首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, we have synthesized four different series of compounds in which different substituents were linked to the 4- or 5-position of the 2-amino-3-(3',4',5'-trimethoxybenzoyl) thiophene system. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 4-aryl substituted derivatives had little activity. In contrast, the presence of a methylene, oxymethyl, aminomethyl or methylenepiperazino moiety between the aryl and the 4-position of the thiophene ring resulted in statistically significant improvement in activity relative to the 4-aryl substituted derivatives. It is noteworthy that the antiproliferative effects of the synthesized compounds were more pronounced against human Molt/4 and CEM as compared with murine L1210 and FM3A cells. The effects of a selected series of compounds on cell cycle progression correlated well with their strong antiproliferative activity and inhibition of tubulin polymerization. We found that the antiproliferative effects of the most active compounds were associated with increase of the proportion of cells in the G2/M and sub-G1 phases of the cell cycle. The structure-activity relationships observed in the series of compounds described here should permit the design of more active molecules.  相似文献   

2.
Two series of compounds (5-14 and 15-23) based on the scaffolds of 2-(1,1-dioxido-4-phenyl-4Hbenzo[e][1,2,4]thiadiazin-3-yl)-N-(4-methoxyphenyl)hydrazinecarboxamide (5) and 2-((4-methoxyphenyl)amino)-10-phenyl-10H-benzo[e][1,2,4]triazolo[1,5-b][1,2,4]thiadiazine 5,5-dioxide (15) respectively, were designed and synthesized. These compounds were tested for anticancer activity against various cancer cell lines including lung, ovary, prostate, breast and colon cancers. They exhibited moderate to good inhibitory activity against the above cell lines and compound 9 was found to be the most active one from these two series. Further studies showed that cancer cell growth inhibition by compounds 22 and 23 could be in part due to the inhibition of tubulin polymerization, with the IC50 values of 4.70 and 5.25 μM, respectively.  相似文献   

3.
To aid our investigation of tubulin as an antileishmanial drug target, the effects of the mammalian antimicrotubule agents ansamitocin P3, taxol, and hemiasterlin on Leishmania donovani promastigotes were described. These drugs affected the assembly of purified leishmanial tubulin and inhibited the growth of L. donovani promastigotes at micromolar concentrations. When promastigotes were treated with these agents, mitotic partitioning of nuclear DNA and cytokinesis were usually inhibited. The spatial orientation of kinetoplasts was often disturbed, suggesting a role for microtubules in the segregation of these organelles during mitosis. Aberrant cell types produced in drug-treated cultures included parasites with one nucleus and two geometrically distinct kinetoplasts, parasites with multiple kinetoplasts, and cytoplasts containing a kinetoplast but no nucleus. A subset of unique cell types, parasites containing two nuclei, a spindle fiber, and two geometrically distinct kinetoplasts, were observed in hemiasterlin-treated cultures. Flow cytometric analysis of L. donovani promastigotes treated with these three drugs indicated a dramatic shift toward the G2+M phase of the cell cycle, with some cells containing four times the amount of DNA present in G1. These results were used to evaluate the cellular effects of WR85915, an aromatic thiocyanate with in vitro antileishmanial and anti-tubulin activity, on L. donovani. Treatment of parasites with WR85915 did not produce the unusual cell types described above and did not cause the accumulation of parasites in G2+M, suggesting that WR85915 acts on target(s) in Leishmania in addition to tubulin. These studies validate tubulin as a suitable antileishmanial drug target and provide criteria to assess the cellular mechanism of action of new candidate antileishmanial agents.  相似文献   

4.
To aid our investigation of tubulin as an antileishmanial drug target, the effects of the mammalian antimicrotubule agents ansamitocin P3, taxol, and hemiasterlin on Leishmania donovani promastigotes were described. These drugs affected the assembly of purified leishmanial tubulin and inhibited the growth of L. donovani promastigotes at micromolar concentrations. When promastigotes were treated with these agents, mitotic partitioning of nuclear DNA and cytokinesis were usually inhibited. The spatial orientation of kinetoplasts was often disturbed, suggesting a role for microtubules in the segregation of these organelles during mitosis. Aberrant cell types produced in drug-treated cultures included parasites with one nucleus and two geometrically distinct kinetoplasts, parasites with multiple kinetoplasts, and cytoplasts containing a kinetoplast but no nucleus. A subset of unique cell types, parasites containing two nuclei, a spindle fiber, and two geometrically distinct kinetoplasts, were observed in hemiasterlin-treated cultures. Flow cytometric analysis of L. donovani promastigotes treated with these three drugs indicated a dramatic shift toward the G2+M phase of the cell cycle, with some cells containing four times the amount of DNA present in G1. These results were used to evaluate the cellular effects of WR85915, an aromatic thiocyanate with in vitro antileishmanial and anti-tubulin activity, on L. donovani. Treatment of parasites with WR85915 did not produce the unusual cell types described above and did not cause the accumulation of parasites in G2+M, suggesting that WR85915 acts on target(s) in Leishmania in addition to tubulin. These studies validate tubulin as a suitable antileishmanial drug target and provide criteria to assess the cellular mechanism of action of new candidate antileishmanial agents.  相似文献   

5.
To ascertain the exact anti-myeloma mechanism of thalidomide in vivo, we performed structural development studies of thalidomide, and obtained various analogues with specific molecular properties. Among these derivatives, we found that a new thalidomide analogue, 2-(2,6-diisopropylphenyl)-5-hydroxy-1H-isoindole-1,3-dione (5HPP-33) had the most potent anti-myeloma effect and tubulin-polymerization-inhibiting activity. 5HPP-33 directly inhibited the growth and survival of various myeloma cell lines (RPMI8226, U266, and IM9) in a dose-dependent manner with IC50 of 1-10 microM. In contrast, thalidomide itself did not inhibit cellular growth of RPMI8226 cells. Cultivation with 10 microM 5HPP-33 induced G2/M phase cell cycle arrest, followed by apoptosis of myeloma cells. Treatment with 5HPP-33 induced caspase-3 activity and PARP cleavage. A tubulin polymerization assay using microtubule protein from porcine brain revealed that 5HPP-33 showed potent tubulin-polymerization-inhibiting activity with IC50 of 8.1 microM, comparable to that of the known tubulin-polymerization inhibitor, rhizoxin. Moreover, its activity was more potent than that of a known thalidomide metabolite, 5-hydroxythalidomide. Notably, the structural requirement for its activity was critical, as other analogues and derivatives of 5HPP-33 showed only slight tubulin-polymerization-inhibiting activity. Our data suggest that 5HPP-33 is a promising candidates for a therapeutic agent of multiple myeloma. In addition, these results suggest that the tubulin-polymerization inhibiting activity of thalidomide might be a possible mechanism for inducing the apoptosis of myeloma cells by thalidomide.  相似文献   

6.
Amodiaquine remains one of the most prescribed antimalarial 4-aminoquinoline. To assess the importance of the 4'-hydroxyl group and subsequent hydrogen bond in the antimalarial activity of amodiaquine (AQ), a series of new analogues in which this functionality was replaced by various amino groups was synthesized. The incorporation of a 3'-pyrrolidinamino group instead of the 3'-diethylamino function of AQ allowed the development of a parallel series of amopyroquine derivatives. The compounds were screened against both chloroquine (CQ)-sensitive and -resistant strains of Plasmodium falciparum and their cytotoxicity evaluated upon the MRC5 cell line. Antimalarial activity in a low nanomolar range was recorded showing that the 4'-hydroxy function can be successfully replaced by various amino substituents in terms of activity without any influence of the level of CQ-resistance of the strains. Furthermore the ability of the compounds to inhibit beta-hematin formation was measured in order to discuss the mechanism of action of these new compounds. Compounds 7d and 8d exhibit a high selectivity index and may be considered as promising leads for further development.  相似文献   

7.
The tightly controlled network of cell cycle genes consists of a core of cyclin dependent kinases (CDKs) that are activated by periodically expressed cyclins. The activity of the cyclin-CDK complexes is regulated by cyclin dependent kinase inhibitors (CDKIs) and multiple signal transduction routes that converge on the cell cycle. Neuroblastoma are pediatric tumors that belong to the group of small round blue cell tumors, characterized by a fast proliferation. Here, we present high throughput analyses of cell cycle regulating genes in neuroblastoma. We analyzed a series of 82 neuroblastomas by comparative genomic hybridization arrays, single nucleotide polymorphism arrays, and Affymetrix expression arrays and analyzed the datasets in parallel with the R2 bioinformatic tool (http://r2.amc.nl). About 30% of the tumors had genomic amplifications, gains, or losses with shortest regions of overlap that suggested implication of a series of G1 cell cycle regulating genes. CCND1 (cyclin D1) and CDK4 were amplified or gained and the chromosomal regions containing the CDKN2 (INK4) group of CDKIs were frequently deleted. Cluster analysis showed that tumors with genomic aberrations in G1 regulating genes over-expressed E2F target genes, which regulate S and G2/M phase progression. These tumors have a poor prognosis. Our findings suggest that pharmacological inhibition of cell cycle genes might bear therapeutic promises for patients with high risk neuroblastoma.  相似文献   

8.
9.
Phenstatin and its derivatives are potential anticancer drug candidates according to their inhibitory properties on tubulin polymerization, cell growth and antivascular activity. However, at the present time, neither pharmacological nor metabolic studies have been conducted in order to strengthen the relevance of phenstatine as a drug discovery candidate. In the present work, the metabolic fate of phenstatin in rat and human microsomal preparations was studied to investigate the stability of this tubulin polymerization inhibitor and any effects of the metabolites on polymerization and on PC3 cancer cell proliferation. The metabolites were separated by high-performance liquid chromatography and, after their synthesis, characterized by simultaneous LC-DAD-UV and LC-ESI-MS analyses. Thus, eight metabolites were identified. The major biotransformation pathways are carbonyl reduction, O-methylation at C-3', O-methylation after aromatic hydroxylation at the position C-2' on phenyl B ring and O-demethylation on A ring. Four of the identified metabolites were as active or more active, than phenstatin in vitro. Moreover, the better stability of phenstatin versus CA-4 and the lack of quinone formation could justify the design of new analogues which could include various substituents on phenyl rings or linker group in order to modulate the metabolism of phenstatin toward even more active metabolites and so up-regulate the pharmacological activity.  相似文献   

10.
Prolonged exposure to organophosphate (OP) pesticides may produce cognitive deficits reflective of hippocampal injury in both humans and rodents. Recent work has indicated that microtubule trafficking is also adversely affected by exposure to the OP pesticide chlorpyrifos, suggesting a novel mode of OP-induced neurotoxicity. The present studies examined effects of prolonged exposure to chlorpyrifos oxon (CPO) on acetylcholinesterase (AChE) activity, immunoreactivity (IR) of microtubule-associated proteins, neuronal injury, and tubulin polymerization using in vitro organotypic slice cultures of rat hippocampus and bovine tubulin. Cultures were exposed to CPO (0.1-10 microM) in cell culture medium for 1-7 days, a regimen producing progressive reductions in AChE activity of 15-60%. Cytotoxicity (somatic uptake of the non-vital marker propidium iodide), as well as IR of alpha-tubulin and microtubule-associated protein-2 (a/b) [MAP-2], was assessed 1, 3, and 7 days after the start of CPO exposure. As early as 24 h after the start of exposure, CPO-induced deficits in MAP-2 IR were evident and progressive in each region of slice cultures at concentrations as low as 0.1 microM. CPO exposure did not alter alpha-tubulin IR at any time point. Concentration-dependent injury in the cornu ammonis (CA)1 pyramidal cell layer and to a lesser extent, CA3 and dentate cells, was evident 3 days after the start of CPO exposure (>or=0.1 microM) and was greatest after 7 days. Tubulin polymerization assays indicated that CPO (>or=0.1 microM) markedly inhibited the polymerization of purified tubulin and MAP-rich tubulin, though effects on MAP-rich tubulin were more pronounced. These data suggest that exposure to CPO produces a progressive decrease in neuronal viability that may be associated with impaired microtubule synthesis and/or function.  相似文献   

11.
12.
Pancreatic cancer is one of the tumors with the highest mortality, poorly responding to available chemotherapeutic agents. The objective of this study was to study the anticancer effects of all-trans retinoid acid, a functional form of vitamin A, on pancreatic cancer cells. Human pancreatic cancer MiaPaCa-2 cells were treated with 1, 5, 10, 20, 30, 40 and 50 microM ATRA for 1, 2, 3, 4, 5 or 6 d, respectively. Cell growth was determined by MTT viability assay. The cell cycle distribution and the alkaline phosphatase (ALP) activity were analyzed by flow cytometry and chemical analyzer, respectively. The results show that ATRA significantly inhibited the growth of MiaPaCa-2 cells at 40 and 50 microM. ATRA arrested pancreatic cancer cells at G0/G1 phase. The sub-G1 peak and DNA fragmentation were observed. There were time and dose dependent increases in alkaline phosphatase activity (ALP), an indicator of cell differentiation, upon treatment with ATRA when compared to controls. In conclusion, ATRA has an inhibitory effect on the cell growth of MiaPaCa-2, and its tumor suppressive effect is by means of cell cycle arrest and apoptosis induction.  相似文献   

13.
目的: 体外模拟慢性创面缺氧、低营养环境,观察成纤维细胞在该状态下增殖及细胞周期的变化及对外源性生长因子(bFGF)的反应,探讨低氧、低营养条件下成纤维细胞的病理生理变化。方法: 单纯缺氧环境采用厌氧培养箱,通入混合气,氧分压(PO2)分为27 mmHg和44 mmHg 2个水平;低营养环境则控制培养液新生牛血清(NCS)浓度。用MTT法检测细胞活性以及其对外源性生长因子的反应,用流式细胞仪检测细胞周期。结果: PO2 44 mmHg时细胞增殖速度较同期对照组无明显差异;PO2 27 mmHg时,细胞增殖速度较同期对照组明显减慢(P<0.01),细胞被阻滞于G0期,S期细胞比例明显减少,bFGF未显示促增殖作用。NCS浓度为0.5%的低营养状态下细胞增殖速度较同期对照组明显减慢(P<0.01),细胞被阻滞于G0-G1期(P<0.01);bFGF能明显改善低营养状态下的增殖减慢(P<0.01),使G2-M期细胞比例增加(P<0.05)。结论: 27 mmHg PO2或NCS浓度为0.5%的低营养环境使细胞阻滞于G0-G1期,影响成纤维细胞增殖;bFGF可以改善低营养条件下细胞增殖减慢的状态,但对极度缺氧条件下的成纤维细胞增殖障碍无明显作用。  相似文献   

14.
An hypothesis is presented which seeks to explain the anti-cancer activity of thiazolidinediones (TZDs), a class of drugs currently used to treat type 2 diabetes mellitus. Empirical data from the scientific literature is used to support the hypothesis that TZDs are inhibitors of microtubule assembly. The similarities between the affects of TZDs on cellular processes and known inhibitors of tubulin polymerization are identified. Similarities between TZDs and currently used inhibitors of microtubule assembly, such as cell cycle arrest in G1 phase, anti-angiogenesis activity, and inhibition of cell motility, are striking. In addition to the similarities in biological function, certain molecular structure similarities are also identified. The possibility that TZDs inhibit the polymerization of actin is presented as an alternative interpretation of the available data. Finally suggestions for testing the hypothesis, by using commercially available tubulin polymerization assays and fluorescence based binding assays, as well as isothermal titration calorimetry, are given. Considering TZD position as third-line therapy for treatment of type 2 diabetes mellitus and the potential loss of market share to newly introduced inhalable insulin, a better understanding of TZD anti-cancer activity may lead to revival for this drug class in cancer treatment.  相似文献   

15.
The aim of the present study was to investigate if there exists an interaction of TRPV4 with annexin A2 and with tubulin beta 5 in transfected human embryonic kidney (HEK293) cells in vitro. Coimmunoprecipitation of the rat dorsal root ganglion was performed to validly conform the interaction of TRPV4 with the other two proteins. Gene fragments coding for the amino acids in protein were obtained. We conducted coimmunoprecipitation and immunofluorescence on the transfected cell samples. Coimmunoprecipitation experiments of transfected HEK293 cells revealed that TRPV4 and tubulin beta 5 associated together in a complex, whereas TRPV4 and annexin A2 did not. The immunofluorescence microscopy revealed a colocalization of TRPV4 with both the tubulin beta 5 and annexin A2. These results indicate an interaction between TRPV4 and tubulin beta 5 by associating together. However, the association between TRPV4 and annexin A2 may be mediated by some intermediate elements or just exists in some physiological conditions. Thus, TRPV4 channel function may be modulated by tubulin beta 5 and annexin A2 and their interactions may play a role in the mechanosensation in the pathogenesis of neuropathic pain.  相似文献   

16.
Luteal cell structure and function were studied by electron microscopy in conjunction with measurement of progesterone production by corpora lutea which were isolated and incubated in vitro on successive days of the four-day hamster estrous cycle. Granulosal cells were primarily responsible for the formation of the corpus luteum. Agranular endoplasmic reticulum and lipid droplets developed during luteinization of granulosal cells on the first post-ovulation day (day 1). Luteal cell hypertrophy on day 2 resulted from dilation of tubular agranular endoplasmic reticulum and swelling of mitochondria with tubular cristae. Plasma progesterone levels on the first two days of the cycle appeared to be correlated with luteal activity as corpora lutea were demonstrated to synthesize progesterone during this interval. Luteolysis occurred on day 3 with a reduction in luteal cell size accompanied by condensation of the agranular endoplasmic reticulum, regressive changes in the mitochondria, and a marked drop in luteal progesterone synthetic activity. On day 4, extensive phagocytic activity and luteal cell autolysis indicated an advanced involutional state. The short but functional luteal phase in the cyclic hamster does not appear to involve the production of 20α-hydroxy-pregn-4-en-3-one as occurs in the rat. This progestin was not detectable in plasma or luteal tissue before or after incubation at any time during the cycle. Possible mechanisms regulating luteal cell development and regression during the estrous cycle are discussed.  相似文献   

17.
The Leishmania mexicana CRK3 gene encodes a cdc2-related protein kinase with activity towards histone H1. Attempts to disrupt both alleles of CRK3 in the promastigote life-cycle stage resulted in changes in cell ploidy, which were avoided only when an extra copy of CRK3 was expressed from an episome. This provides strong evidence that CRK3 is essential to L. mexicana. The cyclin-dependent kinase specific inhibitor flavopiridol inhibited affinity purified histidine tagged CRK3 (CRK3his) with an IC(50) value of 100 nM and inhibited in vitro growth of L. mexicana promastigotes. Incubation of promastigotes with 2.5 microM flavopiridol for 24 h led to cell cycle arrest with an accumulation of 95% of cells in G2 or early mitosis (G2/M). Release from cell cycle arrest resulted in a semi-synchronous re-entry into the cell cycle; samples taken at 2, 4, and 6 h after release from the block were enriched for cells in G1 (68%), S-phase (70%), and G2/M phase (61%), respectively. This method of synchronisation was used to show that the majority of CRK3his activity towards the substrate histone H1 was present at G2/M. These data suggest that CRK3 has an essential role in controlling cell cycle progression at the G2/M-phase transition in L. mexicana promastigotes.  相似文献   

18.
To explore changes to the tau molecule in Alzheimer's disease, we studied the effect of tau expression in stably transfected neuroblastoma x glioma hybrid NG108-15 cells (tau cells). Tau cells had a similar shape to, but more neurites than, wild type NG108-15 cells (wild type cells). When treated with cAMP, tau cells began to form neurites within 2h. After that, these neurites became longer and thicker than those of wild type cells. An accumulation and increased phosphorylation of tau were observed after 8 h and caspase 3 activity was increased after 4 h in tau cells, but not in wild type cells, upon treatment with cAMP. Caspase 3 activity was activated after the initiation of morphological change, and before the accumulation of tau in tau cells. Under these conditions, apoptotic cell death was not observed and tau was colocalized with tubulin. However, the accumulated tau molecules did not associate with tubulin and were dislocated around and in the nuclei of tau cells. These observations have implications for the cellular causes of Alzheimer's disease where the accumulation and mislocation of tau occur concomitant with neuronal degeneration.  相似文献   

19.
The ordered, directional migration of T-lymphocytes is a key process during immune surveillance, immune response, and development. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in variety of human chemotherapy resistant cancer cell lines, indicating their potential in the treatment of both solid tumors and tumors derived from the hemopoietic system. Pyrrolobenzoxazepine 4-acetoxy-5-(1-naphtyl)naphtho[2,3-b]pyrrolo[1,2-d][1,4]-oxazepine (PBOX-15) has been shown to depolymerize tubulin in vitro and in the MCF7 breast cancer cell line. We hypothesized that this may suggest a role for this compound in modulating integrin-induced T-cell migration, which is largely dependent on the microtubule dynamics. Experiments were performed using human T lymphoma cell line Hut78 and peripheral blood T-lymphocytes isolated from healthy donors. We observed that human T-lymphocytes exposed to PBOX-15 have severely impaired ability to polarize and migrate in response to the triggering stimulus generated via cross-linking of integrin lymphocyte function associated antigen-1 receptor. Here, we show that PBOX-15 can dramatically impair microtubule network via destabilization of tubulin resulting in complete loss of the motile phenotype of T-cells. We demonstrate that PBOX-15 inhibitory mechanisms involve decreased tubulin polymerization and its post-translational modifications. Novel microtubule-targeting effects of PBOX-15 can possibly open new horizons in the treatment of overactive inflammatory conditions as well as cancer and cancer metastatic spreading.  相似文献   

20.
BubR1 is a well-defined guardian of the mitotic spindle, initiating mitotic arrest in response to the lack of tension and/or chromosome alignment across the mitotic plate. However, the role of BubR1 in combretastatin-induced cell death remains unknown. In this study, we describe the effects of combretastatin A-4 (CA-4) and a synthetic cis-restricted 3,4-diaryl-2-azetidinone (?-lactam) analogue (CA-432) on the modulation and phosphorylation of BubR1 in human cervical cancer-derived cells. We demonstrate that CA-4 and CA-432 depolymerise the microtubular network of human cervical carcinoma-derived cells. Both compounds induced the disassembly of the microtubules and the loss of microtubule tension led to the early phosphorylation of BubR1 and the late cleavage of BubR1. The phosphorylation of BubR1 correlated with the onset of G2M cell cycle arrest whilst the cleavage of BubR1 coincided with apoptosis induced by the combretastatins. The combretastatin-induced apoptosis and the BubR1 cleavage were caspase-dependent. In vitro enzyme digests demonstrated that combretastatin-activated BubR1 is a substrate for caspase-3. Gene silencing of BubR1 with small interfering RNA severely compromised combretastatin-induced G2M cell cycle arrest with a corresponding increase in the formation of polyploid cells in both cervical and breast cancer-derived cells. In summary, BubR1 is required to maintain the G2M arrest and limit the formation of polyploid cells in response to continued combretastatin exposure. Moreover, substitution of the ethylene bridge with 3,4-diaryl-2-azetidinone did not alter the tubulin depolymerising properties or the subsequent mitotic spindle checkpoint response to CA-4 in human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号