首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunophilin ligands, including cyclosporin-A (CsA), have been shown to be neuroprotective in experimental models of traumatic brain injury (TBI) and to attenuate the severity of traumatic axonal injury. Prior studies have documented CsA treatment to reduce essential components of posttraumatic axonal pathology, including impaired axoplasmic transport, spectrin proteolysis, and axonal swelling. However, the effects of CsA administration on axonal function, following TBI, have not been evaluated. The present study assessed the effects of CsA treatment on compound action potentials (CAPs) evoked in corpus callosum of adult rats following midline fluid percussion injury. Rats received a 20 mg/kg bolus of CsA, or cremaphor vehicle, at either 15 min or 1 h postinjury, and at 24 h postinjury CAP recording was conducted in coronal brain slices. To elucidate how injury and CsA treatments affect specific populations of axons, CAP waveforms generated largely by myelinated axons (N1) were analyzed separately from the CAP signal, which predominantly reflects activity in unmyelinated axons (N2). CsA administration at 15 min postinjury resulted in significant protection of CAP area, and this effect was more pronounced in N1, than in the N2, CAP component. This treatment also significantly protected against TBI-induced reductions in high-frequency responding of the N1 CAP signal. In contrast, CsA treatment at 1 h did not significantly protect CAPs but was associated with atypical waveforms in N1 CAPs, including decreased CAP duration and reduced refractoriness. The present findings also support growing evidence that myelinated and unmyelinated axons respond differentially to injury and neuroprotective compounds.  相似文献   

2.
Axonal injury is consistently observed after traumatic brain injury (TBI). Prior research has extensively characterized the post-TBI response in myelinated axons. Despite evidence that unmyelinated axons comprise a numerical majority of cerebral axons, pathologic changes in unmyelinated axons after TBI have not been systematically studied. To identify morphologic correlates of functional impairment of unmyelinated fibers after TBI, we assessed ultrastructural changes in corpus callosum axons. Adult rats received moderate fluid percussion TBI, which produced diffuse injury with no contusion. Cross-sectional areas of 13,797 unmyelinated and 3,278 intact myelinated axons were stereologically measured at survival intervals from 3 hours to 15 days after injury. The mean caliber of unmyelinated axons was significantly reduced at 3 to 7 days and recovered by 15 days, but the time course of this shrinkage varied among the genu, mid callosum, and splenium. Relatively large unmyelinated axons seemed to be particularly vulnerable. Injury-induced decreases in unmyelinated fiber density were also observed, but they were more variable than caliber reductions. By contrast, no significant morphometric changes were observed in myelinated axons. The finding of a preferential vulnerability in unmyelinated axons has implications for current concepts of axonal responses after TBI and for development of specifically targeted therapies.  相似文献   

3.
A prospective, multicenter, randomized trial did not demonstrate improved outcomes in severe traumatic brain injured patients treated with mild hypothermia [Clifton, G.L., Miller, E.R., Choi, S.C., Levin, H.S., McCauley, S., Smith, K.R., Jr., Muizelaar, J.P., Wagner, F.C., Jr., Marion, D.W., Luerssen, T.G., Chesnut, R.M., Schwartz, M., 2001. Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med. 344, 556-563.]. However, the mean time to target temperature was over 8 h and patient inclusion was based on Glasgow Coma Scale score so brain pathology was likely diverse. There remains significant interest in the benefits of hypothermia after traumatic brain injury (TBI) and, in particular, traumatic axonal injury (TAI), which is believed to significantly contribute to morbidity and mortality of TBI patients. The long-term beneficial effect of mild hypothermia on TAI has not been established. To address this issue, we developed an in vivo rat optic nerve stretch model of TAI. Adult male Sprague-Dawley rats underwent unilateral optic nerve stretch at 6, 7 or 8 mm piston displacement. The increased number of axonal swellings and bulbs immunopositive for non-phosphorylated neurofilament (SMI-32) seen four days after injury was statistically significant after 8 mm displacement. Ultrastructural analysis 2 weeks after 8 mm displacement revealed a 45.0% decrease (p < 0.0001) in myelinated axonal density in the optic nerve core. There was loss of axons regardless of axon size. Immediate post-injury hypothermia (32 °C) for 3 h reduced axonal degeneration in the core (p = 0.027). There was no differential protection based on axon size. These results support further clinical investigation of temporally optimized therapeutic hypothermia after traumatic brain injury.  相似文献   

4.
A contested report of sex differences in the size of the splenium of the corpus callosum in humans prompted the present examination of the corpus callosum in the rat. We have previously found that sex differences can vary with the rearing environment. Consequently, male and female rats were raised from weaning to 55 days of age in either a complex or an isolated environment. There were no sex differences in the size of the corpus callosum in sagittal cross section in these rats; however, rats of both sexes had a larger posterior third of the corpus callosum if they were raised in the complex environment. Because the corpus callosum continues to grow in size past 55 days of age, we examined socially housed rats at 113 days and again found no sex differences. The splenium was examined with electron microscopy in complex and isolation reared rats at 55 days of age. The ultrastructural analysis revealed differences at were not apparent from gross size measures. Females had more unmyelinated axons regardless of environment, and females from the complex environment had more myelinated axons than comparably housed males. In contrast, males in the complex environment had larger myelinated axons than females. Rats of both sexes from the complex environment had larger and more unmyelinated axons than isolated rats. In addition in myelinated axons, plasticity in the females occurred through changes in axon number and in males, through axon size. Thus sex differences exist in axonal number and size and the environment influences these differences.  相似文献   

5.
MYELINATION OF THE MOUSE CORPUS CALLOSUM   总被引:1,自引:0,他引:1  
Sturrock R. R. (1980) Neuropathology and Applied Neurobiology 6, 415–420
Myelination of the mouse corpus callosum
Myelination has been studied in the corpus callosum of the mouse brain between birth and 240 days-of-age. Myelin sheaths were first seen at 11 days. The most rapid phase of myelination occurred between 14 and 45 days when 13–5% of axons were myelinated, but myelination continued at a reduced rate up to 240 days when 28% of axons were myelinated. The mean diameter of unmyelinated axons was more or less constant throughout the study with an overall mean diameter of 0–25 ± 0–01 μn. Similarly myelinated axon diameter showed little variation with age with a mean diameter of 0–46 ± 001 μn. This suggests that in the corpus callosum axons do not increase in size until they begin to myelinate.  相似文献   

6.
Traumatic axonal injury (TAI) contributes to morbidity and mortality following traumatic brain injury (TBI). Single-label immunocytochemical studies employing antibodies to neurofilament compaction (NFC), RM014, and antibodies to APP, a marker of impaired axonal transport (AxT), have shown that TAI involves both NFC and disruption of AxT. Although it may be hypothesized that both events occur within the same injured axon, this has not been confirmed. To determine the relationship between NFC and impaired AxT, dual-label immunofluorescence was employed. To compare and contrast specific changes associated with these two markers of TAI, single-label electron microscopy was also used. Rats were subjected to an impact acceleration injury (30 min-6 h survival), and their brains were prepared for dual-label immunofluorescence and single-label electron microscopy. APP and RM014 were consistently found in two distinct classes of TAI. One, which showed only RM014 immunoreactivity, was thin and elongate, was sometimes vacuolated, and revealed little progressive change over time. The second was distinguished by focal axonal swellings containing APP immunoreactivity alone in small-caliber axons or in combination with RM014 immunoreactivity in large-caliber axons. These swellings were localized to either nodal or internodal loci and underwent progressive swelling over time, ultimately leading to secondary axotomy. Ultrastructural examination of these two classes of TAI revealed NFC together with mitochondrial dilation without organelle pooling in the RM014 single-labeled axons. However, the APP single-labeled small-caliber axons and APP/RM014 dual-labeled large-caliber axons revealed a progressive accumulation of organelles associated with increased axonal swelling over time. In contrast to previous thought, it now appears that NFC may occur independent of impaired AxT in TAI. This finding underscores the complexity of TAI, suggesting the need for multiple immunocytochemical approaches to fully assess the overall axonal response to TBI.  相似文献   

7.
The number, types, and distribution of distinct classes of axons and glia in four cerebral commissures of the adult rhesus monkey (Macaca mulatta) were determined using electron microscopic and immunocytochemical methods. The two neocortical commissures, the corpus callosum, and the anterior commissure contain small but cytologically distinct archicortical components: the hippocampal commissure, which lies ventral to the splenium of the corpus callosum, and the basal telencephalic commissure, which forms a small crescent at the anterior margin of the anterior commissure. Each archicortical pathway is delineated from the adjacent neocortical commissure by a glial capsule. The glia cells that form this border are immunoreactive with antisera directed against glial fibrillary acidic protein (GFAP) and issue long processes that form numerous desmosomal junctions with one another. Braids of these glial processes envelop axonal fascicles within the archicortical commissures. In contrast, the GFAP-positive cells of the corpus callosum and anterior commissure are randomly distributed cells with relatively short stellate processes that do not form boundaries around axon fascicles. Quantitative electron microscopic analysis reveals that approximately 60 million axons connect the two cerebral hemispheres: the corpus callosum contains 56.0 million +/- 3.8 million axons (n = 8), the anterior commissure contains 3.15 million +/- 0.24 million axons (n = 8), the hippocampal commissure has 237,000 axons +/- 31,000 (n = 6), and the basal telencephalic commissure has 193,000 axons +/- 28,000 (n = 5). The number of axons is not directly proportional to the cross-sectional area in any of the commissures because of variation in axonal composition. On the basis of an estimate of approximately 3 billion neurons in the monkey cortex (Shariff, '53), we estimate that between 2 and 3% of all cortical neurons project to the opposite cerebral hemisphere. Subregions of the corpus callosum as well as each of the other commissures consist of characteristic subsets of five classes of axons and contain different proportions of myelinated to unmyelinated fibers. The largest myelinated axons and the smallest proportion of unmyelinated axons (approximately 6%) are found in regions of the corpus callosum that carry projections from primary sensory cortices, whereas the smallest myelinated axons and largest proportion of unmyelinated axons (approximately 30%) are found in regions of the corpus callosum that carry projections from association cortices. Axon composition in the anterior commissure is uniform and resembles that of callosal sectors that contain association projections.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The size of the female rat corpus callosum decreases in response to pubertal ovarian hormone exposure, but the underlying changes in axonal composition have not been examined. In the current study, animals underwent ovariectomy or sham surgery at day 20, and the number of myelinated and unmyelinated axons were examined in young adulthood (2 months) using electron microscopy. Ovariectomized animals had a greater number of myelinated axons compared to intact animals, while total axon number was not affected. Ovarian hormone exposure seems to limit the number of axons that become myelinated in the splenium, while not affecting the number of axons crossing through the region.  相似文献   

9.
A constriction injury to the sciatic nerve of the rat produces a painful peripheral neuropathy that is similar to the conditions seen in man. The pathology of the sciatic nerve in these animals was examined at 10 days postinjury, when the abnormal pain sensations are near maximal severity. The nerves were examined with (1) complete series of silver-stained longitudinal sections of pieces of the nerve (3 cm or more) that contained the constriction injury in the center, (2) toluidine blue-stained semithin sections taken at least 1 cm proximal and 1 cm distal to the constriction, and (3) EM sections taken adjacent to those stained with toluidine blue. One centimeter or more proximal to the constriction, both myelinated and unmyelinated axons were all normal. Nearer to the constriction, extensive degeneration of myelinated axons became increasingly common, as did signs of endoneurial edema. Distal to the constriction, the nerve was uniformly edematous and full of myelinic degeneration. There was a profound loss of large myelinated axons and a distinctly less severe loss of small myelinated and unmyelinated axons. These observations show that at 10 days postinjury the constriction produces a partial and differential deafferentation of the sciatic nerve's territory. The absence of degeneration in the nerve 1 cm proximal to the constriction indicates the survival of the primary afferent neurons whose axons are interrupted.  相似文献   

10.
Traumatic axonal injury (TAI) is thought to be a major contributor to cognitive dysfunction following traumatic brain injury (TBI), however TAI is difficult to diagnose or characterize non-invasively. Diffusion tensor imaging (DTI) has shown promise in detecting TAI, but direct comparison to histologically-confirmed axonal injury has not been performed. In the current study, mice were imaged with DTI, subjected to a moderate cortical controlled impact injury, and re-imaged 4-6 h and 24 h post-injury. Axonal injury was detected by amyloid beta precursor protein (APP) and neurofilament immunohistochemistry in pericontusional white matter tracts. The severity of axonal injury was quantified using stereological methods from APP stained histological sections. Two DTI parameters - axial diffusivity and relative anisotropy - were significantly reduced in the injured, pericontusional corpus callosum and external capsule, while no significant changes were seen with conventional MRI in these regions. The contusion was easily detectable on all MRI sequences. Significant correlations were found between changes in relative anisotropy and the density of APP stained axons across mice and across subregions spanning the spatial gradient of injury. The predictive value of DTI was tested using a region with DTI changes (hippocampal commissure) and a region without DTI changes (anterior commissure). Consistent with DTI predictions, there was histological detection of axonal injury in the hippocampal commissure and none in the anterior commissure. These results demonstrate that DTI is able to detect axonal injury, and support the hypothesis that DTI may be more sensitive than conventional imaging methods for this purpose.  相似文献   

11.
Traumatic axonal injury (TAI) is a consistent component of traumatic brain injury (TBI), and is associated with much of its morbidity. Increasingly, it has also been recognized as a major pathology of mild TBI (mTBI). In terms of its pathogenesis, numerous studies have investigated the susceptibility of the nodes of Ranvier, the paranode and internodal regions to TAI. The nodes of Ranvier, with their unique composition and concentration of ion channels, have been suggested as the primary site of injury, initiating a cascade of abnormalities in the related paranodal and internodal domains that lead to local axonal swellings and detachment. No investigation, however, has determined the effect of TAI upon the axon initial segment (AIS), a segment critical to regulating polarity and excitability. The current study sought to identify the susceptibility of these different axon domains to TAI within the neocortex, where each axonal domain could be simultaneously assessed. Utilizing a mouse model of mTBI, a temporal and spatial heterogeneity of axonal injury was found within the neocortical gray matter. Although axonal swellings were found in all domains along myelinated neocortical axons, the majority of TAI occurred within the AIS, which progressed without overt structural disruption of the AIS itself. The finding of primary AIS involvement has important implications regarding neuronal polarity and the fate of axotomized processes, while also raising therapeutic implications, as the mechanisms underlying such axonal injury in the AIS may be distinct from those described for nodal/paranodal injury.  相似文献   

12.
There is great concern that one mild traumatic brain injury (mTBI) predisposes individuals to an exacerbated response with a subsequent mTBI. Although no mechanism has been identified, mounting evidence suggests traumatic axonal injury (TAI) plays a role in this process. By using a cell culture system, a threshold of mild TAI was found where dynamic stretch of cortical axons at strains lower than 5% induced no overt pathological changes. However, the axons were found to display an increased expression of sodium channels (NaChs) by 24 hr. After a second, identical mild injury, pathologic increases in [Ca2+]i were observed, leading to axon degeneration. The central role of NaChs in this response was demonstrated by blocking NaChs with tetrodotoxin prior to the second injury, which completely abolished postinjury increases in [Ca2+]i. These data suggest that mild TAI induces a form of sodium channelopathy on axons that greatly exaggerates the pathophysiologic response to subsequent mild injuries. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Polyethylene glycol(PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays(MEA) were used to measure mean firing rate(MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups(P 0.01, P 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.  相似文献   

14.
Disulfiram is an aldehyde dehydrogenase inhibitor used for the treatment of alcohol dependence and of cocaine addiction. It has been demonstrated that subchronic administration of disulfiram or N,N-diethyldithiocarbamate (DEDTC), the main derivative of disulfiram, to rats can produce central-peripheral distal axonopathy. However, few data regarding the axonal effects of these compounds in the central nervous system exist. Our previous studies have revealed DEDTC-induced axonal damage in the mouse brain during the course of postnatal development, together with alterations in axonal pathfinding and in the myelination process, with partial recovery during the post-treatment period. In order to gather new data about how this axonal damage and recovery occurs in the central nervous system, we performed an ultrastructural analysis of the axons located in the corpus callosum from mice treated with DEDTC during postnatal development. The axonal caliber throughout the axonal area, the maximum axonal diameter, the maximum fiber diameter, and the axonal circularity, at different postnatal stages [from postnatal day (P)9 to P30], were analyzed. In addition, parameters related to the myelinization process (number of myelinated axons, sheath thickness, and the ratio of myelinated axons to total axons) were evaluated. A reduction in the average value of axonal caliber during treatment and a delay in the axonal myelination process were detected. Whereas early recovery of individual axons occurred after treatment (P22), complete recovery of myelinated axons occurred at late postnatal stages (P42). Therefore, chronic treatment with dithiocarbamates requires periods of rest to encourage the recovery of myelinated axons.  相似文献   

15.
In this study, the myelinated axons of the rostrum, genu, truncus and splenium parts of the corpus callosum were counted in the human brain by using a camera lucida. The numerical densities of these axons were compared with each other by means of quantitative analytical statistical methods. The number of myelinated axons of genu and truncus of the corpus callosum were found to be highest in number and they were nearly the same with each other. However, number of the myelinated axons of splenium was found to be lower in number, when compared with the other parts of corpus callosum.  相似文献   

16.
In this study, the myelinated axons of the rostrum, genu, truncus and splenium parts of the corpus callosum were counted in the human brain by using a camera lucida. The numerical densities of these axons were compared with each other by means of quantitative analytical statistical methods. The number of myelinated axons of genu and truncus of the corpus callosum were found to be highest in number and they were nearly the same with each other. However, number of the myelinated axons of splenium was found to be lower in number, when compared with the other parts of corpus callosum.  相似文献   

17.
Traumatic brain injury (TBI) in animals and man generates widespread axonal injury characterized by focal axolemmal permeability changes, induction of calpain-mediated proteolysis, and neurofilament side-arm modification associated with neurofilament compaction (NFC) evolving to axonal disconnection. Recent observations have suggested that moderate hypothermia is neuroprotective in several models of TBI. Nevertheless, the pathway by which hypothermia prevents traumatic axonal injury (TAI) is still a matter of debate. The present study was conducted to evaluate the effects of moderate, early posttraumatic hypothermia on calpain-mediated spectrin proteolysis (CMSP), implicated in the pathogenesis of TAI. Using moderate (32 degrees C) hypothermia of 90 min duration without rewarming, the density of CMSP immunoreactive/damaged axons was quantified via LM analysis in vulnerable brain stem fiber tracts of hypothermic and normothermic rats subjected to impact acceleration TBI (90 min postinjury survival). To assess the influence of posthypothermic rewarming, a second group of animals was subjected to 90 min of hypothermia followed by 90 min of rewarming to normothermic levels when CMSP was analyzed to detect if any purported CMSP prevention persisted (180 min postinjury survival). Additionally, to determine if this protection translated into comparable cytoskeletal protection in the same foci showing decreased CMSP, antibodies targeting altered/compacted NF subunits were also employed. Moderate hypothermia applied in the acute postinjury period drastically reduced the number of damaged axons displaying CMSP at both time points and significantly reduced NFC immunoreactivity at 180 min postinjury. These results suggest that the neuroprotective effects of hypothermia in TBI are associated with the inhibition of axonal/cytoskeletal damage.  相似文献   

18.
To provide a better insight into the ultrastructural pathology of herpetic neuropathy, quantitative studies were made on cutaneous spinal nerves of normal rabbits and rabbits intradermally infected with alphaherpesvirus saimiri (alpha HVS) isolate KM 322. Marked reductions in the numbers and densities of myelinated and unmyelinated axons were found in the nerves of the rabbits killed 17 and 45 days after the infection. Abnormalities in the size distribution of unmyelinated axons were seen at 45 days post-inoculation where axonal sprouting caused a noticeable shift in the fiber population. Two years after virus inoculation reduction in unmyelinated axons and abnormalities in the fiber size distributions characterized by smaller diameters of both myelinated and unmyelinated axons were detected. In these nerves conspicuous fibrosis caused a significant increase in the endoneurial area. At this stage of the infection regenerative changes involving myelinated fibers were found. Since attempts to detect spontaneous reactivation of alpha HVS infection in rabbits have been unsuccessful, the finding of regeneration 2 years after exposure seems in agreement with the view that regenerated myelinated fibers never attain their original size. In the present study although both types of fibers were damaged, morphometric data suggest that unmyelinated axons were more severely affected. Whether this seemingly selective involvement was due to spreading of the virus between axons sharing the same Schwann cell subunit remains to be proved.  相似文献   

19.
Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate was 3.7 mm/day with no obvious differences between myelinated and unmyelinated axons. This contrasted with previous claims of two to three times faster regeneration rates of unmyelinated as compared to myelinated fibres. The initial delay was 0.55 days. Fewer small neurons were labelled relative to large neurons after crush and regeneration than in controls, indicating that regeneration of small neurons was less complete than that of large ones. This contrasted with the fact that unmyelinated axons in the regenerated sural nerve after 74 days were only slightly reduced.  相似文献   

20.
Little is known about microglial activation and macrophage localization after diffuse brain injury (DBI). DBI-mediated perisomatic traumatic axonal injury (TAI) was recently identified within the neocortex, hippocampus, and thalamus, providing an opportunity to characterize immune cell responses within diffusely injured brain loci uncomplicated by contusion. By using moderate midline/central fluid percussion injury, microglial/macrophage responses were examined with antibodies targeting immune cell phenotypes and amyloid precursor protein, a marker of TAI. Parallel assessments of blood-brain barrier alterations were also performed. Within 6 to 48 hours postinjury, microglial activation within injured loci was observed, whereas microglia within non-TAI-containing regions maintained a resting phenotype. Microglial activation shared a spatiotemporal relationship with TAI though no clear interactions were observed. By 7 to 28 days postinjury, activated microglia contained myelin debris, yet revealed limited aggregation. Immunophenotypic macrophages were also localized to injured loci. Select macrophages approximated somatic membranes of perisomatically axotomized neurons with evidence of bouton disruption. No causality was established between blood-brain barrier alterations and these inflammatory responses. These findings indicate rapid, yet initially nonspecific, and persistent microglial/macrophage responses to DBI. DBI-mediated inflammatory responses suggest further expansion of traumatic brain injury histopathologic evaluations to identify neuroinflammation indicative of diffuse pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号