首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The otolith-semicircular canal interaction during postrotatory nystagmus was studied in ten normal human subjects by applying fast, short-lasting, passive head and body tilts (15, 30, 45, or 90° in the roll or pitch plane) 2 s after sudden stop from a constant-velocity rotation (100°/s) about the earth-vertical axis in yaw. Eye movements were measured with three-dimensional magnetic search coils. Following the head tilt, activity in the semicircular canal primary afferents continues to reflect the postrotatory angular velocity vector in head-centered coordinates, whereas otolith primary afferents signal a different orientation of the head relative to gravity. Despite the change in head orientation relative to gravity, postrotatory eye velocity decayed closely along the axis of semicircular canal stimulation (horizontal in head coordinates) for large head tilts (90°) and also for small head tilts (15–45°) for reorientations in the pitch plane. Only for small head tilts (15–45°) in the roll plane was there a reorientation of the eye rotation axis toward the gravitational vector. This reorientation was approximately compensatory for 15° head tilts. For 30° and 45° head tilts the eye rotation axis tilted toward the gravitational vector by about the same amount as for 15° head tilts. These results suggest that, with the exception of small head tilts in the roll plane, there was no compelling data showing a relationship between the eye rotation axis and head tilt and that postrotatory nystagmus is largely organized in head-centered rather than gravity-centered coordinates in humans. This indicates a rudimentary, nonlinear, and direction-specific interaction of semicircular canal and otolith signals in the central vestibular system in humans.  相似文献   

2.
Summary We measured the effect of static lateral tilt (roll) on the gain and time constant of the vestibulo-ocular reflex (VOR) in five normal subjects by recording both the horizontal and vertical components of eye velocity in space for rotation about an earth vertical axis with the head either upright or rolled to either side. The time constant of the VOR in the upright position was 19.6 ±3.2s (mean ± standard deviation). The time constant of the horizontal component with respect to the head decreased to 15.7±4.0s for 30° roll and to 12.7±2.7s for 60° roll. The time constant of the vertical component with respect to the head was 11.0±1.4 s for 30° roll and 7.5±1.6 s for 60° roll. The gain of the horizontal VOR with respect to space did not vary significantly with roll angle but a small space-vertical component to the VOR appeared during all rotations when the head was rolled away from upright. This non-compensatory nystagmus built up to a maximum of 2–3°/s at 17.0±4.7s after the onset of rotation and then decayed. These data suggest that static otolith input modulates the central storage of semicircular canal signals, and that head-horizontal and head-vertical components of the VOR can decay at different rates.  相似文献   

3.
Summary (1) Compensatory slow phase movements were evoked by optokinetic, vestibular and combined optokinetic and vestibular stimulation. Superimposed fast phases resetting the position of the head (in space) and of the eye (in head) were recorded with a magnetic field search coil in unrestrained and head fixed frogs, respectively. (2) Head fast phases recorded during optokinetic stimulation covaried in the frequency of their occurrence with slow phase head velocity. Their amplitude was large (average 18.9 ±8.9 °), maximal velocity increased with amplitude by 6.67 °/deg, and duration (average 230 ±33 ms) was almost independent on amplitude. (3) Ocular fast phases rarely occurred during sinusoidal stimulation and neither optokinetic after nystagmus nor postrotatory nystagmus were observed. Fast phases, evoked by constant velocity optokinetic or acceleratory stimuli, consisted of two components: a primary resetting fast phase and a smaller fast movement in the opposite direction. The primary fast phase had a small amplitude (average 2.2 ±1.3 °). In different stimulus conditions fast phase parameters were very similar. Maximal velocity increased by 6.5 °/s/deg. Duration (average 165 ±23.4 ms) was variable. (4) During ocular fast phases the vestibulo-collic and the optokinetic-collic reflexes were suppressed. The slow phase head velocity either became zero or a small head fast phase in the direction of the ocular fast phase occurred. Fast phase head movements were accompanied by an ocular fast phase or by a retraction of one or both eyes, depending on the amplitude of the head fast phase. At the end of a head fast phase eye position was always recentered.Supported by grants from Deutsche Forschungsgemeinschaft (Pr158/2) and Swiss National Science Foundation (3.505.79 and 3.616.80)  相似文献   

4.
We measured torsional vestibular and optokinetic eye movements in human subjects with the head and trunk erect, with the head supine and the trunk erect, and with the head and trunk supine, in order to quantify the effects of otolithic and proprioceptive modulation. During active head movements, the torsional vestibulo-ocular reflex (VOR) had significantly higher gain with the head upright than with the head supine, indicating that dynamic otolithic inputs can supplement the semicircular canal-ocular reflex. During passive earth-vertical axis rotation, torsional VOR gain was similar with the head and trunk supine and with the head supine and the trunk erect. This finding implies that static proprioceptive information from the neck and trunk has little effect upon the torsional VOR. VOR gain with the head supine was not increased by active, self-generated head movement compared with passive, whole body rotation, indicating that the torsional VOR is not augmented by dynamic proprioceptive inputs or by an efference copy of a command for head movement. Viewing earth-fixed surroundings enhanced the torsional VOR, while fixating a chair-fixed target suppressed the VOR, especially at low frequencies. Torsional optokinetic nystagmus (OKN) evoked by a full-field stimulus had a mean slow-phase gain of 0.22 for 10°/s drum rotation, but gain fell to 0.06 for 80°/s stimuli. Despite this fall in gain, mean OKN slow-phase velocities increased with drum speed, reaching maxima of 2.5°/s–8.0°/s in our subjects. Optokinetic afternystagmus (OKAN) was typically absent. Torsional OKN and OKAN were not modified by otolithic or proprioceptive changes caused by altering head and trunk position with respect to gravity. Torsional velocity storage is negligible in humans, regardless of head orientation.Presented in part at the Society for Neuroscience Annual Meeting, October 31, 1989, Phoenix, AZ  相似文献   

5.
Summary Horizontal and vertical eye movements were recorded from cats in response to either a) off-vertical axis rotation (OVAR) at a range of velocities (5–72 deg/s) and a range of tilts (0–60 deg) or b) horizontal (with respect to the cat) optokinetic stimulation (10–80 deg/s), also around a range of tilted axes (0–60 deg). The responses to stopping either of these stimuli were also measured: post-rotatory nystagmus (PRN) following actual rotation, and optokinetic after nystagmus (OKAN) following optokinetic stimulation. The response found during OVAR was a nystagmus with a bias slow-phase velocity that was sinusoidally modulated. The bias was dependent on the tilt and reached 50% of its maximum velocity (maximum was 73±23% of the table velocity) at a tilt of 16 deg. The phase of modulation in horizontal eye velocity bore no consistent relation to the angular rotation. The amplitude of this modulation was roughly correlated with the bias with a slope of 0.13 (deg/s) modulation/(deg/s) bias velocity. There was also a low-velocity vertical bias with the slow-phases upwardly directed. The vertical bias was also modulated and the amplitude depended on the bias velocity (0.27 (deg/s) modulation/ (deg/s) bias velocity). When separated from the canal dependent response, the build up of the OVAR response had a time constant of 5.0±0.8 s. Following OVAR there was no decline in the time constant of PRN which remained at the value measured during earth-vertical axis rotation (EVAR) (6.3±2 s). The peak amplitude of PRN was reduced, dependent on the tilt, reaching only 20% of its EVAR value for a tilt of 20 deg. When a measurable PRN was found, it was accompanied by a slowly-emerging vertical component (time constant 5.4±2s) the effect of which was to vector the PRN accurately onto the earth horizontal. OKN measured about a tilted axis showed no differences in magnitude or direction from EVAR OKN even for tilts as large as 60 deg. OKAN following optokinetic stimulation around a tilted axis appeared normal in the horizontal plane (with respect to the animal) but was accompanied by a slowly emerging (time constant 4.1±2 s) vertical component, the effect of which was to vector the overall OKAN response onto the earth horizontal for tilts less than 20 deg. These results are compared with data from monkey and man and discussed in terms of the involvement of the velocity storage mechanism.  相似文献   

6.
Summary The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005–0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0° of rotation axis and with the animal's longitudinal axis inclination also set at 0°, the maculo-ocular reflex was oriented about 20° forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5° upward to 30° downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes. 4) In the upright position the coactivation of the optokinetic reflex (OKR) eliminated the eye disalignment with respect to the stimulus plane and the elliptic trajectory. 5) Combined vertical OKR and VOR gain in the prone position (VOKR + VVOR 0°) was higher than that of the combined VOKR + VVOR in the 90° nose up position. The VVOR + VOKR 90° gain was in turn higher than the VVOR + VOKR gain in the 180° upside down position. 6) We suggest that, in the dark, the maculo-ocular response tends to reduce the disalignment of both eyes with respect to the horizon rather than inducing oculocompensatory responses. In the light, this maculo-ocular reflex increases the gain of combined optokinetic and vestibular responses.  相似文献   

7.
In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60°/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation. Electronic Publication  相似文献   

8.
Eye movements during multi-axis whole-body rotations   总被引:2,自引:0,他引:2  
The semi-circular canals and the otolith organs both contribute to gaze stabilization during head movement. We investigated how these sensory signals interact when they provide conflicting information about head orientation in space. Human subjects were reoriented 90 degrees in pitch or roll during long-duration, constant-velocity rotation about the earth-vertical axis while we measured three-dimensional eye movements. After the reorientation, the otoliths correctly indicated the static orientation of the subject with respect to gravity, while the semicircular canals provided a strong signal of rotation. This rotation signal from the canals could only be consistent with a static orientation with respect to gravity if the rotation-axis indicated by the canals was exactly parallel to gravity. This was not true, so a cue-conflict existed. These conflicting stimuli elicited motion sickness and a complex tumbling sensation. Strong horizontal, vertical, and/or torsional eye movements were also induced, allowing us to study the influence of the conflict between the otoliths and the canals on all three eye-movement components. We found a shortening of the horizontal and vertical time constants of the decay of nystagmus and a trend for an increase in peak velocity following reorientation. The dumping of the velocity storage occurred regardless of whether eye velocity along that axis was compensatory to the head rotation or not. We found a trend for the axis of eye velocity to reorient to make the head-velocity signal from the canals consistent with the head-orientation signal from the otoliths, but this reorientation was small and only observed when subjects were tilted to upright. Previous models of canal-otolith interaction could not fully account for our data, particularly the decreased time constant of the decay of nystagmus. We present a model with a mechanism that reduces the velocity-storage component in the presence of a strong cue-conflict. Our study, supported by other experiments, also indicates that static otolith signals exhibit considerably smaller effects on eye movements in humans than in monkeys.  相似文献   

9.
Sinusoidal oscillation of rhesus monkeys about a head-fixed, earth-horizontal axis while rotating at constant velocity about an earth-vertical axis generates a characteristic ocular nystagmus where the three-dimensional slow phase eye velocity is compensatory to the spatially and temporally changing head angular velocity vector. This includes the generation of a unidirectional nystagmus characterised by a bias slow phase velocity component, albeit of small gain (0.2–0.7), that persists for the duration of the combined two-axes stimulation and is compensatory to the constant velocity earth-vertical axis rotation. Specifically, there is a torsional bias velocity in supine position, a vertical bias velocity in ear down position and a horizontal bias velocity in upright position. Since the semicircular canals can not sense prolonged constant velocity rotation, the ocular bias velocity must be centrally constructed from canal afferent signals using head position information. Thus, optimal performance of the vestibular system as a three-dimensional rate sensor relies on afferent information from both the semicircular canals and the otolith organs.  相似文献   

10.
Summary For the vestibulo-ocular reflex (VOR) to function properly, namely to ensure a stable retinal image under all circumstances, it should be able to take into account varying eye positions in the orbit and varying orientations of the head with respect to the axis about which it is rotating. We tested this capability by quantifying the gain and the time constant of the horizontal component of the VOR during rotation about an earth vertical axis when the line of sight (optical axis) was moved out of the plane of head rotation — either by rotating the eyes up or down in the orbit or by pitching the head up or down with respect to earth-horizontal. In either case the gain of the horizontal component of the VOR was attenuated precisely by the cosine of the angle made between the optical axis and the plane of head rotation. Furthermore, if the head was pitched up or down but the eye rotated oppositely in the orbit so as to keep the line of sight in the plane of head rotation the gain of the horizontal component of the VOR was the same value as with the head and eyes both straight ahead. In contrast, the time constant of the VOR varied only as a function of the orientation of the head and not as a function of eye position in the orbit. During rotation about an earth vertical axis, the time constant was longest (about 18 s) when the head was pitched forward to place the lateral canals near earth-horizontal and shortest (about 11 s) when the head was pitched backward to place the vertical canals near earth-horizontal. Finally, since during rotation in yaw the pattern of stimulation of the lateral and vertical semicircular canals varies with different head orientations one can use measurements of the horizontal component of the VOR, under varying degrees of pitch of the head, to calculate the relative ability of the lateral and vertical semicircular canals to transduce head velocity.Dr. Fetter is a visiting scientist from the Neurologische Universitätsklinik, Eberhard-Karls-Universität, Liebermeisterstr. 18-20, D-7400 Tübingen, Federal Republic of Germany  相似文献   

11.
12.
Chronic loss of vestibular function modifies the role of neck afferents in human perception of self-motion. We characterized this change by comparing the self-motion perception of patients with chronic vestibular loss (Ps) to that of normal subjects (Ns). Stimuli consisted of sinusoidal horizontal rotations (0.025–0.4 Hz) of the trunk relative to the head (neck stimulation) and/or of the head in space (vestibular stimulation). Perception of head rotation relative to the trunk, of trunk rotation in space, or of head rotation in space was assessed in terms of gain and phase (veridical perception, G=1 and =0°) as well as detection threshold using a pointing procedure. (1) Perception of head rotation relative to the trunk (neck proprioception). Ps' detection threshold of head-to-trunk rotation was normal (i.e. similar to that of Ns) across all frequencies tested. Also, with peak angular velocities above 5°/s, the gain of their perception was approximately normal. When peak velocity was decreased below this value, however, either by lowering stimulus frequency with peak displacement kept constant (±8°) or by decreasing peak displacement at constant frequency (0.05 Hz), the gain increased above unity, unlike in Ns. In contrast, the phase remained normal (approximately 0°). (2) Perception of trunk rotation in space. Ps perceived their trunks as stationary during neck stimulation and all vestibular-neck combinations at medium to low frequencies. At 0.4 Hz, however, Ps consistently perceived the trunk rotation, conceivably due to somatosensory selfmotion cues arising from high body acceleration. In contrast, Ns perceive a trunk-in-space rotation with the neck stimulation and most of the stimulus combinations across the whole frequency range tested. Ns perceived their trunks as stationary only during head rotation on the stationary trunk (presumed to reflect a mutual cancellation of neck and vestibular signals). (3) Perception of head rotation in space. In Ps, unlike Ns, this perception always resembled that of head rotation relative to the trunk. (4) When Ps were presented with a visual or somatosensory space reference (not motion cues), their perception of trunk and head rotation in space became approximately normal. (5) We suggest that there are basically two changes in the neck induced self motion perception associated with chronic vestibular loss. First, neck proprioception shows a non linear gain that overemphasizes low stimulus velocities, for unknown reasons. Second, the neck signal which normally is used for the perception of trunk rotation in space is suppressed (Ps in the dark, deprived of any space reference, resort to the notion that their trunks are stationary). The change in Ps' perception of head rotation in space is attributed to the former two changes (assuming that they superimposed their notion of head on trunk rotation on that of a stationary trunk).  相似文献   

13.
The subjective visual vertical (SVV) is usually considered a measure of otolith function. Herewith we investigate the influence of semicircular canal (SCC) stimulation on the SVV by rotating normal subjects in yaw about an earth-vertical axis, with velocity steps of +/- 90 degrees /s, for 60 s. SVV was assessed by setting an illuminated line to perceived earth vertical in darkness, during a per- and postrotary period. Four head positions were tested: upright, 30 degrees backward (chin up) or forward, and approximately 40 degrees forward from upright. During head upright/backward conditions, a significant SVV tilt (P < 0.01) in the direction opposite to rotation was found that reversed during postrotary responses. The rotationally induced SVV tilt had a time constant of decay of approximately 30 s. Rotation with the head 30 degrees forward did not affect SVV, whereas the 40 degrees forward tilt caused a direction reversal of SVV responses compared with head upright/backward. Spearman correlation values (Rho) between individual SCC efficiencies in different head positions and mean SVV tilts were 0.79 for posterior, 0.34 for anterior, and - 0.80 for horizontal SCCs. Three-dimensional video-oculography showed that SVV and torsional eye position measurements were highly correlated (0.83) and in the direction opposite to the slow phase torsional vestibuloocular reflex. In conclusion: 1) during yaw axis rotation without reorientation of the head with respect to gravity, the SVV is influenced by SCC stimulation; 2) this effect is mediated by the vertical SCCs, particularly the posterior SCCs; 3) rotationally induced SVV changes are due to torsional ocular tilt; 4) SVV and ocular tilts occur in the "anticompensatory," fast phase direction of the torsional nystagmus; and 5) clinically, abnormal SVV tilts cannot be considered a specific indication of otolith system dysfunction.  相似文献   

14.
Summary The normal horizontal vestibulo-ocular reflex (HVOR) is largely generated by simultaneous stimulation of the two horizontal semicircular canals (HSCCs). To determine the dynamics of the HVOR when it is generated by only one HSCC, compensatory eye movements in response to a novel vestibular stimulus were measured using magnetic search coils. The vestibular stimulus consisted of low-amplitude, high-acceleration, passive, unpredictable, horizontal rotations of the head with respect to the trunk. While these so called head “impulses” had amplitudes of only 15–20 degrees with peak velocities up to 250 deg/s, they had peak accelerations up to 3000 deg/s/s. Fourteen humans were studied in this way before and after therapeutic unilateral vestibular neurectomy; 10 were studied 1 week or 1 year afterwards; 4 were studied 1 week and 1 year afterwards. The results from these 14 patients were compared with the results from 30 normal control subjects and with the results from one subject with absent vestibular function following bilateral vestibular neurectomy. Compensatory eye rotation in normal subjects closely mirrored head rotation. In contrast there was no compensatory eye rotation in the first 170 ms after the onset of head rotation in the subject without vestibular function. Before unilateral vestibular neurectomy all the patients' eye movement responses were within the normal control range. One week after unilateral vestibular neurectomy however there was a symmetrical bilateral HVOR deficit. The asymmetry was much more profound than has been shown in any previous studies. The HVOR generated in response to head impulses directed away from the intact side largely by ampullofugal disfacilitation from the single intact HSCC (ignoring for the moment the small contribution to the HVOR from stimulation of the vertical SCCs), was severely deficient with an average gain (eye velocity/head velocity) of 0.25 at 122.5 deg/sec head velocity (normal gain=0.94+/−0.08). In contrast the HVOR generated in response to head impulses directed toward the intact side, largely by ampullopetal excitation from the single intact HSCC, was only mildly (but nonetheless significantly) deficient, with an average gain of 0.80 at 122.5 deg/sec head velocity. At these accelerations there was no significant improvement in the average HVOR velocity gain in either direction over the following year. These results indicate that ampullopetal excitation from one HSCC can, even in the absence of ampullofugal disfacilitation from the opposite HSCC, generate a near normal HVOR in response to high-acceleration stimulation. Furthermore, since ampullofugal disfacilitation on its own, can only generate an inadequate HVOR in response to high-acceleration stimulation, it may under some normal circumstances make little contribution to the bilaterally generated HVOR.  相似文献   

15.
The smooth-pursuit system and vestibular system interact to keep the retinal target image on the fovea during head and/or whole body movements. The caudal part of the frontal eye fields (FEF) in the fundus of arcuate sulcus contains pursuit neurons and the majority of them respond to vestibular stimulation induced by whole-body rotation, that activates primarily semi-circular canals, and by whole-body translation, that activates otoliths. To examine whether coordinate frames representing FEF pursuit signals are orbital or earth-vertical, we compared preferred directions during upright and static, whole-body roll-tilt in head- and trunk-restrained monkeys. Preferred directions (re monkeys’ head/trunk axis) of virtually all pursuit neurons tested (n = 21) were similar during upright and static whole-body roll-tilt. The slight shift of preferred directions of the majority of neurons could be accounted for by ocular counter-rolling. The mean (±SD) differences in preferred directions between upright and 40° right ear down and between upright and 40° left ear down were 6° (±6°) and 5° (±5°), respectively. Visual motion preferred directions were also similar in five pursuit neurons tested. To examine whether FEF pursuit neurons could signal static whole-body roll-tilt, we compared mean discharge rates of 29 neurons during fixation of a stationary spot while upright and during static, whole-body roll-tilt. Virtually all neurons tested (28/29) did not exhibit a significant difference in mean discharge rates between the two conditions. These results suggest that FEF pursuit neurons do not signal static roll-tilt and that they code pursuit signals in head/trunk-centered coordinates.  相似文献   

16.
Eye movement were recorded from four juvenile rhesus monkeys (Macaca mulatta) before and after the injection of neurotoxins (kainate or ibotenate) in the region of the medial vestibular and prepositus hypoglossi nuclei, an area hypothesized to be the locus of the neural integrator for horizontal eye movement commands. Eye movements were measured in the head-restrained animal by the magnetic field/eye-coil method. The monkeys were trained to follow visual targets. A chamber implanted over a trephine hole in the skull permitted recordings to be made in the brain stem with metal microelectrodes. The abducens nuclei were located and used as a reference point for subsequent neurotoxin injections through cannulas. The effects of these lesions on fixation, vestibuloocular and optokinetic responses, and smooth pursuit were compared with predicted oculomotor anomalies caused by a loss of the neural integrator. Kainate and ibotenate did not create permanent lesions in this region of the brain stem. All the eye movements returned toward normal over the course of a few days to 2 wk. Histological examination revealed that the cannula tips were mainly located between the vestibular and prepositus hypoglossi nuclei, in their rostral 2 mm, bordered rostrally by the abducens nuclei. Dense gliosis clearly demarcated the cannula tracks, but for most injections there were no surrounding regions of neuronal loss. Thus the eye movement disorders were due to a reversible, not a permanent, lesion. The time constant for the neural integrator was determined from the velocity of the centripetal drift of the eyes just after an eccentric saccade in total darkness. For intact animals this time constant was greater than 20 s. Shortly after bilateral injections of neurotoxin, the time constant began to decrease and reached a minimum of 200 ms; every horizontal saccade was followed by a rapid centripetal drift with a time constant of approximately 200 ms. For vertical eye movements, in this acute phase, the time constant was approximately 2.5 s. The vestibuloocular reflex (VOR) was drastically changed by the lesions. A step of constant head velocity in total darkness evoked a step change in eye position rather than in velocity. In the absence of the neural integrator, the step velocity command from the canal afferents was not integrated to produce a ramp of eye position (normal slow phases); rather this signal was relayed directly to the motoneurons and caused a step in eye position. The per- and postrotatory decay of the head velocity signal was decreased to 5-6 s indicating that vestibular velocity storage was also impaired.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary 1) In the alert cat, nystagmus induced by off-vertical axis rotation (OVAR) was recorded following steps in head velocity or ramps of velocity at constant acceleration below canal threshold. Dependence of nystagmus characteristics on tilt angle of rotation axis and head velocity was studied. Similar results were obtained with both types of stimulation. 2) Mean and modulation amplitude of horizontal eye velocity increased with tilt angle in the range 0–30 degrees. 3) Both variables increased also with head velocity, but with different trends, probably because they are set by different mechanisms. When head rotational velocity was increased above 80°/s, mean eye velocity progressively decreased to zero. 4) In spite of variations from one animal to another, some regularity was observed in the phase of eye velocity modulation. In several cases, a reduction in phase lead of eye velocity with respect to conventional origin of phases (nose-down position) was observed when head velocity increased. 5) Time constant of post-OVAR nystagmus decreased with the tilt angle of the rotation axis from gravity, but not with the orientation of the head with respect to rotation axis. 6) The results could be accounted for by a general equation describing the vestibulo-ocular reflex, provided that estimates of kinematic variables of head movement (head rotational and translational velocities), and visual target distance could be computed by the Central Nervous System.  相似文献   

18.
Velocity storage in the vestibulo-ocular reflex arc (VOR)   总被引:9,自引:0,他引:9  
Summary Vestibular and optokinetic nystagmus (OKN) of monkeys were induced by platform and visual surround rotation. Vision prolonged per-rotatory nystagmus and cancelled or reduced post-rotatory nystagmus recorded in darkness. Presumably, activity stored during OKN summed with activity arising in the semicircular canals. The limit of summation was about 120 °/s, the level of saturation of optokinetic after-nystagmus (OKAN). OKN and vestibular nystagmus, induced in the same or in opposite directions diminished or enhanced post-rotatory nystagmus up to 120 °/s. We postulate that a common storage mechanism is used for producing vestibular nystagmus, OKN, and OKAN. Evidence for this is the similar time course of vestibular nystagmus and OKAN and their summation. In addition, stored activity is lost in a similar way by viewing a stationary surround during either OKAN or vestibular nystagmus (fixation suppression).These responses were modelled using direct pathways and a non-ideal integrator coupled to the visual and peripheral vestibular systems. The direct pathways are responsible for rapid changes in eye velocity while the integrator stores activity and mediates slower changes. The integrator stabilizes eye velocity during whole field rotation and extends the time over which the vestibulo-ocular reflex can compensate for head movement.  相似文献   

19.
Gaze shifts vary in the extent of eye and head contribution; a large amplitude and/or an eccentric ocular orbital starting position alter the participation of head movement in the shift. The interval between eye onset and head onset determines compensatory counterrolling before and after the shift and the extent of vestibular ocular reflex reduction during the shift. The latency of eye saccades in the head-fixed condition was measured with respect to target amplitude and orbital position in order to establish base-line operations of these two variables as they apply to the headfree condition. Eye movements were measured during single-step saccades in nine young adult humans. The target step, hereafter called a jump, started from three possible fixation lights; e.g., rightward saccades started from the midline (0°) or from -20 or -40° left of the midline, with a maximum amplitude of 80°. The latency of saccades starting from the primary position increased with jump amplitude (amplitude-latency relation). When the eye started eccentrically, the latency was decreased (orbital position-latency relation), with the largest jump amplitudes most affected. These changes can be related to active eye-head coordination. Thus, with a leftward maximal orbital eccentricity, compensatory eye rotation would be impossible with a rightward head movement; however, incorporating the orbital position-latency relation, the forward ocular saccade is expedited by 90 ms. Conversely, with a primary starting position, the ocular component of an 80° gaze saccade could be slowed 125 ms by incorporating the amplitude-latency relation, thus facilitating a head contribution to the gaze shift. The orbital position and amplitude-latency relations were prominent in those subjects with habitually large head contributions to the gaze shift and minimal in individuals with typically small head contributions.  相似文献   

20.
Rapid, passive, unpredictable, low-amplitude (10–20°), high-acceleration (3000–000°/s2) head rota tions were used to study the vertical vestibulo-ocular reflex in the pitch plane (pitch-vVOR) after unilateral vestibular deafferentation. The results from 23 human subjects who had undergone therapeutic unilateral vestibular deafferentation were compared with those from 19 normals. All subjects were tested while seated in the upright position. Group means and two-tailed 95% confidence intervals are reported for the pitch-vVOR gains in normal and unilateral vestibular deafferented subjects. In normal subjects, at a head velocity of 125°/s the pitch-vVOR gains were: upward 0.89±0.06, down ward 0.91±0.04. At a head velocity of 200°/s, the pitchvVOR gains were: upward 0.92±0.06, downward 0.96±0.04. There was no significant up-down asymme try. In the 15 unilateral vestibular deafferented subjects who were studied more than 1 year after unilateral vestibular deafferentation, the pitch-vVOR was signifi cantly impaired. At a head velocity of 125°/s the pitchvVOR gains were: upward 0.67±0.11, downward 0.63 ± 0.07. At a head velocity of 200°/s, the pitch-vVOR gains were: upward 0.67±0.07, downward 0.58±0.06. There was no significant up-down asymmetry. The pitch-vVOR gain in unilateral vestibular deafferented subjects was significantly lower (P<0.05) than the pitch-vVOR gain in normal subjects at the same head velocities. These results show that total, permanent uni lateral loss of vestibular function produces a permanent symmetrical 30% (approximately) decrease in pitchv-VOR gain. This pitch-vVOR deficit is still present more than 1 year after deafferentation despite retinal slip velocities greater than 30°/s in response to head accelerations in the physiological range, indicating that compensation of pitch-vVOR function following unilat eral vestibular deafferention remains incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号