首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of primary hepatocytes is now well established for both studies of drug metabolism and enzyme induction. Cryopreservation of primary hepatocytes decreases the need for fresh liver tissue. This is especially important for research with human hepatocytes because availability of human liver tissue is limited. In this review, we summarize our research on optimization and validation of cryopreservation techniques. The critical elements for successful cryopreservation of hepatocytes are (1) the freezing protocol, (2) the concentration of the cryoprotectant [10% dimethyl-sulfoxide (DMSO)], (3) slow addition and removal of DMSO, (4) carbogen equilibration during isolation of hepatocytes and before cryopreservation, and (5) removal of unvital hepatocytes by Percoll centrifugation after thawing. Hepatocytes of human, monkey, dog, rat, and mouse isolated and cryopreserved by our standard procedure have a viability > or = 80%. Metabolic capacity of cryopreserved hepatocytes determined by testosterone hydroxylation, 7-ethoxyresorufin-O-de-ethylase (EROD), 7-ethoxycoumarin-O-deethylase (ECOD), glutathione S-transferase, UDP-glucuronosyl transferase, sulfotransferase, and epoxide hydrolase activities is > or = 60% of freshly isolated cells. Cryopreserved hepatocytes in suspension were successfully applied in short-term metabolism studies and as a metabolizing system in mutagenicity investigations. For instance, the complex pattern of benzo[a]pyrene metabolites including phase II metabolites formed by freshly isolated and cryopreserved hepatocytes was almost identical. For the study of enzyme induction, a longer time period and therefore cryopreserved hepatocyte cultures are required. We present a technique with cryopreserved hepatocytes that allows the induction of testosterone metabolism with similar induction factors as for fresh cultures. However, enzyme activities of induced hepatocytes and solvent controls were smaller in the cryopreserved cells. In conclusion, cryopreserved hepatocytes held in suspension can be recommended for short-term metabolism or toxicity studies. Systems with cryopreserved hepatocyte cultures that could be applied for studies of enzyme induction are already in a state allowing practical application, but may be further optimized.  相似文献   

2.
An evaluation of musk xylene in a battery of genotoxicity tests   总被引:1,自引:0,他引:1  
Musk xylene (CAS no. 81-15-2), a synthetic musk fragrance ingredient, was evaluated in a battery of short-term genotoxicity tests that included the mouse lymphoma assay, an in vitro cytogenetics assay in Chinese hamster ovary (CHO) cells, the in vitro unscheduled DNA synthesis (UDS) assay in primary rat hepatocytes and an in vivo UDS assay. Musk xylene gave uniformly negative results in these genotoxicity tests. These observations, combined with previously reported negative Ames tests, suggest a non-genotoxic mechanism for the induction of mouse liver tumours by musk xylene.  相似文献   

3.
There are still only a few in vivo short-term assay methods for predicting potential organ-specific carcinogens and mutagens in mammals, although such methods are required for evaluating the in vivo effects of in vitro mutagens. In the in vivo/in vitro UDS assay methods described here, chemicals are given to experimental animals and induction of UDS in target organs is determined by in vitro organ culture or primary cell culture in the presence of [3H]dThd. Incorporation of [3H]dThd into DNA is measured with a liquid scintillation counter or by autoradiography. These methods have now been applied to the glandular stomach, forestomach, colon, liver, kidney, pancreas, tracheal epithelium, nasal epithelium, and spermatocytes. With minor modifications, they may also be applied to other organs. The present review shows that induction of UDS in various organs correlated well with the induction of cancer in these organs. The present authors have used the present methods to identify some potential organ-specific mutagens and carcinogens in mammals. The present authors found that three dicarbonyl compounds, glyoxal, methylglyoxal, and diacetyl, induced apparent UDS and TDS in the glandular stomach, and other groups found that 2-NT, MA6BT, and CNEt6BT induced UDS in the liver. These in vivo/in vitro UDS assays are better than in vitro UDS assay for identification of potential organ-specific mutagens and carcinogens in mammals and are especially useful for identifying potential mutagens and carcinogens that are specific for certain organs, such as the stomach, liver, and kidney. They are also useful for examining the potential mutagenicities and carcinogenicities of carcinogen analogs. However, these methods are not suitable for general in vivo screening because they are not yet available for all organs. A further advantage of the methods is that they can be used to examine larger numbers of animals at one time than other methods for detecting DNA damage, such as alkaline elution or alkaline sucrose density gradient centrifugation. Glyoxal enhanced cancer induction in the glandular stomach by the administration of a limited amount of MNNG and then glyoxal afterward in the two-stage stomach carcinogenesis.  相似文献   

4.
Unscheduled DNA synthesis (UDS) has been used as an endpoint for measuring DNA damage in vitro and in vivo. Determination of UDS is regarded as a reliable genotoxicity assay by regulatory agencies including US FDA and EPA. In this study, we have developed an improved UDS assay to detect DNA damage and repair processes upon chemical exposure. We utilized a dual-labeling procedure in which fluorescent DAPI stained nuclei of live cells and [(3)H]thymidine labeled cells undergoing new DNA synthesis. The occurrence of UDS in cells was quantified by either manual nucleus counting or net intensity approaches. This assay was validated by testing known genotoxic compounds 2-acetylaminofluorene (2-AAF), ethylmethanesulfonate (EMS), and N-nitrosodimethylamine (NDL) in primary rat hepatocytes as well as in confluent human mammary epithelial cells. In addition, fluorescent labeling of nuclei DNA helped to distinguish apoptotic cells from non-apoptotic cells. Chemical effects on cell functions were also examined by conducting the cytotoxicity assay along with the UDS assay. To conclude, the dual-labeling UDS assay offers advantages of reduced subjective bias, increasing sensitivity and reproducibility. The assay is suitable for testing compounds in higher capacity format with much less compound needed.  相似文献   

5.
In a recent chronic inhalation exposure study, unleaded gasoline (UG) produced kidney tumors in male rats and liver tumors in female mice, but did not increase the incidence of liver tumors in male mice or rats of either sex. To examine the possible basis for this pattern of hepatocarcinogenesis, unscheduled DNA synthesis (UDS) as an indicator of genotoxic activity and replicative DNA synthesis (RDS) as an indicator of cell proliferation were measured in rat and mouse hepatocytes following in vivo and in vitro exposures to UG and 2,2,4-trimethylpentane (TMP), a nephrotoxic component of UG. Primary hepatocyte cultures, prepared from cells isolated from Fischer-344 rats, B6C3F1 mice, or human surgical material, were incubated with [3H]thymidine and the test agent. UDS was measured by quantitative autoradiography as net nuclear grains (NG). By similar methods, UDS and RDS (S-phase cells) were measured in hepatocytes isolated from rats and mice treated by gavage with TMP (500 mg/kg) or UG (100 to 5,000 mg/kg). A dose-related increase in UDS activity was observed in rat hepatocytes treated in vitro with 0.05 to 0.10% (v/v) UG. These doses were, however, toxic in both mouse and human hepatocyte cultures. Weak UDS activity was observed in hepatocytes isolated from male and female mice treated 12 hr previously with UG. No UDS was induced in rat hepatocytes treated in vivo or in vitro with TMP. Twenty- and fourfold increases in the percentage of cells in S-phase were observed 24 hr after treatment with TMP in male and female mice, respectively, as compared to a fivefold increase in male rats. UG increased the percentage of S-phase cells in male mice by ninefold but failed to induce RDS in females. Thus, there appears to be genotoxic compounds in UG that can be detected in cultured hepatocytes and in the livers of exposed mice. The lack of UDS activity in rat liver was consistent with the reported lack of liver tumors in chronically exposed rats. However, neither the UDS nor the RDS responses in mice exposed by gavage correlated to the sex-specific pattern of liver tumors observed in the 2-year bioassay.  相似文献   

6.
The mRNA induction of various transporters by rifampicin (Rif), dexamethasone (Dex) and omeprazole (Ome) was investigated in primary cultures of cryopreserved human and rat hepatocytes. Analysis was performed by quantitative real-time RT-PCR using primers and TaqMan probes. In primary cultures of human hepatocytes, mRNA levels of MDR and MRP1 were increased by about 1.5 fold and 1.3 fold, respectively, by exposure to Rif at 2 to 50 microM as compared with 0.1% DMSO-treated controls. MRP2 mRNA levels in the same human hepatocytes were significantly increased by 1.2 to 1.8 fold by exposure to Rif at 50 microM as compared with controls. In primary cultures of rat hepatocytes, Mdr1a and Mdr1b mRNA levels were not increased or only slightly increased at 24 hr by exposure to any of the inducers at 2, 10 or 50 microM. Mrp2 mRNA levels in the same rat hepatocytes were significantly increased by 7 to 45 fold by exposure to Dex at 2 microM as compared with controls. Based on the species differences observed in the present study, primary cultures of cryopreserved hepatocytes from both the human and rat should be useful in preclinical drug development for evaluating candidate drugs for transporter induction.  相似文献   

7.
The Fusarium moniliforme mycotoxins--fusarin C, fumonisin B1, moniliformin and bikaverin--were evaluated for genotoxicity by their ability to induce unscheduled DNA synthesis (UDS) in primary rat hepatocytes. Isolated hepatocytes were exposed to several concentrations of moniliformin (5.0-500 microM), bikaverin (1.0-500 microM), fumonisin B1 (0.5-250 microM), or fusarin C (1.0-100 microM). Aflatoxin B1, a known inducer of UDS, was included as a positive control. UDS was determined by autoradiography of cells after their exposure to [3H]thymidine. The highest doses of fusarin C and bikaverin caused cell death, but no cytotoxicity was observed in cells exposed to moniliformin or fumonisin B1. Fumonisin B1, moniliformin and bikaverin were not genotoxic in the UDS assay. The results of the UDS assay with fusarin C were inconclusive since a marginal effect on UDS was obtained.  相似文献   

8.
Hepatotoxicity is a major concern for both drug development and toxicological evaluation of environmental chemicals. The assessment of compound-induced hepatotoxicity has traditionally relied on in vivo testing; however, it is being replaced by human in vitro models due to an emphasis on the reduction of animal testing and species-specific differences. Since most cell lines and hybridomas lack the full complement of enzymes at physiological levels found in the liver, primary hepatocytes are the gold standard to study liver toxicities in vitro due to the retention of most of their in vivo activities. Here, we optimized a cell viability assay using plateable cryopreserved human hepatocytes in a 1536-well-plate format. The assay was validated by deriving inhibitory concentration at 50% values for 12 known compounds, including tamoxifen, staurosporine, and phenylmercuric acetate, with regard to hepatotoxicity and general cytotoxicity using multiple hepatocyte donors. The assay performed well, and the cytotoxicity of these compounds was confirmed in comparison to HepG2 cells. This is the first study to report the reliability of using plateable cryopreserved human hepatocytes for cytotoxicity studies in a 1536-well-plate format. These results suggest that plateable cryopreserved human hepatocytes can be scaled up for screening a large compound library and may be amenable to other hepatocytic assays such as metabolic or drug safety studies.  相似文献   

9.
Several quinolone antibiotics, including ciprofloxacin, have been reported to elicit autoradiographic unscheduled DNA synthesis (UDS) in cultured rat hepatocytes. In the present investigation, ciprofloxacin (CF), at 250–1500 μM, produced autoradiographic UDS in cultured rat hepatocytes, whereas neither the quinolone nalidixic acid norm-AMSA, both topoisomerase II inhibitors, produced autoradiographic UDS. CF also reduced cytoplasmic [3H]thymidine levels ([3H]TdR) relative to control at 250–1500 μMand concomitantly increased nuclear grain counts accounting for most of the net increase yielding positive UDS values. To obtain definitive information on whether the positive UDS observed with CF was due to DNA repair, DNA repair synthesis was measured in parental DNA separated from newly replicated DNA using a bromodeoxyuridine incorporation density gradient method. This method was used to measure DNA repair synthesis in parental DNA of both replicating rat liver epithelial cells (ARL-18) and nonproliferating rat hepatocytes in primary culture. Primary hepatocytes exposed to CF from 250 to 1500 μMdid not express DNA repair synthesis in parental DNA isolated by density gradient centrifugation but rather exhibited a concentration-related decrease in the level of [3H]TdR associated with DNA. In rat liver epithelial (ARL-18) cells, CF from 250 to 500 μMlikewise did not elicit DNA repair synthesis and also caused a concentration-related decrease in the level of [3H]TdR associated with parental DNA. In contrast, in both cell types a substantial level of repair synthesis occurred in parental DNA as a result of exposure to 2-acetylaminofluorene, a DNA-reactive carcinogen, and in hepatocytes a similar finding was made for the drug hydralazine. Also, after induction of DNA repair in hepatocytes by ultraviolet light, the DNA polymerase α inhibitor aphidicolin almost completely abolished repair synthesis, whereas CF had a negligible effect on the inhibition of repair relative to control. These results indicate that CF did not elicit authentic DNA repair and also did not inhibit DNA repair synthesis. The fact that CF elicited autoradiographic UDS and that the topoisomerase II inhibitorsm-AMSA and nalidixic acid did not indicates that effects on topoisomerase II are not the basis for the positive UDS result with CF as has been hypothesized in the past.  相似文献   

10.
The ability of coumarin to induce UDS in male Sprague-Dawley CD rat hepatocytes in vivo was assessed using the unscheduled DNA synthesis (UDS) assay. From a preliminary toxicity study the oral maximum tolerated dose (MTD) of coumarin was determined to be 320 mg/kg body weight. For the UDS studies, rats were treated with 0 (corn oil control), 32 (one-tenth the MTD), 107 (one-third the MTD) and 320 (MTD) mg/kg coumarin via oral gavage. Rats were also treated with 20mg/kg body weight dimethylnitrosamine (DMN) or 50mg/kg body weight 2-acetylaminofluorene (2-AAF) as positive controls for the 2-4 hr and 12-16 hr expression of UDS, respectively. Hepatocytes were isolated by liver perfusion either 2-4 hr or 12-16 hr after treatment and cultured in medium containing [methyl-(3)H]thymidine for 4 hr and assessed for UDS by grain counting of autoradiographs. Coumarin treatment at doses of 32-320 mg/kg body weight had no statistically significant or dose-related effect on UDS in rat hepatocytes either 2-4 hr or 12-16 hr after dosing. In contrast, both DMN 2-4 hr after dosing and 2-AAF 12-16 hr after dosing produced significant increases in UDS assessed as the net nuclear grain count. Both genotoxins also increased the percentage of hepatocyte nuclei with greater than 5 net grains. Treatment with coumarin, DMN and 2-AAF had no statistically significant effect on the proportion of rat hepatocytes undergoing replicative DNA synthesis. In summary, this study demonstrates that coumarin does not induce UDS in hepatocytes of male Sprague-Dawley CD rats after oral administration at doses up to the MTD of 320 mg/kg. The responsiveness of the animals used in this study to genotoxic agents was demonstrated by the clear induction of DNA repair after treatment with DMN and 2-AAF.  相似文献   

11.
Isolated hepatocytes are useful for studying the metabolism and mechanisms of hepatic toxicity of foreign chemicals. A problem with using human hepatocytes is the limited and irregular availability of normal human liver. Cryopreservation could provide a useful way of storing hepatocytes until they are needed. As a preliminary step to using human hepatocytes we have compared the toxic response to chemical toxicants of primary cultures of fresh rat hepatocytes and rat hepatocytes cryopreserved as previously described (G. Powis, K. S. Santone, D. C. Melder, L. Thomas, D. J. Moore, and T. J. Wilke, 1987. Drug Metab. Dispos. 15, 826). After 24 hr in culture the cryopreserved hepatocytes had a plating efficiency 75% that of noncryopreserved hepatocytes. The cultured cryopreserved hepatocytes showed a small increase in spontaneous lactate dehydrogenase release compared to that of cultured noncryopreserved hepatocytes. A similar toxic chemical-induced increase in lactate dehydrogenase release occurred in the cultured cryopreserved as in the noncryopreserved hepatocytes. The 50% effective concentrations (EC50) for lactate dehydrogenase release (+/- SE, n = 3 preparations) from cultured cryopreserved and noncryopreserved hepatocytes for chlorpromazine were 235 +/- 20 and 215 +/- 30 microM, for cadmium chloride 200 +/- 5 and 272 +/- 23 microM, and for menadione (2-methyl-1,4-naphthoquinone) 24 +/- 7 and 44 +/- 8 microM, respectively. The EC50 values for intracellular glutathione depletion in cultured cryopreserved and noncryopreserved hepatocytes were for chlorpromazine 200 +/- 8 and 235 +/- 8 microM, for cadmium chloride 242 +/- 19 and 213 +/- 7 microM, and for menadione 22 +/- 2 and 21 +/- 3 microM, respectively. The results show that cryopreservation offers a practical way of storing rat hepatocytes for studies of chemical toxicity.  相似文献   

12.
Microcystin-LR (MC-LR) is a toxin produced by freshwater cyanobacteria and is a potential threat to human health. MC-LR has been shown to be both a specific inhibitor of serine/threonine protein phosphatases PP1 and PP2A and a potent tumor promoter in rat liver. However, the genotoxic potential of MCs remains unclear. In this article, we investigated the ability of MC-LR to induce DNA damage on rat hepatocytes following intravenous (iv) administration by using two in vivo genotoxicity assays: the unscheduled DNA synthesis (UDS) and the comet assays. The UDS assay measures DNA synthesis induced from the excision repair of DNA damaged regions and the comet assay is a very sensitive technique for detecting various forms of DNA damage. After an exposure time of 2-4 h or 12-16 h and a dose ranging from 12.5 to 50 microg/kg bw, no DNA damage could be observed in both assays on rat hepatocytes following iv administration. These findings have been discussed and compared with recently published genotoxic results obtained in other organs from mice after oral and intraperitoneal treatments to better understand the mechanism of action of this toxin in relation with its cancerogenicity potential.  相似文献   

13.
Hepatocyte assays, routinely used to assess the metabolic stability of new chemical entities, were recently improved by using hepatocytes in suspension instead of primary cultures [N. Blanchard, L. Richert, B. Notter, F. Delobel, P. David, P. Coassolo, T. Lavé, Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes, Eur. J. Pharm. Sci. 23 (2004) 189-199]. The aim of the present study was to investigate miniaturising the suspension assay by using cryopreserved human hepatocytes, i.e., 150,000 cells/well in 96-well plates, to predict hepatic clearance (CLH) in order to increase compound throughput and decrease cost and tissue requirements. For this, an evaluation was first carried out with rat hepatocytes. Then, human hepatocytes from various donors were used under these predetermined conditions, either immediately after isolation, either after a 20-h-cold storage period in UW or after cryopreservation. The values of CLint and CLH determined using human hepatocytes in suspension in 96-well plates, immediately after isolation, after cold storage or after cryopreservation, were comparable to those obtained with hepatocytes in primary culture. In particular, the use of cryopreserved human hepatocytes in suspension in a 96-well format appeared to be largely satisfactory as a tool for screening and ranking of compounds in the early phase of the drug discovery process.  相似文献   

14.
The genotoxicity of the cooked-food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) was studied by monitoring the induction of DNA repair (unscheduled DNA synthesis; UDS) in primary cultures of rodent hepatocytes. The hepatocytes were derived from male Sprague-Dawley rats or Syrian hamsters by collagenase perfusion and the cells were cultured for 4 hr before being exposed to various concentrations of the mutagens. DNA repair was determined by measuring incorporation of [3H]thymidine into extracted DNA over 17 hr using beta-scintillation counting. Dose-related increases in UDS were clearly seen in hamster hepatocytes treated with MeIQ, IQ and the positive control 2-acetylaminofluorene (AAF), and a weak response was induced by MeIQx and Trp-P-1. In the rat hepatocytes only MeIQ and AAF gave clear positive responses. Furthermore it was noted that all the mutagens displayed a more pronounced UDS response in hamster hepatocytes than in rat cells. Studies of the activation of MeIQ by hepatocytes to a bacterial mutagen suggest that this difference is probably a consequence of the greater capacity of hamster cells to activate the mutagens to genotoxic metabolites.  相似文献   

15.
Unscheduled DNA synthesis (UDS) induced by in vitro exposure to five alkylating carcinogens was measured in the mucosal cells from three different sites of the rat intestine. The yield of UDS by N-methyl-N'-nitro-N-nitrosoguanidine or N-ethyl-N'-nitro-N-nitrosoguanidine or methylazoxymethanol acetate was higher in the cells of colon & rectum than in those of the jejunum or ileum. Conversely, UDS induction by N-methyl-N-nitrosourea or methyl-methanesulphonate was seen at a rather higher level in the cells from the small intestine compared with those from the colon & rectum.  相似文献   

16.
Telmisartan, a nonpeptide angiotensin II receptor antagonist, is selectively distributed to liver. In the present study, we have characterized the contribution of organic anion transporting polypeptide (OATP) isoforms to the hepatic uptake of telmisartan by isolated rat hepatocytes, human cryopreserved hepatocytes, and human transporter-expressing cells. Because it is difficult to evaluate the transport activity of telmisartan because of its extensive adsorption to cells and culture materials, we performed the uptake study in the presence of human serum albumin. The saturable uptake of telmisartan into isolated rat hepatocytes took place in a Na(+)-independent manner and was inhibited by pravastatin, taurocholate, and digoxin, which are Oatp substrates and inhibitors, but not by organic cation, tetraethylammonium, indicating the involvement of Oatp isoforms in its uptake into rat hepatocytes. To identify which human OATP transporters are important for the hepatic uptake of telmisartan, the uptake assay was carried out using OATP1B1- and OATP1B3-expressing human embryonic kidney 293 cells and cryopreserved human hepatocytes. The uptake of telmisartan by OATP1B3-expressing cells was saturable (K(m) = 0.81 microM) and significantly higher than that by vector-transfected cells. In contrast, no significant uptake was observed in OATP1B1-expressing cells. We also observed the saturable uptake of telmisartan by human hepatocytes. Thirty micromolar estrone-3-sulfate, which can selectively inhibit OATP1B1-mediated uptake compared with OATP1B3, did not inhibit the uptake of telmisartan in human hepatocytes, whereas it could inhibit the uptake of estradiol 17beta-d-glucuronide mediated by OATP1B1. These results suggest that OATP1B3 is predominantly involved in the hepatic uptake of telmisartan in humans.  相似文献   

17.
Male rats are more susceptible to the induction of liver cancer by the aromatic amine 2-acetylaminofluorene (AAF) than are females. To assess the basis for this difference and to determine whether sex differences in susceptibility to AAF are present in human liver cells, the DNA reactivity of AAF was measured in livers of male and female Sprague–Dawley (SD) rats and in cultured SD rat and human hepatocytes of both sexes. In livers of rats administered oral doses of AAF, the total levels of adducts measured by nucleotide postlabelling at up to 8 weeks were about twofold greater in males than in females. Similarly, the level of AAF-DNA adducts formed in cultured male rat hepatocytes dosed with AAF was about twofold greater than in female rat hepatocytes. Also, the level of DNA repair synthesis was about threefold greater in AAF-dosed cultured male rat hepatocytes compared with female, indicating that the greater adduct levels in males was not due to lesser repair. In contrast, in cultured human hepatocytes of both sexes, AAF produced similar levels of adducts and DNA repair synthesis, which were intermediate between those produced in male and female rat hepatocytes. Thus, the greater susceptibility of male rats to AAF hepatocarcinogenicity is due at least in part to greater bioactivation and formation of AAF-DNA adducts in hepatocytes. Moreover, the data from human hepatocytes suggest that human liver could be less susceptible than male rat liver to the carcinogenic effects of aromatic amine carcinogens of the AAF type.  相似文献   

18.
N-Nitrosodibutylamine (NDBA) and its omega-oxidized metabolites N-nitrosobutyl-4-hydroxybutylamine (4-OH-NDBA) and N-nitrosobutyl-3-carboxypropylamine (BCPN) are potent urinary bladder carcinogens. To study putative organ specific activation of BCPN, its alpha-oxidation by liver and urinary bladder microsomal fractions was investigated in comparison to NDBA and 4-OH-NDBA. Additionally, induction of DNA single strand breaks (SSB) was monitored in hepatocytes and in a human lymphoblastoid cell line (Namalva) in the presence and absence of external metabolic activation, including N-nitroso-t-butyl-n-butylamine as a negative control. BCPN was alpha-hydroxylated and dealkylated at both alkyl chains in small rates (about 1 nmol x mg protein-1 x 60 min-1) by microsomes from rat liver and pig urinary bladder epithelium. NDBA and 4-OH-NDBA were dealkylated at similarly low rates by pig urinary bladder microsomes, in strong contrast to the high debutylation rates observed for rat liver microsomes. Correspondingly, SSB induction by NDBA and 4-OH-NDBA was observed in Namalva cells with NDBA and 4-OH-NDBA in the presence of PB-induced rat liver microsomes but not with urinary bladder microsomes or without external activation. BCPN did not induce DNA-damage in Namalva cells (with or without external activation) or in rat hepatocytes. Significant induction of sister chromatid exchanges (SCEs) and micronuclei, however, was observed in Namalva cells after incubation with NDBA and BCPN. Our data suggest activation of BCPN via alpha-oxidation in the urinary bladder, even though activation rate in-vitro is so low that a positive response is not detectable by several short-term tests.  相似文献   

19.
20.
In the present study, we evaluated the inducibility of cytochrome P-450 (CYP) CYP1A, CYP2B, CYP3A, and CYP4A by beta-naphthoflavone, phenobarbital, dexamethasone, and clofibric acid, respectively, in primary hepatocyte cultures prepared from both fresh and cryopreserved rat hepatocytes. Rat hepatocytes were successfully thawed and cultured after cryopreservation in liquid nitrogen for up to 1 month. Percentage of total recovery, viable cell recovery, and final viability of the cells were 68%, 72%, and 85%, respectively. Regardless of whether they were cryopreserved or not, cultured hepatocytes exhibited near-normal morphology. Treatment of cryopreserved hepatocytes with beta-naphthoflavone caused an 8-fold increase in 7-ethoxyresorufin O-dealkylase (CYP1A1/2) activity, with an EC50 of 1.5 microM; treatment with phenobarbital caused a 26-fold increase in 7-pentoxyresorufin O-dealkylase (CYP2B1/2) activity, with an EC50 of 10 microM; treatment with dexamethasone caused a 10-fold increase in testosterone 6beta-hydroxylase (CYP3A1/2) activity, with an EC50 of 1.3 microM, whereas treatment with clofibric acid caused a 3-fold increase in lauric acid 12-hydroxylase (CYP4A1-3) activity, with an EC50 of 170 microM. The induction of CYP1A, CYP2B, CYP3A, and CYP4A enzymes by these inducers was confirmed by Western immunoblotting. The patterns of P-450 induction in cryopreserved rat hepatocytes, in terms of concentration response, reproducibility, magnitude, and specificity of response, were similar to those observed in freshly isolated hepatocytes. Additionally, the magnitude and specificity of induction was similar to that observed in vivo in rats. In conclusion, under the conditions examined, cryopreserved rat hepatocytes appear to be a suitable in vitro system for evaluating xenobiotics as inducers of P-450 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号