidal cells and their dendrites.  相似文献   

12.
Pathogenesis of Parkinson's disease and related catecholaminergic neurological disorders is closely associated with changes in the levels of tyrosine hydroxylase (TH). Therefore, investigation of the regulation of the TH gene system should assist in understanding the pathomechanisms involved in these neurological disorders. To identify regulatory domains that direct human TH expression in the central nervous system (CNS), we generated two transgenic mouse lines in which enhanced yellow fluorescent protein (EYFP) is expressed under the control of either 3.2‐kb (hTHP‐EYFP construct) human TH promoter or 3.2‐kb promoter with 2‐kb 3′‐flanking regions (hTHP‐ex3‐EYFP construct) of the TH gene. In the adult transgenic mouse brain, the hTHP‐EYFP construct directs neuron‐specific EYFP expression in various CNS areas, such as olfactory bulb, striatum, interpeduncular nucleus, cerebral cortex, hippocampus, and particularly dentate gyrus. Although these EYFP‐positive cells were identified as mature neurons, few EYFP‐positive cells were TH‐positive neurons. On the other hand, we could detect the EYFP mRNA expression in a subset of neurons in the olfactory bulb, midbrain, and cerebellum, in which expression of endogenous TH is enriched, with hTHP‐ex3‐EYFP transgenic mice. These results indicate that the 3.2‐kb sequence upstream of the TH gene is not sufficient for proper expression and that the 2‐kb sequence from the translation start site to exon 3 is necessary for expression of EYFP in a subset of catecholaminergic neurons. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Mutations of the skeletal muscle sodium (Na) channel have been reported in families with paramyotonia congenita (PC), an autosomal dominant disorder with cold and/or exercise induced stiffness and myotonia. Functional consequences of specific Na channel mutations responsible for PC have not been described. Patch clamp recording of single Na channels were made in cultured myotubes at 22 and 34°C from a PC patient with the thr1313met mutation. Cell-attached and outside-out recordings of mutant PC channels contained long duration and late openings. The mean open time was increased and the ensemble average showed a prolonged inward Na current. This membrane depolarization could cause repetitive action potentials and the clinical syndrome.  相似文献   

14.
Among the ion channels and pumps activated by growth factor stimulation, K+ channels have been implicated in the growth and proliferation of several cancer cell lines. The role of these channels in central nervous system tumors, however, has not been described. This study used the malignant astrocytoma cell lines U87 and A172. 4-Aminopyridine (4-AP) inhibition of proliferation was dose dependent, and assessment using a TUNEL in situ assay revealed that apoptosis occurred in U87 cells with wild-type p53 but not in A172 cells with mutant p53 (24-hr incubation with 4 mM 4-AP). In patch clamp experiments, we identified two types of K+ currents in both cell lines, a charybdotoxin-sensitive Ca2+-activated K+ channel and a 4-AP-sensitive outward rectifier K+ current. The outward rectifier current was blocked by 4-AP in a dose-dependent manner, with half-maximal block occurring at 3.9 mM. The blocking effect of 4 mM 4-AP was noticeable at potentials as low as −65 mV and was statistically significant at −60 mV and above, suggesting that 4-AP-sensitive current is active at physiological potentials. By contrast, charybdotoxin (1 μM) and tetraethylammonium · Cl (2 mM) blocked the Ca2+-activated K+ channel in both cell lines but had no appreciable effect on cell growth. Our findings reveal that 4-AP inhibits proliferation and the outward rectifier K+ channel in both U87 and A172 cells. More studies are needed, however, to describe the mechanism by which K+ channels influence proliferation and induce apoptosis. J. Neurosci. Res. 48:122–127, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
神经毒素对电压门控钠通道受体靶点的变构调制   总被引:1,自引:0,他引:1  
电压门控钠通道(VGSC)是许多天然生物神经毒素特异作用的靶受体。全面探明并深刻剖析各种神经毒素与钠通道受体靶点的结合特性以及彼此间的相互变构调制,不仅有助于丰富通道蛋白组学、通道药理与毒理学等创新知识,也是研制针对性钠通道受体新药和构建环保型生物农药的前提条件。本文侧重各种神经毒素对电压门控钠通道受体靶点的变构调制研究作一简要的进展情况概述。  相似文献   

16.
Spinal motor neurons were isolated from embryonic rats, and grown in culture. By 2 days in vitro, the axon initial segment was characterized by colocalization and clustering of Na+ channels and ankyrinG. By 5 days, NrCAM, and neurofascin could also be detected at most initial segments. We sought to determine, as one important aim, whether Na+ channels themselves played an essential role in establishing this specialized axonal region. Small hairpin RNAs (shRNAs) were used to target multiple subtypes of Na+ channels for reduced expression by RNA interference. Transfection resulted in substantial knockdown of these channels within the cell body and also as clusters at initial segments. Furthermore, Na+ currents originating at the initial segment, and recorded under patch clamp, were strongly reduced by shRNA. Control shRNA against a nonmammalian protein was without effect. Most interestingly, targeting Na+ channels also blocked clustering of ankyrinG, NrCAM, and neurofascin at the initial segment, although these proteins were seen in the soma. Thus, both Na+ channels and ankyrinG are required for formation of this essential axonal domain. Knockdown of Na+ channels was somewhat less effective when introduced after the initial segments had formed. Disruption of actin polymerization by cytochalasin D resulted in multiple initial segments, each with clusters of both Na+ channels and ankyrinG. The results indicate that initial segment formation occurs as Na+ channels are transported into the nascent axon membrane, diffuse distally, and link to the cytoskeleton by ankyrinG. Subsequently, other components are added, and stability is increased. A computational model closely reproduced the experimental results.  相似文献   

17.
Many studies have shown that voltage-gated potassium (Kv) channel activity is essential for T-lymphocyte proliferation. The IL-2-inducible neuroimmune gene, I2rf5 is the mouse homologue of the rat Kvβ2 subunit. In this study we show that in addition to constitutive expression in adult murine brain, expression of Kv channel subunits β1.1 and β2.1 is inducible in a cloned T-helper cell line stimulated with IL-2 and in normal murine splenocytes stimulated with Con A or LPS. This expression pattern appears to be lymphocyte specific, because stimulated fibroblasts and vascular smooth muscle cells do not express Kvβ channel subunit mRNA. These observations suggest that Kvβ subunit expression is tissue specific and inducible in stimulated lymphocytes. Because Kvβ subunits modulate K+ channel activity, the inducible and variable expression of these subunits in lymphocytes may represent an additional regulatory mechanism for lymphocyte proliferation.  相似文献   

18.
The present study examined temporal changes in activity of large conductance, Ca2+-activated potassium (BKCa) channels in postischemic CA1 pyramidal neurons at 2, 6, 24 and 48 h after reperfusion. These changes in activity and possible cellular mechanisms were examined using the inside--out configuration of patch clamp. The unitary conductance of postischemic BKCa channels increased transiently to 119% of the control at 2 h after reperfusion, and recovered to the control level thereafter. A persistent increase in [Ca2+]i sensitivity of BKCa channels was observed in postischemic CA1 neurons with the maximal sensitivity to [Ca2+]i at 6 h after reperfusion while channel voltage- dependence showed no obvious changes. Kinetic analyses showed that the postischemic enhancement of BKCa channel activity was due to longer open times and shorter closed times as there was no significant changes in opening frequency after ischemia. Glutathione disulphide markedly increased BKCa channel activity in normal CA1 neurons, while reducing glutathione caused a decrease in BKCa channel activity by reducing the sensitivity of this channel to [Ca2+]i in postischemic CA1 neurons. Similar modulatory effects on postischemic BKCa channels were also observed with another redox couple, DTNB and DTT, suggesting an oxidation modulation of BKCa channel function after ischemia. The present results indicate that a persistent enhancement in activity of BKCa channels, probably via oxidation of channels, in postischemic CA1 pyramidal neurons may account for the decrease in neuronal excitability and increase in fAHP after ischemia. The ischemia-induced augmentation in BKCa channel activity may be also associated with the postischemic neuronal injury.  相似文献   

19.
Background Interstitial cells of Cajal (ICC) associated with the myenteric plexus of the small intestine express maxi chloride channels. Our aim was to investigate whether or not these channels would be activated by increases in intracellular Ca2+, as that would strengthen evidence for their potential role in ICC pacemaking. A further aim was to examine whether inwardly and outwardly rectifying maxi chloride currents signify different channels. Methods We used Fluo‐4 AM Ca2+ imaging and patch clamp electrophysiology (cell‐attached and inside‐out) on isolated ICC in short term culture. Key Results Increasing intracellular Ca2+ by three functionally distinct mechanisms (blocking sarcoplasmic reticulum Ca2+ refilling, creating membrane Ca2+ pores and a solution designed to block plasmalemmal Ca2+ extrusion) was followed by inwardly rectifying maxi chloride channel activation assessed in the cell‐attached configuration. Furthermore, in the inside‐out configuration, increased outwardly rectifying maxi‐chloride channel activity followed an increase in Ca2+ to 2 mmol L?1 at the cytoplasmic face of the channel. Conclusions & Inferences Increase in intracellular Ca2+ will activate the maxi chloride channels. Maxi chloride currents are inwardly rectifying in the cell‐attached patch clamp configuration under physiological conditions and are outwardly rectifying in the inside‐out configuration. The same channel is responsible for both currents. Ca2+ does not appear to regulate the rectification.  相似文献   

20.
Normal gastrointestinal (GI) motility is required to mix digestive enzymes and food and to move content along the GI tract. Underlying the complex motor patterns of the gut are electrical events that reflect ion flux across cell membranes. Smooth muscle electrical activity is directly influenced by GI interstitial cells of Cajal, whose rhythmic oscillations in membrane potential in part determine the excitability of GI smooth muscle and its response to neuronal input. Coordinated activity of the ion channels responsible for the conductances that underlie ion flux in both smooth muscle and interstitial cells is a requisite for normal motility. These conductances are regulated by many factors, including mechanical stress. Recent studies have revealed mechanosensitivity at the level of the ion channels, and the mechanosensor within the channel has been identified in many cases. This has led to better comprehension of the role of mechanosensitive conductances in normal physiology and will undoubtedly lead to understanding of the consequences of disturbances in these conductances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号