首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 421 毫秒
1.
目的探索适合海藻糖和葡萄糖联合负载红细胞的温度,为冷冻干燥红细胞提供基础。方法分别采用0mol/L、0.125mol/L、0.25mol/L、0.5mol/L和1mol/L的海藻糖联合葡萄糖在4℃、25℃和37℃负载红细胞6h。然后检测负载红细胞内海藻糖和葡萄糖的浓度。结果4℃和25℃下,海藻糖和葡萄糖联合负载红细胞后,进入红细胞的海藻糖和葡萄糖含量相差不大。37℃下负载红细胞后,负载入红细胞的海藻糖和葡萄糖含量均较4℃组明显增高。结论37℃下负载红细胞,更有利于海藻糖和葡萄糖进入细胞内,能够满足冰冻干燥红细胞的负载要求。  相似文献   

2.
海藻糖和葡萄糖联合负载红细胞的效果评价   总被引:1,自引:0,他引:1  
目的探讨海藻糖和葡萄糖联合负载红细胞的效果,为冷冻干燥红细胞提供新的保存剂。方法分别采用0、0.125、0.25、0.5和1mol/L的海藻糖、葡萄糖以及海藻糖联合葡萄糖37℃负载红细胞6h。分别检测负载后红细胞内海藻糖和葡萄糖的浓度。结果负载液中糖类浓度为0.125、0.25和0.5mol/L时,联合负载组与海藻糖或葡萄糖组负载后红细胞内的海藻糖和葡萄糖浓度的差异无统计学意义(P〉0.05)。而负载液糖类浓度达到1mol/L时,联合负载组红细胞内海藻糖和葡萄糖的浓度明显低于海藻糖和葡萄糖单独负载组,差异有统计学意义(P〈0.05)。结论浓度小于1mol/L时,海藻糖联合葡萄糖负载红细胞并不影响海藻糖和葡萄糖进入红细胞内,可以满足红细胞冷冻干燥的要求。  相似文献   

3.
人红细胞冻干前负载海藻糖最佳化研究   总被引:1,自引:0,他引:1  
为更好的实现海藻糖在红细胞冻干保存中的保护作用,关键是克服质膜对海藻糖的非渗透性,使胞质内海藻糖达到有效浓度。本研究的目的是通过对人红细胞负载海藻糖的规律性研究,筛选出海藻糖负载的最佳负载条件并评价海藻糖负载对红细胞各项理化指标的影响。在不同孵育温度(4、22和37℃)、孵育时间(0、2、4、6、8、10小时)、不同负载缓冲液浓度(0、200、400、600、800、1000mmol/L)条件下检测新鲜红细胞对海藻糖的成功负载量及红细胞各项理化指标;在固定负载条件下,对新鲜红细胞和4℃保存72小时红细胞海藻糖负载、游离血红蛋白(FHb)、血红蛋白(Hb)和红细胞平均体积(MCV)进行了比较。结果表明:红细胞对海藻糖的负载与孵育温度、时间及负载缓冲液海藻糖浓度密切相关。随着温度的升高、时间的延长和负载缓冲液海藻糖浓度的增加,红细胞对海藻糖的摄取量也随之增加。在海藻糖负载最佳条件下,新鲜红细胞和4℃保存72小时红细胞的胞内海藻糖浓度、FHb浓度分别为65.505±6.314mmol/L、66.2±5.002mmol/L和6.567±2.568g/L、16.168±3.922g/L。结论:红细胞负载海藻糖的最佳条件是采用新鲜红细胞,在37℃条件下、海藻糖浓度为800mmol/L的负载缓冲液中孵育8小时,这一条件可使胞内海藻糖达到有效浓度,并保持红细胞细胞理化性质稳定和膜完整性。  相似文献   

4.
人红细胞对糖类摄取的规律性研究   总被引:2,自引:0,他引:2  
人红细胞冰冻干燥保存在临床应用中具有重要意义.一些糖类,特别是海藻糖,能提高一些低等生物或细胞对干燥环境的耐受性,但如何将糖类导入细胞内又是一个挑战.本研究探讨人红细胞对糖类摄取的规律性.于不同温度(4、25和37℃)、不同浓度(0、0.2、0.4、0.6、0.8、1 mol/L)及不同培育时间(1、3、5、7、9小时)条件下检测了红细胞对海藻糖和葡萄糖的吸收率及游离血红蛋白量,并测定了红细胞变性指数.结果表明:随着温度的上升和细胞外糖浓度的增加,红细胞的糖吸收率也随之上升,细胞内的海藻糖和葡萄糖浓度分别可以达到30 mmnol/L和40 mmol/L以上.但孵育时间对海藻糖和葡萄糖的吸收率影响不同,随着时间的延长,细胞内海藻糖浓度呈先升高而后降低的趋势,而葡萄糖吸收率则呈稳定上升的趋势.但是糖吸收过程对红细胞的游离血红蛋白和变形性产生不利的影响,尤其是海藻糖,这主要来源于渗透压伤害.结论:红细胞的糖吸收率与孵育温度、外源糖浓度和孵育时间的关系密切,而且在一定条件下的糖吸收效率也较高,但此过程对红细胞有一定的伤害,这可能会影响糖类在红细胞冰冻干燥保存研究中的应用前景.今后的研究工作应集中于如何处理细胞伤害和糖吸收效率的关系.  相似文献   

5.
目的研究影响海藻糖负载多种因素,探讨人红细胞对负载海藻糖的影响因素及规律性。方法根据红细胞海藻糖的负载量衡量,利用硫酸-蒽酮法检测红细胞在不同胞外海藻糖浓度、不同孵育时间、不同孵育温度的条件下对海藻糖的摄取量,并检测红细胞溶血程度。结果红细胞内海藻糖在负载液中的浓度<1000 mmol/L、负载时间<9 h、负载温度<37℃条件下,海藻糖的摄取量呈正相关。在负载液中浓度为0、200、400、600、800、1000mmol/L时,红细胞内海藻糖浓度分别为0、10.03、14.5、41.7、55.3和71.6 mmol/L;在温度为37℃时红细胞在浓度为1 000 mmol/L负载液中分别孵育0、1、3、5、7、9 h,胞内海藻糖浓度分别为0、5.73、6.11、55.7、和61.2 mmol/L。对温度、时间和胞外海藻糖浓度的统计分析显示,温度对负载后胞内海藻糖浓度的影响最大(P<0.01)。结论37℃、采用新鲜红细胞在海藻糖浓度为800 mmol/L的负载缓冲液中孵育7 h能有效摄取海藻糖,使之达到对红细胞起到冻干保护作用的胞内海藻糖理论浓度。  相似文献   

6.
二甲基亚砜在人红细胞冻干前负载海藻糖过程中的作用   总被引:1,自引:1,他引:1  
目的研究人红细胞冻干保存前负载海藻糖过程中二甲基亚砜(DMSO)的作用,优化红细胞负载缓冲液配方。方法实验组以浓缩红细胞25份(10ml/份)负载海藻糖,负载缓冲液中添加DMSO;对照组25份负载海藻糖,负载缓冲液中未添加DMSO。37℃条件下孵育8h后,分别检测两组红细胞胞内海藻糖负载量、胞外游离血红蛋白水平、ATP含量、红细胞变形性,并利用流式细胞术检测负载后红细胞膜的完整性。结果实验组与对照组红细胞的胞内海藻糖负载量分别为(57.033±4.883)mmol/L,(49.184±4.858)mmol/L(P<0.05);胞外游离血红蛋白浓度分别为(4.131±0.473)g/L,(5.410±0.501)g/L(P<0.05);ATP浓度分别为(3.874±0.426)μmol/g Hb,(3.358±0.306)μmol/g Hb(P<0.05);红细胞变形指数分别为0.330±0.0211,0.277±0.0232(P<0.01);红细胞胞膜PS表达率分别为(5.04±0.495)%,(8.69±0.862)%(P<0.01)。结论DMSO在红细胞负载海藻糖过程中可有效增加胞内海藻糖负载量,并显著改善负载缓冲液对红细胞胞膜的高渗损伤,更好地发挥海藻糖对红细胞的保护作用。  相似文献   

7.
为研究苯甲醇对海藻糖负载红细胞的影响,在4℃条件下将红细胞孵育在浓度分别为10、30、50、100mmol/L的苯甲醇-海藻糖溶液中24小时,用氰化血红蛋白试剂盒测定海藻糖负载红细胞的溶血率,用硫酸-蒽酮法检测红细胞内海藻糖浓度水平。结果表明:在100mmol/L苯甲醇-海藻糖溶液组,其红细胞内海藻糖浓度为72±12.98mmol/L,与其它各组相比,有显著统计学差异(p=0.000);溶血率为17.99±3.75%,与其它各组相比,有显著统计学差异(p=0.000)。结论:苯甲醇可提高海藻糖负载红细胞的负载率,随着苯甲醇浓度的升高红细胞海藻糖负载率也提高,100mmol/L的苯甲醇浓度为可用浓度。  相似文献   

8.
本研究旨在评价冻干保护剂人血白蛋白、葡聚糖、聚乙烯吡咯烷酮和甘油对海藻糖负载后红细胞冰冻干燥保存的影响,筛选最佳冻干保护体系。将浓缩红细胞在37℃,浓度为800 mmol/L的海藻糖溶液中孵育7 h,经PBS液冲洗3遍后制成海藻糖负载的浓缩红细胞。对照组为海藻糖负载红细胞不添加保护剂,直接冻干;实验组将人血白蛋白、葡聚糖、聚乙烯吡咯烷酮、甘油等组成的冻干保护体系与海藻糖负载浓缩红细胞混合,两组样品在常温下平衡30 min,移入-80℃深低温冰箱,预冻24 h,入冻干机冻干处理24 h。用温度为37℃,6%羟乙基淀粉40注射液快速再水化样品,用氰化血红蛋白试剂盒测定血红蛋白溶血率,计算血红蛋白回收率,同时测定干燥样品含水量。结果表明:当样品含水量在3%-4%时,对照组冻干红细胞血红蛋白回收率为(33.57±2.89)%,白蛋白组血红蛋白回收率为(51.15±1.98)%,差异有显著性意义(P〈0.05)。选用不同浓度的葡聚糖为冻干保护剂,血红蛋白回收率较对照组明显降低,随浓度增加,血红蛋白回收率逐渐升高,当浓度为36%时,血红蛋白回收率为(22.15±4.12)%,差异有显著性意义(P〈0.05)。不同浓度的聚乙烯吡咯烷酮(PVP)组成的冻干保护体系,当浓度小于40%时,血红蛋白回收率明显低于对照组,差异有显著性意义(P〈0.05)。10%甘油组血红蛋白回收率为(3.93±1.80)%,差异有显著性意义(P〈0.05)。结论:人血白蛋白在海藻糖负载的冻干红细胞中发挥重要保护作用,葡聚糖与浓度小于40%PVP可削弱细胞内海藻糖的保护作用。液态的甘油不宜作为红细胞冰冻干燥保存的保护剂。  相似文献   

9.
目的探寻红细胞负载海藻糖的有效方法,评价负载海藻糖对红细胞各项理化指标的影响。方法设实验组(负载海藻糖红细胞)和对照组(未负载海藻糖红细胞),使用硫酸-蒽酮法测定胞内海藻糖含量,检测负载后红细胞各项理化指标,通过流式细胞术检测负载后红细胞膜的完整性。结果在37℃条件下,红细胞对海藻糖的摄取随胞外海藻糖浓度的增加而增多,当海藻糖浓度为800mmol/L,水浴7h,红细胞负载海藻糖可达到有效浓度;且2组红细胞各项理化指标比较差异无统计学意义(P>0.05);流式结果显示红细胞在高渗环境中负载海藻糖后,细胞膜结合很少量Annexin-V-FITC,并且破损细胞能被有效清除。结论红细胞37℃孵育7h,胞外海藻糖浓度为800mmol/L,能有效摄取海藻糖,且保持红细胞的理化稳定性和膜结构完整性。  相似文献   

10.
目的研究细胞内海藻糖对红细胞冻干保存后血红蛋白回收率及ATP水平影响。在一定条件下负载红细胞,细胞内海藻糖浓度保持恒定,研究细胞外不同浓度的海藻糖对红细胞冰冻干燥保存的影响。方法将浓缩红细胞在37℃,浓度为800 mmol的海藻糖溶液中孵育7 h,制成海藻糖负载的浓缩红细胞,对照组为PBS负载浓缩红细胞,行冻干保存,测定Hb回收率及细胞内ATP水平。将PBS液、浓度为50 mmol、200 mmol、400 mmol的海藻糖溶液与海藻糖负载浓缩红细胞按1∶1比例混匀,行冻干保存及再水化,用氰化血红蛋白试剂盒测定Hb溶血率,计算Hb回收率。结果经海藻糖负载的红细胞冻干保存,Hb回收率(44.46±5.15)%,细胞内ATP水平(1.91±0.33)μmol/gHb,对照组Hb回收率(7.71±2.71)%,细胞内ATP水平(0.88±0.25)μmol/gHb。2组相比较,P0.05,差异有统计学意义。细胞外PBS液组Hb回收率为(10.36±0.97)%,50 mmol海藻糖组,Hb回收率为(33.57±2.89)%,200 mmol海藻糖组,Hb回收率为(38.64±0.54)%,400 mmol海藻糖组,Hb回收率为(18.10±1.9)%。对照组PBS液组与50 mmol组、200 mmol组、40 0mmol组分别比较,差异有统计学意义。400 mmol组与200 mmol组、5 0 mmol组分别比较,差异有统计学意义(P0.01)。200 mmol组与50 mmol组相比较,差异无统计学意义。结论细胞内的海藻糖大大提高冻干红细胞Hb回收率且可保持冻干红细胞正常ATP水平。细胞外的海藻糖对红细胞冻干保存有保护作用,随着细胞外液中海藻糖浓度增加,冻干红细胞Hb回收率减少。  相似文献   

11.
目的 观察红细胞负载海藻糖和葡萄糖前后形态学变化,为冷冻干燥红细胞提供依据.方法 应用0.5 mol/L海藻糖和葡萄糖37C负载红细胞6h,在光镜和电镜下观察红细胞形态.结果 光镜和电镜下,负载前红细胞形态呈正常的双凹圆盘形,极少数红细胞表面有不规则突起.负载后,大多数红细胞呈现有不规则突起的棘型红细胞形态.结论 红细胞在负载前后形态学发生明显变化,应采取措施减少或阻止这种改变.  相似文献   

12.
目的 探讨红细胞冻干长期保存的有效方法,并评价复水后红细胞各项理化指标的变化。方法 设对照组(常规条件下保存的红细胞)和实验组(负载海藻糖冻干-复水后红细胞),在37℃条件下,红细胞负载海藻糖7h后,采用主要成分为含15%聚乙烯吡咯烷酮(PVP)和150mmol/L海藻糖的缓冲液作为保护液,在设定的降温程序下进行红细胞的冻干保存。冻干后置37℃的再水化液快速水化,检测各项理化指标。结果 红细胞冻干再水化后红细胞和血红蛋白回收率均在80%以上,且各项理化指标与常规保存的对照红细胞间差异无显著性(P〉O.05)。结论 红细胞在37℃孵育7h的条件下负载每藻糖后进行冻干,复水后能保持细胞的理化稳定性和结构形态的完整性,为进一步研究长期冻干保存红细胞奠定了基础。  相似文献   

13.
海藻糖和蔗糖在人红细胞冰冻干燥保存中的效果比较   总被引:2,自引:0,他引:2  
目的 比较海藻糖和蔗糖在人红细胞冰冻干燥保存过程中对细胞的保护效果。方法 将浓缩红细胞、含有不同浓度海藻糖或蔗糖的30%聚乙烯吡咯烷酮(PVP)按照1:3(V/V)的比例混合,-80℃冰箱中预冻1h,入冻干机内冻千处理后,用37℃等渗缓冲液快速水化洗涤样品,然后将其分为3个处理组:组1为30%PVP组(简称PVP组),组2、3为含有5%、10%和15%海藻糖或蔗糖的30%PVP组(简称海藻糖组或蔗糖组),测定各项指标。结果 冻干红细胞再水化后,海藻糖组的细胞回收率[(18.86±4.63)%、(21.73±7.32)%和(18.01±4.53)%]显著低于PVP组[(45.97±11.77)%](P<0.01);蔗糖组,蔗糖浓度为5%、10%时,细胞回收率分别为(37.40±2.90)%和(37.77±4.78)%,二者显著低于PVP组(P<0.05),但当蔗糖浓度升至15%时,细胞回收率[(42.54±10.25)%]和PVP组无显著差异;血红蛋白回收率,海藻糖组[(50.00±3.47)%、(40.91±9.09)%和(52.09±7.01)%]显著低于PVP组[(77.27±3.63)%](P<0.05),而蔗糖组和PVP组无显著差异,且显著高于海藻糖组(P<0.05)。洗涤后3组的游离血红蛋白浓度均<1g/L,其余各项指标的对比关系类似于水化后指标。结论 在冻干保护液中添加不同浓度的海藻糖或蔗糖对于提高冰冻干燥保存后红细胞的回收率和血红蛋白浓度作用不明显;但  相似文献   

14.
再水化液因素对冰冻干燥保存后红细胞回收率的影响   总被引:2,自引:0,他引:2  
目的 寻求一种能有效提高冰冻干燥 (简称冻干 )保存后人红细胞回收率的再水化体系。方法 测定1 0 %聚乙烯吡咯烷酮 (PVP)、6 %羟乙淀粉 (HES)、5 %羧甲基淀粉钠 (CMS)、生理盐水、0 75mol/L葡萄糖、等渗缓冲液及高渗缓冲液 (5×Buffer)的晶体渗透压和胶体渗透压 ;将浓缩红细胞和保护液混匀 ,预冻后移入冻干机内作冻干处理 ,冻干完毕后 ,用不同种类或不同温度的再水化液快速水化洗涤样本。结果 人红细胞冻干再水化后 ,6 %HES组、1 0 %PVP组和 5 %CMS组的红细胞回收率分别为 (93.6 5± 6 .1 8) %、(88.80± 9.4 9) %和 (91 .34± 8.1 3) % ,血红蛋白回收率分别为 (93.4 8± 4 .6 7) %、(89.0 2± 4 .6 7) %和 (88.79± 5 .35 ) % ,均极显著高于其他 4组[(1 5 .5 6± 1 2 .0 2 ) %~ (2 7.77± 6 .4 8) % ,(1 7.78± 1 0 .80 ) %~ (4 1 .5 0± 6 .4 3) % ) ](P <0 .0 1 ) ;不同温度的 6 %HES的再水化效果表明 ,再水化后 3个温度组的红细胞回收率无显著差异 ,但 37℃和 2 5℃组的血红蛋白回收率分别为(87.4 8± 5 .84 ) %和 (91 .37± 3.94 ) % ,均极显著高于 4℃组 (73.1 0± 5 .90 ) % (P <0 .0 1 )而且上清游离血红蛋白浓度也显著低于 4℃组。结论 再水化液的胶体渗透压对冻干保存后红细胞的保护作  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号