首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin E activates gene expression via the pregnane X receptor   总被引:15,自引:0,他引:15  
Tocopherols and tocotrienols are metabolized by side chain degradation via initial omega-oxidation and subsequent beta-oxidation. omega-Oxidation is performed by cytochrome P450 (CYP) enzymes which are often regulated by their substrates themselves. Results presented here show that all forms of Vitamin E are able to activate gene expression via the pregnane X receptor (PXR), a nuclear receptor regulating a variety of drug metabolizing enzymes. In HepG2 cells transfected with the human PXR and the chloramphenicol acetyl transferase (CAT) gene linked to two PXR responsive elements, CAT activity was most strongly induced by alpha- and gamma-tocotrienol followed by rifampicin, delta-, alpha- and gamma-tocopherol. The inductive efficacy was concentration-dependent; its specificity was underscored by a lower response when cotransfection with PXR was omitted. Up-regulation of endogenous CYP3A4 and CYP3A5 mRNA was obtained by gamma-tocotrienol, the most potent activator of PXR, with the same efficacy as with rifampicin. This points to a potential interference of individual forms of Vitamin E with the metabolism and efficacy of drugs.  相似文献   

2.
Regulation of CYP3A4 and CYP2B6 expression by liver X receptor agonists   总被引:1,自引:0,他引:1  
The liver X receptor (LXR) agonists, 24(S),25-epoxycholesterol and T0901317, were previously shown to be capable of inducing CYP3A expression in primary cultured rodent hepatocytes through activation of the pregnane X receptor (PXR). In this study, the abilities of these two LXR agonists to regulate CYP3A4 and CYP2B6 mRNA expression in primary cultures of human hepatocytes were evaluated. Treatment with 10 or 30 microM of the endogenous oxysterol, 24(S),25-epoxycholesterol, had no effect on CYP3A4 mRNA content in five preparations of primary cultured human hepatocytes, while 30 microM 24(S),25-epoxycholesterol treatment increased CYP2B6 mRNA content by approximately two-fold. By comparison, treatment with the synthetic LXR agonist, T0901317, potently increased CYP3A4 and CYP2B6 mRNA levels in the human hepatocyte cultures, producing multi-fold increases at 10nM. Using a HepG2-based transactivation assay, T0901317 activated human PXR with an EC(50) approximately 20nM, which was more than 10-fold lower than that of the potent PXR ligand, SR-12813, while treatment with 24(S),25-epoxycholesterol failed to induce reporter expression in this assay. Therefore, while 24(S),25-epoxycholesterol-mediated PXR activation and CYP3A induction does not appear to be conserved from rodent to human, T0901317 is among the most potent known activators of human PXR.  相似文献   

3.
陈洁  刘斌  袁桥玉 《天津医药》2021,49(12):1276-1281
目的 探究姜黄素对酒精性肝损伤(ALD)大鼠细胞色素P450 3A(CYP3A)的影响及其机制。方法 60只 建模成功的ALD大鼠按随机数字表法分为模型组,姜黄素低、中、高剂量组(分别灌胃40、80、160 mg/kg姜黄素)及阳 性对照组(腹腔注射200 mg/kg腺苷蛋氨酸),每组12只;对照组12只正常饲养,灌胃等体积生理盐水,连续6周。全 自动生化分析仪检测血清中丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)和碱性磷酸酶(ALP)水平;苏木精-伊红 (HE)染色观察肝脏形态变化;荧光定量聚合酶链反应(qPCR)检测肝脏组织中孕烷X受体(PXR)、组成型雄甾烷受 体(CAR)、CYP3A25 mRNA水平;Western blot检测肝脏组织中PXR、CAR蛋白水平。以大鼠原代肝细胞为研究对象, 分别用0、100、200、300、400、500 mmol/L乙醇培养细胞,取细胞增殖抑制率约为50%时的乙醇浓度进行下一步实验; 0、0.5、1.0、2.0、4.0、8.0、16.0 μmol/L姜黄素培养细胞,取最适姜黄素浓度进行后续研究。实验分为对照组、乙醇组、姜 黄素组、姜黄素+siRNA-NC 组及姜黄素+siRNA-CYP3A25 组。CCK-8 检测细胞增殖情况;qPCR 检测细胞中 CYP3A25 mRNA水平;Western blot检测细胞中PXR、CAR蛋白水平。结果 动物实验:与对照组相比,模型组血清中 ALT、AST、ALP水平升高(P<0.05);与模型组相比,姜黄素低剂量组血清中ALT、ALP水平降低,肝脏组织中PXR、 CAR mRNA和蛋白,CYP3A25 mRNA水平升高(P<0.05),姜黄素中、高剂量组血清中ALT、AST、ALP水平降低,肝脏 组织中PXR、CAR mRNA和蛋白,CYP3A25 mRNA水平升高(P<0.05);随着剂量升高,各指标逐渐恢复。细胞实验: 与对照组相比,乙醇组细胞增殖抑制率升高(P<0.05),细胞中PXR、CAR蛋白水平降低(P<0.05);与乙醇组相比,姜 黄素组细胞增殖抑制率降低(P<0.05),细胞中CYP3A25 mRNA,PXR、CAR蛋白水平升高(P<0.05);与姜黄素组相 比,姜黄素+siRNA-CYP3A25 组细胞增殖抑制率升高(P<0.05),细胞中 CYP3A25 mRNA,PXR、CAR 蛋白水平降低 (P<0.05)。结论 姜黄素可上调 CYP3A25 水平,促进药物代谢,实现对 ALD 的缓解,这一过程可能与升高 PXR、 CAR表达有关。  相似文献   

4.
5.
Rifampicin (RIF), a typical ligand of human pregnane X receptor (PXR), powerfully induces the expression of cytochrome P450 3A4 (CYP3A4) in humans. Although it is thought that RIF is not a ligand of rodent PXR, treatment with high-dose RIF (e.g. more than 20?mg/kg) increases the expression of CYP3A in the mouse liver. In this study, we investigated whether the induction of CYP3A by high-dose RIF in the mouse liver is mediated via indirect activation of mouse PXR (mPXR). The results showed that high-dose RIF increased the expression of CYP3A11 and other PXR-target genes in the liver of wild-type mice but not PXR-knockout mice. However, the results of reporter gene and ligand-dependent assembly assays showed that RIF does not activate mPXR in a ligand-dependent manner. In addition, high-dose RIF stimulated nuclear accumulation of mPXR in the mouse liver, and geldanamycin and okadaic acid attenuated the induction of Cyp3a11 and other PXR-target genes in primary hepatocytes, suggesting that high-dose RIF triggers nuclear translocation of mPXR. In conclusion, the present study suggests that high-dose RIF stimulates nuclear translocation of mPXR in the liver of mice by indirect activation, resulting in the transactivation of Cyp3a11 and other PXR-target genes.  相似文献   

6.
7.
The xenobiotic-mediated induction of three major human liver cytochrome P450 genes, CYP2B6, CYP2C9, and CYP3A4, is known to be regulated by the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). CAR and PXR are regulated, at least in part, by the glucocorticoid receptor (GR) and the hypothesis of a signal transduction cascade GR-[CAR/PXR]-P450 has been proposed. This study was aimed at testing this hypothesis in primary human hepatocytes by using the tubulin network disrupting agent colchicine. Colchicine (COL) decreased both basal and rifampicin- and phenobarbital-inducible expression of CYP2B6, CYP2C8/9, and CYP3A4. A parallel down-regulation of mRNA expression of CAR, PXR, and tyrosine aminotransferase, a prototypic gene directly regulated by GR, was observed. COL affected neither the level of GR mRNA nor ligand binding to GR. To evaluate the effect of colchicine on GR-mediated gene transactivation, HeLa cells stably or transiently transfected with a GR-responsive element-dependent luciferase reporter gene were used. COL decreased the dexamethasone-induced luciferase expression in stably transfected cell line by 50%, whereas GR transactivation in transiently transfected cells was not affected by COL. In contrast, ligand-dependent GR translocation in the human embryonic kidney 293 cell line transiently transfected with GFP-GR was inhibited by COL. We conclude that alteration of the signal transduction mediated through the GR-[CAR/PXR]-P450 cascade by colchicine is responsible for the down-regulation of CYP2C9 and CYP3A4, implicating cytoskeleton as necessary for correct functioning of this cascade under physiological conditions.  相似文献   

8.
9.
Metabolism of MDMA (3,4-methylenedioxymethamphetamine, Ecstasy) by the major hepatic drug-metabolizing enzyme cytochrome P450 3A (CYP3A), plays an important role in MDMA-induced liver toxicity. In the present study, we investigated interactions between MDMA and several therapeutic and recreational drugs on CYP3A and its regulator pregnane X receptor (PXR), using a human PXR-mediated CYP3A4-reporter gene assay, rat primary hepatocytes and microsomes. MDMA significantly inhibited hPXR-mediated CYP3A4-reporter gene expression induced by the human PXR activator rifampicin (IC50 1.26 ± 0.36 mM) or the therapeutic drugs paroxetine, fluoxetine, clozapine, diazepam and risperidone. All these drugs concentration-dependently inhibited CYP3A activity in rat liver microsomes, but in combination with MDMA this inhibition became more efficient for clozapine and risperidone. In rat primary hepatocytes that were pretreated with or without the rodent PXR activator pregnenolone 16alpha-carbonitrile (PCN), MDMA inhibited CYP3A catalytic activity with IC50 values of 0.06 ± 0.12 and 0.09 ± 0.13 mM MDMA, respectively. This decrease appeared to be due to decreased activation of PXR and subsequent decreased CYP3A gene expression, and catalytic inhibition of CYP3A activity. These data suggest that in situations of repeated MDMA use in combination with other (therapeutic) drugs, adverse drug-drug interactions through interactions with PXR and/or CYP3A cannot be excluded.  相似文献   

10.
11.
CYP3A4 is the most important drug-metabolizing enzyme that is involved in biotransformation of more than 50% of drugs. Pregnane X receptor (PXR) dominantly controls CYP3A4 inducibility in the liver, whereas vitamin D receptor (VDR) transactivates CYP3A4 in the intestine by secondary bile acids. Four major functional PXR-binding response elements of CYP3A4 have been discovered and their cooperation was found to be crucial for maximal up-regulation of the gene in hepatocytes. VDR and PXR recognize similar response element motifs and share DR3(XREM) and proximal ER6 (prER6) response elements of the CYP3A4 gene.In this work, we tested whether the recently discovered PXR response elements DR4(eNR3A4) in the XREM module and the distal ER6 element in the CLEM4 module (CLEM4-ER6) bind VDR/RXRα heterodimer, whether the elements are involved in the intestinal transactivation, and whether their cooperation with other elements is essential for maximal intestinal expression of CYP3A4.Employing a series of gene reporter plasmids with various combinations of response element mutations transiently transfected into four intestinal cell lines, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP), we found that the CLEM4-ER6 motif interacts with VDR/RXRα heterodimer and partially cooperates with DR3(XREM) and prER6 in both basal and VDR-mediated inducible CYP3A4 regulation in intestinal cells. In contrast, eNR3A4 is involved only in the basal transactivation in intestinal cells and in the PXR-mediated rifampicin-induced transactivation of CYP3A4 in LS174T intestinal cells.We thus describe a specific ligand-induced VDR-mediated transactivation of the CYP3A4 gene in intestinal cells that differs from PXR-mediated CYP3A4 regulation in hepatocytes.  相似文献   

12.
The pregnane X receptor (PXR) interacts with a vast array of structurally dissimilar chemicals and confers induction of several major types of drug metabolizing enzymes such as cytochrome P450s (CYP). We previously reported that the expression of PXR was markedly increased in rats treated with clofibrate and perfluorodecanoic acid (PFDA). The present study was undertaken to test the hypothesis that induced expression of PXR increases PXR ligand-dependent induction on CYP3A23. Rat hepatocytes were treated with clofibrate or PFDA individually, or along with PXR ligand pregnenolone 16alpha-carbonitrile (PCN), and the levels of PXR and CYP3A23 were determined by Western blots. Both clofibrate and PFDA markedly increased the expression of PXR with PFDA being more potent, and the induction was abolished by actinomycin D, an inhibitor for mRNA synthesis. As expected, PCN alone markedly induced the expression of CYP3A23. Interestingly, co-treatment with clofibrate enhanced the induction, whereas co-treatment with PFDA suppressed it. Clofibrate and PFDA represent multi-classes of chemicals called peroxisome proliferators including many therapeutic agents and industrial pollutants. The opposing effects of clofibrate and PFDA on the PCN-induced expression of CYP3A23 suggest that peroxisome proliferators likely increase the expression of PXR but differentially alter its ligand-dependent induction. The interaction between PXR inducer and ligand provides a novel mechanism on how functionally and structurally distinct chemicals cooperatively regulate the expression of xenobiotic-metabolizing enzymes and transporters.  相似文献   

13.
Benzodiazepines have wide-spread used in pharmacotherapy for their anxiolytic, myorelaxant, hypnotic, amnesic and anticonvulsive properties. Despite benzodiazepines are used in clinics over 50 years, they have not been surprisingly tested for capability to induce major drug-metabolizing cytochromes P450. In the current study, we have examined the potency of Alprazolam, Bromazepam, Chlordiazepoxide, Clonazepam, Diazepam, Lorazepam, Medazepam, Midazolam, Nitrazepam, Oxazepam, Tetrazepam and Triazolam to induce CYP1A2 and CYP3A4 in primary cultures of human hepatocytes. Benzodiazepines were tested in therapeutic concentrations and in concentrations corresponding to their plasma levels in intoxicated patients. We found weak but significant induction of CYP3A4 mRNA by Midazolam and Medazepam, while other benzodiazepines did not induce CYP3A4 expression. None of the tested compounds induced CYP1A2 mRNA in three independent human hepatocytes cultures. In addition, employing gene reporter assays with transiently transfected hepatocarcinoma cells, we found that tested benzodiazepines did not activate aryl hydrocarbon receptor (AhR), whereas Midazolam and Medazepam slightly activated pregnane X receptor (PXR). Consistently, two-hybrid mammalian assay using hybrid fusion plasmids GAL4-PXR ligand-binding domain (LBD) and VP16-SRC-1-receptor-interacting domain (RID) confirmed PXR activation by Midazolam and Medazepam. In conclusion, Alprazolam, Bromazepam, Chlordiazepoxide, Clonazepam, Diazepam, Lorazepam, Nitrazepam, Oxazepam, Tetrazepam and Triazolam can be considered as safe drugs in term of their inability to induce PXR- and AhR-dependent cytochrome P450 enzymes CYP1A2 and CYP3A4. Medazepam and Midazolam slightly activated pregnane X receptor and displayed weak potency to induce CYP3A4 mRNA in human hepatocytes.  相似文献   

14.
15.
16.
Li XY  Zhang C  Wang H  Ji YL  Wang SF  Zhao L  Chen X  Xu DX 《Toxicology letters》2008,179(2):71-77
With embryonic development, fetal hepatocytes gradually express various types of cytochromes P450 (CYPs) that play a key role in the detoxification of xenobiotics. In the present study, we showed that maternal lipopolysaccharide (LPS) exposure downregulated cyp3a11 mRNA and CYP3A protein in fetal liver. The increased level of TNF-alpha protein in fetal liver, transferred from either the maternal circulation or amniotic fluid, seems to be associated with LPS-induced downregulation of cyp3a11 mRNA and CYP3A protein in fetal liver. Interestingly, a low dose LPS (10mug/kg) pretreatment attenuated LPS-induced downregulation of cyp3a11 mRNA and CYP3A protein in fetal liver. Correspondingly, a low dose LPS pretreatment attenuated LPS-induced downregulation of pregnane X receptor (pxr) in fetal liver. Additional experiment showed that a low dose LPS pretreatment decreased the level of TNF-alpha in maternal serum and amniotic fluid and counteracted LPS-induced expression of TNF-alpha mRNA in maternal liver and placenta. Although a low dose LPS pretreatment alleviated LPS-induced increase in TNF-alpha in fetal liver, it had little effect on TNF-alpha mRNA in fetal liver. These results suggest that a low dose LPS pretreatment protects fetuses against LPS-induced downregulation of hepatic cyp3a11 and pxr expression through the repression of maternally sourced TNF-alpha production.  相似文献   

17.
OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.  相似文献   

18.
A human pregnane X receptor (PXR) reporter-gene assay was established and validated using 19 therapeutic agents known to be clinical CYP3A4 inducers, 5 clinical non-inducers, and 6 known inducers in human hepatocytes. The extent of CYP3A4 induction (measured as RIF ratio in comparison to rifampicin) and EC50 was obtained from the dose-response curve. All of the clinical inducers (19/19) and human hepatocyte inducers (6/6) showed positive responses in the PXR assay. One out of five clinical non-inducers, pioglitazone, also showed a positive response. An additional series of 18 commonly used drugs with no reports of clinical induction was also evaluated as putative negative controls. Sixteen of these were negative (89%), whereas two of these, flutamide and haloperidol showed 16-fold (RIF ratio 0.79) and 10-fold (RIF ratio 0.48) maximal induction, respectively in the reporter-gene system. Flutamide and haloperidol were further demonstrated to cause CYP3A4 induction in human cryopreserved hepatocytes based on testosterone 6beta-hydroxylation activity. The induction potential index calculated based on the maximum RIF ratio, EC50, and in vivo maximum plasma concentration was used to predict the likelihood of CYP3A4 induction in humans. When the induction potential index is greater than 0.08, the compound is likely to cause induction in humans. A high-throughput screening strategy was developed based on the validation results at 1microM and 10microM for the same set of drugs. A RIF ratio of 0.4 was set as more practical screening cut-off to minimize the possibility of generating false positives. Thus, a tiered approach was implemented to use the human PXR reporter-gene assay from early lead optimization to late lead characterization in drug discovery.  相似文献   

19.
Pesticides are a large group of structurally diverse toxic chemicals. The toxicity may be modified by cytochrome P450 (CYP) enzyme activity. In the current study, we have investigated effects and mechanisms of 24 structurally varying pesticides on human CYP expression. Many pesticides were found to efficiently activate human pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Out of the 24 compounds tested, 14 increased PXR- and 15 CAR-mediated luciferase activities at least 2-fold. While PXR was predominantly activated by pyrethroids, CAR was, in addition to pyrethroids, well activated by organophosphates and several carbamates. Induction of CYP mRNAs and catalytic activities was studied in the metabolically competent, human derived HepaRG cell line. CYP3A4 mRNA was induced most powerfully by pyrethroids; 50 μM cypermethrin increased CYP3A4 mRNA 35-fold. CYP2B6 was induced fairly equally by organophosphate, carbamate and pyrethroid compounds. Induction of CYP3A4 and CYP2B6 by these compound classes paralleled their effects on PXR and CAR. The urea herbicide diuron and the triazine herbicide atrazine induced CYP2B6 mRNA more than 10-fold, but did not activate CAR indicating that some pesticides may induce CYP2B6 via CAR-independent mechanisms. CYP catalyzed activities were induced much less than the corresponding mRNAs. At least in some cases, this is probably due to significant inhibition of CYP enzymes by the studied pesticides. Compared with human CAR activation and CYP2B6 expression, pesticides had much less effect on mouse CAR and CYP2B10 mRNA. Altogether, pesticides were found to be powerful human CYP inducers acting through both PXR and CAR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号