首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu R  Wang Q  Yan M  Hernandez M  Gong C  Boon WC  Murata Y  Ueta Y  Chen C 《Endocrinology》2002,143(12):4609-4619
Orexins are recently discovered neuropeptides that play an important role in the regulation of hormone secretion, and their receptors have been recently demonstrated in the pituitary. The effects of orexin-A on voltage-gated Ca2+ currents and GH release in primary cultured ovine somatotropes were examined. The expression of orexin-1 receptor was demonstrated by RT-PCR in ovine somatotropes, from which Ca2+ currents were also isolated as L, T, and N currents. Application of orexin-A (100 nM) significantly and reversibly increased only the L current, and coadministration of orexin-A and GHRH (10 nM) showed an additive effect on this current, but no effect of orexin-A was observed on either T or N current. Furthermore, the orexin-A-induced increase in the L current was completely abolished by the inhibition of protein kinase C (PKC) activity using calphostin C (100 nM), phorbal 12,13-dibutyrate pretreatment (0.5 micro M) for 16 h or specific PKC inhibitory peptide PKC(19-36) (1 mM). However, the increase in L current by orexin-A was sustained when cells were preincubated with a specific protein kinase A blocker H89 (1 micro M) or a specific intracellular Ca2+ store depleting reagent thapsigargin (1 micro M). Finally, orexin-A alone did not significantly increase GH release, but coadministration of orexin-A and GHRH showed a synergistic effect on GH secretion in vitro. Our results therefore suggest that orexin-A may play an important role in regulating GHRH-stimulated GH secretion through the enhancement of the L-type Ca2+ current and the PKC-mediated signaling pathway in ovine somatotropes.  相似文献   

2.
Orexins, orexigenic neuropeptides, are secreted from lateral hypothalamus and orexin receptors are expressed in the pituitary. Since growth hormone (GH) secreted from pituitary is integrally linked to energy homeostasis and metabolism, we studied the effect of orexin-B on voltage-gated Ca(2+) currents and the related signalling mechanisms in primary cultured ovine somatotropes using whole-cell patch-clamp techniques. With a bath solution containing TEA-Cl (40 mM) and Tetrodotoxin (TTX) (1 microM), three subtypes of Ca(2+) currents, namely the long-lasting (L), transient (T), and N currents, were isolated using different holding potentials (-80 and -30 mV) in combination with specific Ca(2+) channel blockers (nifedipine and omega-conotoxin). About 75% of the total current amplitude was contributed by the L current, whereas the N and T currents accounted for the rest. Orexin-B (1-100 nM) dose-dependently and reversibly increased only the L current up to approximately 125% of the control value within 4-5 min. Neither a specific protein kinase A (PKA) blocker (H89, 1 microM) nor an inhibitory peptide (PKI, 10 microM) had any effect on the increase in L current by orexin-B. The orexin-B-induced increase in the L current was abolished by concurrent treatment with calphostin C (Cal-C, 100 nM), protein kinase C (PKC) inhibitory peptide (PKC(19-36), 1 microM), or by pretreatment with phorbol-12,13-dibutyrate (PDBu) (0.5 microM) for 16 h (a downregulator of PKC). Orexin-B also increased in vitro GH secretion in a dose-dependent manner. We conclude that orexin-B increases the L-type Ca(2+) current and GH secretion through orexin receptors and PKC-mediated signalling pathways in ovine somatotropes.  相似文献   

3.
Yang SK  Wang K  Parkington H  Chen C 《Endocrinology》2008,149(9):4726-4735
GHRH depolarizes the membrane of somatotropes, leading to an increase in intracellular free Ca2+ concentration and GH secretion. Na+ channels mediate the rapid depolarization during the initial phase of the action potential, and this regulates Ca2+ influx and GH secretion. GHRH increases a tetrodotoxin-sensitive somatotrope Na+ current that is mediated by cAMP. TTX-resistant (TTX-R) Na+ channels are abundant in sensory neurons and cardiac myocytes, but their occurrence and/or function in somatotropes has not been investigated. Here we demonstrate expression of TTX-R Na+ channels and a TTX-R Na+ current, using patch-clamp method, in green fluorescent protein-GH transgenic mouse somatotropes. GHRH (100 nm) increased the TTX-R Na+ current in a reversible manner. The GHRH-induced increase in TTX-R Na+ current was not affected by the cAMP antagonist Rp-cAMP or protein kinase A inhibitors KT5720 or H89. The TTX-R current was increased by 8-bromoadenosine-cAMP (cAMP analog), forskolin (adenylyl-cyclase activator), and 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor), but the additional, GHRH-induced increase in TTX-R Na+ currents was not affected. U-73122 (phospholipase C inhibitor) and protein kinase C (PKC) inhibitors, G?-6983 and chelerythrine, blocked the effect of GHRH. PKC activators, phorbol dibutyrate and phorbol myristate acetate, increased the TTX-R Na+ current, but GHRH had no further effect on the current. Na+-free extracellular medium significantly reduced GHRH-stimulated GH secretion. We conclude that GHRH-induced increase in the TTX-R Na+ current in mouse somatotropes is mediated by the PKC system. An increase in the TTX-R Na+ current may contribute to the GHRH-induced exocytosis of GH granules from mouse somatotropes.  相似文献   

4.
5.
6.
Han XF  Zhu YL  Hernandez M  Keating DJ  Chen C 《Endocrine》2005,28(2):217-224
Ghrelin is an endogeneous growth hormone secretagogue (GHS) causing release of GH from pituitary somatotropes through the GHS receptor. Secretion of GH is linked directly to intracellular free Ca2+ concentration ([Ca2+]i), which is determined by Ca2+ influx and release from intracellular Ca2+ storage sites. Ca2+ influx is via voltage-gated Ca2+ channels, which are activated by cell depolarization. Membrane potential is mainly determined by transmembrane K+ channels. The present study investigates the in vitro effect of ghrelin on membrane voltage-gated K+ channels in the GH3 rat somatotrope cell line. Nystatin-perforated patch clamp recording was used to record K+ currents under voltage-clamp conditions. In the presence of Co2+ (1 mM, Ca2+ channel blocker) and tetrodotoxin (1 μM, Na+ channel blocker) in the bath solution, two types of voltage-gated K+ currents were characterized on the basis of their biophysical kinetics and pharmacological properties. We observed that transient K+ current (I A) represented a significant proportion of total K+ currents in some cells, whereas delayed rectifier K+ current (I K) existed in all cells. The application of ghrelin (10 nM) reversibly and significantly decreased the amplitude of both I A and I K currents to 48% and 64% of control, respectively. Application of apamin (1 μM, SK channel blocker) or charybdotoxin (1 μM, BK channel blocker) did not alter the K+ current or the response to ghrelin. The ghrelin-induced reduction in K+ currents was not affected by PKC and PKA inhibitors. KT5823, a specific PKG inhibitor, totally abolished the K+ current response to ghrelin. These results suggest that ghrelininduced reduction of voltage-gated K+ currents in GH3 cells is mediated through a PKG-dependent pathway. A decrease in voltage-gated K+ currents may increase the frequency, duration, and amplitude of action potentials and contribute to GH secretion from somatotropes.  相似文献   

7.
S G Roh  G Y Nie  K Loneragan  A Gertler  C Chen 《Endocrinology》2001,142(12):5167-5171
Leptin is produced primarily in adipocytes and regulates body energy balance. A close link between leptin and pituitary hormones, including GH, has been reported. The mechanisms employed by leptin to influence somatotropes are not clear, however. Here we report a direct action of recombinant ovine leptin on primary cultured ovine somatotropes by analyzing the levels of mRNA encoding for GH or the receptors for GHRH (GHRH-R) and GH-releasing peptides (GHRP). Treatment of ovine somatotropes with leptin (10(-7)-10(-9) M) for 1-3 d reduced the mRNA levels encoding GH and GHRH-R, but increased GHRP receptor mRNA levels in a time- and dose-dependent manner. Three-day treatment of cells with leptin decreased the GH response to GHRH stimulation, but the GH response to GHRP-2 stimulation was increased. The combined effect of GHRH and GHRP-2 on GH secretion was not altered by treatment of the cells with leptin. These results demonstrated a direct action of leptin on ovine pituitary cells, leading to a reduced sensitivity of somatotropes to GHRH. It is also suggested that GHRP may be useful to correct the decrease in GHRH-induced GH secretion by leptin.  相似文献   

8.
Ghrelin is a newly discovered peptide that binds the receptor for GH secretagogues (GHS-R). The presence of both ghrelin and GHS-Rs in the hypothalamic-pituitary system, together with the ability of ghrelin to increase GH release, suggests a hypophysiotropic role for this peptide. To ascertain the intracellular mechanisms mediating the action of ghrelin in somatotropes, we evaluated ghrelin-induced GH release from pig pituitary cells both under basal conditions and after specific blockade of key steps of cAMP-, inositol phosphate-, and Ca2+-dependent signaling routes. Ghrelin stimulated GH release at concentrations ranging from 10-10 to 10-6 m. Its effects were comparable with those exerted by GHRH or the GHS L-163,255. Combined treatment with ghrelin and GHRH or L-163,255 did not cause further increases in GH release, whereas somatostatin abolished the effect of ghrelin. Blockade of phospholipase C or protein kinase C inhibited ghrelin-induced GH secretion, suggesting a requisite role for this route in ghrelin action. Unexpectedly, inhibition of either adenylate cyclase or protein kinase A also suppressed ghrelin-induced GH release. In addition, ghrelin stimulated cAMP production and also had an additive effect with GHRH on cAMP accumulation. Ghrelin also increased free intracellular Ca2+ levels in somatotropes. Moreover, ghrelin-induced GH release was entirely dependent on extracellular Ca2+ influx through L-type voltage-sensitive channels. These results indicate that ghrelin exerts a direct stimulatory action on porcine GH release that is not additive with that of GHRH and requires the contribution of a multiple, complex set of interdependent intracellular signaling pathways.  相似文献   

9.
Han X  Zhu Y  Zhao Y  Chen C 《Endocrine》2011,40(2):228-236
Ghrelin is an endogenous growth hormone secretagogue (GHS) causing release of GH from pituitary somatotropes through the GHS receptor. Secretion of GH is linked directly to intracellular free Ca2+ concentration ([Ca2+]i), which is determined by Ca2+ influx and release from intracellular Ca2+ storage sites. Ca2+ influx is via voltage-gated Ca2+ channels, which are activated by cell depolarization. The mechanism underlying the effect of ghrelin on voltage-gated Ca2+ channels is still not clear. In this report, using whole cell patch-clamp recordings, we assessed the acute action of ghrelin on voltage-activated Ca2+ currents in GH3 rat somatotrope cell line. Ca2+ currents were divided into three types (T, N, and L) through two different holding potentials (-80 and -40 mV) and specific L-type channel blocker (nifedipine, NFD). We demonstrated that ghrelin significantly and reversibly decreases all three types of Ca2+ currents in GH3 cells through GHS receptors on the cell membrane and down-stream signaling systems. With different signal pathway inhibitors, we observed that ghrelin-induced reduction in voltage-gated Ca2+ currents in GH3 cells was mediated by a protein kinase G-dependent pathways. As ghrelin also stimulates Ca2+ release and prolongs the membrane depolarization, this reduction in voltage-gated Ca2+ currents may not be translated into a reduction in [Ca2+]i, or a decrease in GH secretion.  相似文献   

10.
After a meal, somatotropes are temporarily refractory to growth hormone-releasing hormone (GHRH), the principal hormone that stimulates secretion of growth hormone (GH). Refractoriness is particularly evident when free access to feed is restricted to a 2-h period each day. GH-releasing peptide-6 (GHRP-6), a synthetic peptide, also stimulates secretion of GH from somatotropes. Because GHRH and GHRP-6 act via different receptors, we hypothesized that GHRP-6 would increase GHRH-induced secretion of GH after feeding. Initially, we determined that intravenous injection of GHRP-6 at 1, 3 and 10 microg/kg body weight (BW) stimulated secretion of GH in a dose-dependent manner. Next, we determined that GHRP-6- and GHRH-induced secretion of GH was lower 1 h after feeding (22.5 and 20 ng/ml respectively) than 1 h before feeding (53.5 and 64.5 ng/ml respectively; pooleds.e.m.=8.5). However, a combination of GHRP-6 at 3 microg/kg BW and GHRH at 0.2 microg/kg BW synergistically induced an equal and massive release of GH before and after feeding that was fivefold greater than GHRH-induced release of GH after feeding. Furthermore, the combination of GHRP-6 and GHRH synergistically increased release of GH from somatotropes cultured in vitro. However, it was not clear if GHRP-6 acted only on somatotropes or also acted at the hypothalamus. Therefore, we wanted to determine if GHRP-6 stimulated secretion of GHRH or inhibited secretion of somatostatin, or both. GHRP-6 stimulated secretion of GHRH from bovine hypothalamic slices, but did not alter secretion of somatostatin. We conclude that GHRP-6 acts at the hypothalamus to stimulate secretion of GHRH, and at somatotropes to restore and enhance the responsiveness of somatotropes to GHRH.  相似文献   

11.
Galanin enhances growth hormone (GH)-releasing hormone (GHRH)-stimulated GH secretion in normal man. In acromegaly, circulating GH levels are increased and the GH response to GHRH may be exaggerated. Galanin has been recently shown to decrease circulating GH levels in acromegaly. The aim of our study was to investigate the effects of galanin on the GH response to GHRH in acromegalic subjects. Five acromegalic patients (three men and two women) and seven healthy adult subjects (five men and two women) were studied. GHRH-induced GH secretion was evaluated during a 40-minute intravenous (IV) infusion of saline (100 mL) or porcine galanin (12.5 micrograms/min in 100 mL saline). In normal subjects, delta GH levels after GHRH+porcine galanin administration (47 +/- 7.5 micrograms/L) were significantly higher in comparison to levels obtained with GHRH+saline (21.7 +/- 3.5 micrograms/L, P < .05). In acromegalic patients, GH responses to GHRH (delta GH, 18.8 +/- 8.6 micrograms/L) were not altered by galanin infusion (delta GH, 17.6 +/- 5 micrograms/L). Our results give the first evidence that the same dose of galanin that induces a significant enhancement of the GH response to GHRH in normal subjects has no effect on the GH response to GHRH in acromegalic patients. It can be hypothesized that galanin may interact at the pituitary level with its own receptors expressed by somatotropes independent of GHRH. Failure of galanin to enhance GH response to GHRH in acromegalic patients could be due to a change in function of the galanin receptor on GH-secreting adenomatous cells.  相似文献   

12.
Glucose and other nutrients have been shown to stimulate insulin release from pancreatic islets under Ca2+-depleted condition when protein kinase A (PKA) and protein kinase C (PKC) are activated simultaneously. We investigated the role of metabolic nucleotide signals including ATP, ADP, and GTP in exocytosis of insulin secretory granules under Ca2+-depleted condition using electrically permeabilized rat islets. ATP under PKC activation augmented insulin release concentration-dependently by 100 nM 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in Ca2+-depleted condition, while ADP could not suppress ATP-dependent insulin release in this condition. Neither GTP nor activated PKA in the absence of PKC activation increased insulin release under Ca2+-depleted condition in the presence of ATP, but both enhanced insulin secretion in the presence of ATP when PKC was activated. In conclusion, activated PKC and the presence of ATP both are required in the insulin secretory process under Ca2+-depleted condition. While PKA activation and GTP cannot substitute for PKC activation and ATP, respectively, under Ca2+-depleted condition, they enhance ATP-dependent insulin secretion when PKC is activated.  相似文献   

13.
The secretion of GH by somatotropes is inhibited by somatostatin (SRIF) through five specific membrane receptors (SSTRs). SRIF increases both transient outward (IA) and delayed rectifying (IK) K+ currents. We aim to clarify the subtype(s) of SSTRs involved in K+ current enhancement in GH3 somatotrope cells using specific SSTR subtype agonists. Expression of all five SSTRs was confirmed in GH3 cells by RT-PCR. Nystatin-perforated patch clamp was used to record voltage-gated K+ currents. We first established the presence of IA and IK type K+ currents in GH3 cells using different holding potentials (-40 or -70 mV) and specific blockers (4-aminopirimidine and tetraethylammonium chloride). SRIF (200 nM) increased the amplitude of both IA and IK in a fully reversible manner. Various concentrations of each specific SRTR agonist were tested on K+ currents to find the maximal effective concentration. Activation of SSTR2 and SSTR4 by their respective agonists, L-779,976 and L-803,087 (10 nM), increased K+ current amplitude without preference to IA or IK, and abolished any further increase by SRIF. Activation of SSTR1 and SSTR5 by their respective agonists, L-797,591 or L-817,818 (10 nM), increased K+ current amplitude, but SRIF evoked a further increase. The SSTR3 agonist L-797,778 (10 nM) did not affect the K+ currents or the response to SRIF. These results indicate that SSTR1, -2, -4, and -5 may all be involved in the enhancement of K+ currents by SRIF but that only the activation of SSTR2 or -4 results in the full activation of K+ current caused by SRIF.  相似文献   

14.
Roh SG  Doconto M  Feng DD  Chen C 《Endocrine》2006,30(1):55-62
GH secretion is regulated by GHRH and somatostatin via actions on their specific receptors in pituitary somatotropes. Ghrelin and synthetic analogs, GHRPs, also stimulate GH release via GHS-receptors (GHS-R). To examine the long-term effect of GHRH and/or GHRP on somatotropes, primary cultured ovine somatotropes were treated with GHRH (10−9 and 10−8 M) and GHRP-2 (10−8 and 10−7 M) for up to 2 d. After treatment, culture medium was collected for GH assay, and total RNA was extracted for RT-PCR analysis. To evaluate cell cultures used in this report, somatotrope-enriched pituitary cells were challenged by 6 h GHRH and dexamethasone (DEX) treatment. As expected, GHRH significantly decreased, whereas DEX increased, the levels of GHRH-R mRNA. Combined low doses of GHRH (10−9 M) and GHRP-2 (10−8 M) treatment for 24 h increased accumulated GH secretion, significantly more than that induced by high doses of GHRH (10−8 M) and GHRP-2 (10−7 M). While levels of GHRH-R mRNA increased, GHS-R mRNA levels were decreased by low doses of GHRH and GHRP-2 for 24 h. High doses of GHRH and/or GHRP-2 for 2 d did not increase GH secretion in the second day of treatment and reduced the level of GHRH-R mRNA. High doses of GHRP-2 treatment decreased the levels of both GHRH-R and GHS-R mRNA. Low doses of GHRH and/or GHRP-2 for 2 d increased the level of GHS-R mRNA without changing GHRH-R mRNA levels. Such treatment also increased ghrelin- (10−9 M) or ghrelin/GHRH (10−9 M)-induced GH secretion. These results suggest that low doses of GHRP-2 and GHRH prime somatotropes for stimulation by GHRH and ghrelin.  相似文献   

15.
In mammals, the ability of somatostatin (SS) to block growth hormone (GH) secretion is due, in part, to the inhibition of two key intracellular mediators, cAMP and Ca2+. We examined whether or not inhibition of Ca2+ signaling was mediating SS-induced inhibition basal, as well as gonadotropin-releasing hormone (GnRH; a protein kinase C (PKC)-dependent growth hormone secretagogue)-stimulated growth hormone (GH) release. Although SS reduced basal GH release from populations of pituitary cells, parallel reductions in [Ca2+]i were not observed within single, identified somatotropes. Similarly, application of GnRH and the PKC activator DiC8 elicited increases in [Ca2+]i and GH release, but abolition of the Ca2+ responses did not accompany SS inhibition of the GH responses. Surprisingly, while DiC8 potentiated SS inhibition of GH release, SS paradoxically increased DiC8-stimulated increases in [Ca2+]i. These data establish that abolition of Ca2+ signals is not a primary mechanism through which SS lowers basal, or inhibits GnRH-stimulated hormone release.  相似文献   

16.
Context  The GHRH–protein kinase A (PKA) signalling pathway is essential for cell proliferation and GH synthesis/secretion in somatotrophs. An inactivating mutation of PRKAR1A is one of the causes of somatotrophinoma in Carney complex (CNC). The basal PKA activity of somatotroph adenoma cells from CNC has not been evaluated because of a limited amount of available tissue.
Objective  This study examined how the PRKAR1A mutation affects the PKA signalling pathway in a human somatotrophinoma with a PRKAR1A mutation.
Design and setting  Somatotrophinoma cells from a 40-year-old male patient with CNC were used. The patient had a novel somatic heterozygous germline frameshift mutation (227delT) in PRKAR1A leading to a premature stop codon. The tumour showed loss of heterozygosity (LOH) at 17q23–24. Primary cultured adenoma cells were subjected to electrophysiological experiments to evaluate PKA signalling in individual cells.
Results  GHRH did not increase the nonselective cation current or the voltage-gated calcium current in these adenoma cells, in contrast to nonadenomatous somatotroph cells in which these currents increase through the PKA pathway. Application of a PKA inhibitor inhibited the basal currents in these adenoma cells, results that were not observed in nonadenomatous somatotrophs. These data indicate that the basal currents are already increased and cannot be further increased by GHRH.
Conclusions  The results demonstrate that PKA is activated at the basal state in these adenoma cells. The data also show that both the nonselective cation current and the voltage-gated calcium current, vital regulators of GH secretion downstream of PKA, are maximally increased in these cells. These maximally increased currents probably account for the excessive GH secretion.  相似文献   

17.
To investigate the role of somatostatin (SRIF) in regulating sexually dimorphic GH secretion, we used a reverse hemolytic plaque assay and acutely dispersed somatotropes from age-matched normal male, normal female, and androgen receptor-deficient, testicular feminized (Tfm) rats. Hemolytic plaques were developed after a 90-min incubation in the presence of GH antiserum, 10 nM GH-releasing hormone (GHRH), and the following concentrations of SRIF: 0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 nM. Additional studies were performed with 0 or 100 nM SRIF in the absence of GHRH. The absolute number of somatotropes (x10(6); mean +/- SEM) recovered from the pituitaries of Tfm rats (1.73 +/- 0.18) was significantly greater than that from the males (1.11 +/- 0.13; P = 0.01); the number from female rats (1.30 +/- 0.15) was not different from that of either male or Tfm animals. GHRH-stimulated GH secretion, as estimated by the mean GH plaque area (micron2 x 10(4); mean +/- SEM) in the absence of SRIF, was greater for somatotropes from male rats (3.36 +/- 0.41) than that for either Tfm (2.27 +/- 0.32; P = 0.02) or female (1.78 +/- 0.24; P = 0.001) rats; values for the latter two groups did not differ. However, mean GH plaque areas for each group during maximal SRIF inhibition in either the presence or absence of GHRH were indistinguishable from each other and from mean plaque areas obtained under basal conditions. As demonstrated by a lesser EC50 value (0.04 +/- 0.02 nM; mean +/- SEM), somatotropes from female rats were more sensitive to the inhibitory effect of SRIF than were those from either male (EC50 = 1.82 +/- 0.45; P = 0.0001) or Tfm (EC50 = 0.74 +/- 0.22, P = 0.0001) rats; values for the latter two groups were indistinguishable. These observed differences suggest that gender and/or the gonadal hormone environment may be important determinants of the inhibitory effects of SRIF on GH secretion by the somatotrope. While these gender-associated differences may represent effects of the gonadal hormones directly on the somatotrope, they could reflect modulation of the secretion of hypothalamic SRIF and/or GHRH by the prevailing gonadal hormone environment. Such gender-related differences may contribute to the overall sex-dependent patterns of GH secretion in the intact animal.  相似文献   

18.
19.
A small-conductance K+ channel in the apical membrane of rat cortical collecting duct (CCD) cells controls K+ secretion in the kidney. Previously, we observed that the activity of the channel is stimulated by cAMP-dependent protein kinase A (PKA)-induced channel phosphorylation. We now have applied the patch-clamp technique to study the effects of protein kinase C (PKC) on the secretory K+ channel of rat CCD. In cell-attached patches, application of phorbol 12-myristate 13-acetate progressively reduced the open probability and current amplitude of the K+ channel. In inside-out patches, administration of PKC reversibly decreased the channel open probability (Po) without changing the channel conductance. The PKC-induced inhibition of channel activity was Ca2+ dependent: Po decreased 42%, 23%, and 11% in the presence of 1000 nM, 100 nM, and 10 nM free Ca2+, respectively. We also demonstrate that PKC antagonizes the stimulatory effect of PKA on the apical K+ secretory channel of rat CCD. These results suggest regulation of K(+)-channel activity by two separate sites of phosphorylation with distinct and opposite effects on channel activity.  相似文献   

20.
Ionic mechanisms play an important role in the regulation of hormone secretion. The GHRH-induced GH release by human GH-secreting cells is transmitted through protein kinase A (PKA), which activates nonselective cation current (NSCC) and induces membrane depolarization, intracellular Ca2+ increase, and GH secretion. To evaluate whether ionic mechanisms have pathophysiological significance in GH oversecretion of GH-secreting pituitary adenomas, we examined four adenomas with constitutively active Gs alpha mutation (gsp mutation) and compared with three gsp-negative adenomas. In primary-cultured cells of gsp-positive adenomas, GHRH did not increase the NSCC under voltage-clamp experiments. Detailed examination showed that NSCC was maximally activated at the basal level and application of GHRH did not increase the current in these adenomas. Furthermore, by using single-cell RT-PCR method, we demonstrated for the first time at the single cell level that gsp mutation is heterozygous in GH-secreting pituitary adenomas. These indicate that heterozygous gsp mutation fully activates NSCC at the basal level, which may account for the GH oversecretion in gsp-positive GH-secreting pituitary adenomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号