首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A derivative spectrophotometric method was proposed for the simultaneous determination of clindamycin and tretinoin in pharmaceutical dosage forms. The measurement was achieved using the first and second derivative signals of clindamycin at (1D) 251 nm and (2D) 239 nm and tretinoin at (1D) 364 nm and (2D) 387 nm.The proposed method showed excellent linearity at both first and second derivative order in the range of 60–1200 and 1.25–25 μg/ml for clindamycin phosphate and tretinoin respectively. The within-day and between-day precision and accuracy was in acceptable range (CV<3.81%, error<3.20%). Good agreement between the found and added concentrations indicates successful application of the proposed method for simultaneous determination of clindamycin and tretinoin in synthetic mixtures and pharmaceutical dosage form.  相似文献   

2.
A high-performance liquid chromatographic method and a UV spectrophotometric method for the quantitative determination of meropenem, a highly active carbapenem antibiotic, in powder for injection were developed in present work. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by reversed-phase technique on an RP-18 column with a mobile phase composed of 30 mM monobasic phosphate buffer and acetonitrile (90:10; v/v), adjusted to pH 3.0 with orthophosphoric acid. The UV spectrophotometric method was performed at 298 nm. The samples were prepared in water and the stability of meropenem in aqueous solution at 4 and 25 °C was studied. The results were satisfactory with good stability after 24 h at 4 °C. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and can be used for the reliable quantitation of meropenem in pharmaceutical dosage form.  相似文献   

3.
Zero- and second-order derivative spectrophotometric and high-performance liquid chromatography (HPLC) methods were developed and validated for the determination of gemcitabine in human plasma. Spectrophotometrically, gemcitabine was determined by means of zero-order derivative absorbance values (A) at 288 nm and from values from the second-order derivative absorbance values (2D) at 285 nm. Beer's Law was obeyed in the range 0.50-15.0 microg ml(-1). The proposed other method, normal-phase HPLC method for determination of gemcitabine in human plasma was described. Calibration curve was linear over the concentration range 0.20-15.0 microg ml(-1). Quantitation was achieved by diode array detection at 272 nm using 2'-deoxycytidine as internal standard. Results obtained by spectrophotometric and HPLC methods for determination of gemcitabine in human plasma described in this paper showed adequate accuracy, precision and repeatability. No interference was found in plasma at the selected derivative wavelength and chromatographic conditions. According to the statistical comparison, there is no significant difference between the three methods. This is suggested that the three methods are equally applicable.  相似文献   

4.
Three new spectrophotometric procedures for the simultaneous determination of fosinopril and hydrochlorothiazide are described. The first method, derivative-differential spectrophotometry, comprised of measurement of the difference absorptivities derivatized in the first-order (ΔD1) of a tablet extract in 0.1 N NaOH relative to that of an equimolar solution in methanol at wavelengths of 227.6 and 276.4 nm, respectively. The second method, depends on the application ratio spectra derivative spectrophotometric method to resolve the interferance due to spectral overlapping. The analytical signals were measured at 237.9, 243.8 nm for fosinopril and 262.4, 269.3 and 278.6 nm for hydrochlorothiazide in the binary mixture, in the first derivative of the ratio spectra of the mixture solutions in methanol. Calibration graphs were established for 4.0–50.0 μg ml−1 fosinopril and 2.0–14.0 μg ml−1 hydrochlorothiazide in binary mixture. The third method, absorbance ratio method, the determination of fosinopril and hydrochlorothiazide was performed by using the absorbances read at 210.0, 219.5 and 271.7 nm in the zero-order spectra of their mixture. The developed methods were compared with absorbance ratio method. Application of the suggested procedures were successfully applied to the determination of this compound in synthetic mixtures and in pharmaceutical preparations, with high percentage of recovery, good accuracy and precision.  相似文献   

5.
Three simple, rapid and accurate methods are described for the simultaneous determination of chlorpheniramine maleate and phenylephrine hydrochloride in two component mixtures. The first method comprised of measurement of difference absorptivities derivatized in first order of a nasal drops in 0.1 N NaOH relative to that of an equimolar solution in methanol at wavelengths of 271.6 and 250.2 nm, respectively. The second method, zero-crossing derivative spectrophotometry, is based on recording the first derivative curves and determining each component using the zero-crossing technique. Using first derivative spectrophotometry, the amplitudes in the first derivative spectra at 246.5 and 238.6 nm were selected to simultaneously determine chlorpheniramine maleate and phenylephrine hydrochloride in the mixture. The presence of identical zero-crossing points for pure drugs and nasal drop solutions established the non-interference of the excipients in the absorption at these wavelengths. Absorbance ratio method was also developed for a comparison method. The proposed procedures were successfully applied to the determination of chlorpheniramine maleate and phenylephrine hydrochloride in nasal drops, with a high percentage of recovery, good accuracy and precision.  相似文献   

6.
Two simple, precise, and accurate extractive spectrophotometric methods have been developed for the determination of doxepin hydrochloride in pharmaceutical preparations. The methods are based on the formation of ion association complexes of doxepin with titanium (IV) and iron (III) thiocyanate complexes in acidic medium. The produced compounds are insoluble in water but well soluble in some organic solvents. They are extracted with mixtures of butyl alcohol-chloroform (2:3, v/v) and (1:4, v/v) and measured spectrophotometrically at 400 and 490 nm for DOX-Ti-SCN and DOX-Fe(III)-SCN methods, respectively. Beer's law was obeyed in the concentration ranges of 5-50 and 3-30 microg/ml with molar absorptivity of 7.12 x 10(3) and 1.36 x 10(4) l mol(-1) cm(-1) for DOX-Ti-SCN and DOX-Fe-SCN systems, respectively. The proposed methods have been successfully applied for the analysis of the drug in dosage forms. No interference was observed from common pharmaceutical adjuvants. The methods have been also used for the determination of the drug in the presence of its degradation product. Statistical comparison of the obtained results with the reference methods shows excellent agreement and indicates no significant difference in accuracy and precision.  相似文献   

7.
Two newly developed simple and sensitive methods for determination of tramadol hydrochloride in ampoule dosage forms were described and validated. Measurements for spectrophotometric method were performed using UV-Vis Spectrophotometer in ranges of 200-400 nm. The solutions of standard and the samples were prepared in methanol and water media and the UV absorption spectrums of tramadol were monitored with maximum absorptions at 275 and 271 nm for both mediums, respectively. The standard calibration curves of tramadol were constructed by plotting absorbance vs. concentration in the concentration range with the final dilution of 10-100 microg ml-1. Reversed phase chromatography for HPLC method was conducted using a Phenomenex Bondclone C18 column with an isocratic mobile phase consisting of 25% acetonitrile in 75% 0.01 M phosphate buffer (pH 3). The effluent was monitored on a DAD detector at 218 nm. Linear response (r>0.99) was observed over the range of 0.5-40 microg ml-1 for methanol and water and run on six different occasions. The methods were applied successfully to pharmaceutical ampoule forms, but also for comparison in two different solvent media. Besides, it was completely validated and proven to be rugged.  相似文献   

8.
Two spectrophotometric methods are presented for the simultaneous determination of ezetimibe/simvastatin and ezetimibe/atorvastatin binary mixtures in combined pharmaceutical dosage forms without prior separation. The first is the derivative ratio method where the amplitudes of the first derivative of the ratio spectra (1DD) at 299.5 and 242.5 nm were found to be linear with ezetimibe and simvastatin concentrations in the ranges 0.5–20 µgml?1 and 1–40 µgml?1, respectively, whereas the amplitudes of the first derivative of the ratio spectra (1DD) at 289.5 and 288 nm were selected to determine ezetimibe and atorvastatin in the concentration ranges 5–50 µgml?1 and 1–40 µgml?1, respectively. The second is the H‐point standard additions method; absorbances at the two pairs of wavelengths, 228 and 242 nm or 238 and 248 nm, were monitored while adding standard solutions of ezetimibe or simvastatin, respectively. For the analysis of ezetimibe/atorvastatin mixture, absorbance values at 226 and 248 nm or 212 and 272 nm were monitored while adding standard solutions of ezetimibe or atorvastatin, respectively. Moreover, differential spectrophotometry was applied for the determination of ezetimibe in the two mixtures without any interference from the co‐existing drug. This was performed by measurement of the difference absorptivities (ΔA) of ezetimibe in 0.07 M 30% methanolic NaOH relative to that of an equimolar solution in 0.07 M 30% methanolic HCl at 246 nm. The described methods are simple, rapid, precise and accurate for the determination of these combinations in synthetic mixtures and dosage forms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Three new spectrophotometric methods for the determination of amlodipine besylate have been proposed. The first two methods, i.e. A and B, are based on the oxidation of the drug with Fe(III) and the estimation of Fe(II) produced after chelation with either 1,10-phenanthroline or 2,2'-bipyridyl at 500 and 515 nm, respectively. The Beer's law was obeyed in the concentration ranges of 2-10 and 4-14 microg ml(-1) with molar absorptivity of 2.9 x 10(4) and 2.7 x 10(4) l mol(-1) cm(-1) for methods A and B, respectively. The third procedure depends on the interaction of amlodipine besylate with ammonium heptamolybdate tetrahydrate, which resulted in the formation of molybdenum blue (lambda(max) 825 nm). The linear dynamic range and the molar absorptivity values were found to be 15-59 microg ml(-1) and 1.8 x 10(4) l mol(-1) cm(-1), respectively. The results of the proposed procedures were validated statistically and compared with those obtained by the reference method. The proposed methods were applied successfully to the determination of amlodipine besylate in commercial tablets.  相似文献   

10.
Four simple, sensitive and accurate spectrophotometric methods have been developed for the determination of nifedipine in pharmaceutical formulations. These methods are based on the formation of ion-pair complexes of amino derivative of the nifedipine with bromocresol green (BCG), bromophenol blue (BPB), bromothymol blue (BTB) and eriochrome black T (EBT) in acidic medium. The coloured products are extracted with chloroform and measured spectrophotometrically at 415 nm (BCG, BPB and BTB) and 520 nm (EBT). Beer's law was obeyed in the concentration range of 5.0-32.5, 4.0-37.5, 6.5-33.0 and 4.5-22.5 microg ml(-1) with molar absorptivity of 6.41 x 10(3), 4.85 x 10(3), 5.26 x 10(3) and 7.69 x 10(3) l mol(-1) cm(-1) and relative standard deviation of 0.82%, 0.72%, 0.66% and 0.68% for BCG, BPB, BTB and EBT methods, respectively. These methods have been successfully applied for the assay of drug in pharmaceutical formulations. No interference was observed from common pharmaceutical adjuvants. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.  相似文献   

11.
This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets.  相似文献   

12.
李克  赵飞浪 《中国药学》1994,3(2):164-170
本文介绍用反相高效液相色谱法测定人及兔血浆或血清中α-生育酚,血样用乙醇沉淀蛋白,正己烷溶剂提取后,以C8化学键合硅胶为固定相,甲醇-水(96:4,v/v)为流动相,醋酸α-生育酚为内标,在285nm波长定量检测。在1~30μg/ml波度范围内线性关系良好,最低检测限为0.1μg/ml。对血浆样品的日间(n=6)及日内(n=8)测定变异系数分别小于4.2%和1,7%。检测血浆中α-生育酚的回收率为91.5~103.8%。应用本法测定正常人血清中α-生育酚浓度为12.67,±3.2μg/ml(n=27),并测定观察了兔口服维生素E后不同时间血浆中浓度变化情况。  相似文献   

13.
A simple, rapid, and sensitive spectrophotometric method for the determination of zinc(II) is performed, based on colour reaction between the metal ion and xylenol orange in the presence of surfactant cationic cetylpyridinium chloride. The important analytical parameters and their effects on the reported system are investigated. Zinc(II) reacts with the reagent and surfactant in the ratio 1:2:4 (metal:ligand:surfactant) in the pH range 5.0–6.0 to form a ternary complex with an absorption maximum at 580 nm. The reaction was extremely rapid at room temperature, and the absorbance value remains unchanged for at least 168 h. The apparent stability constant of the complex was found to be K=1.05×1010, and the method adheres to Beer's law for 1–20 μg zinc(II) per 25 ml with apparent molar absorptivity of 1.1×104 l mol cm−1. The effect of foreign ions was tested by taking a constant concentration of metal ion and determining its concentration in the presence of large number of foreign ions. The method was applied for determination of zinc(II) in dermal ointments where excellent agreement between reported and obtained results were achieved. The relative standard deviation was better than 2%.  相似文献   

14.
Three simple, sensitive and accurate spectrophotometric methods have been developed for the determination of oxomemazine hydrochloride in bulk and pharmaceutical formulations. These methods are based on the formation of yellow ion-pair complexes between the examined drug and bromocresol green (BCG), bromocresol purple (BCP), and bromophenol blue (BPB) as sulphophthalein dyes in acetate-HCl buffer of pH 3.6, 3.4, and 4.0, respectively. The formed complexes were extracted with dichloromethane and measured at 405 nm for all three systems. The best conditions of the reactions were studied and optimized. Beer's law was obeyed in the concentration ranges 2.0-12, 2.0-13, and 2.0-14 microg mL(-1) with molar absorptivities of 3.2 x 10(4), 3.7 x 10(4), and 3.1 x 10(4) L mol(-1) cm(-1) for the BCG, BCP, and BPB methods, respectively. Sandell's sensitivity, correlation coefficient, detection and quantification limits are also calculated. The proposed methods have been applied successfully for the analysis of the drug in pure form and in its dosage forms. No interference was observed from common pharmaceutical excipients. Statistical comparison of the results with those obtained by HPLC method shows excellent agreement and indicates no significant difference in accuracy and precision.  相似文献   

15.
The methods for quantitative determination of meloxicam and mefenamic acid in pharmaceuticals by classic spectrophotometry - zero order derivative, first and second order derivatives spectrophotometry is described, using "peak - peak" (P-P) and "peak - zero" (P-O) measurements. The calibration curves are linear within the concentration range of 4.0 - 14.0 microg/mL for meloxicam and 14.0 - 24.0 microg/mL for mefenamic acid. The procedure is simple, rapid and the results are reliable.  相似文献   

16.
Rofecoxib (I) has been determined in the presence of its photo-degradation product (II) using first derivative spectrophotometry ((1)D) and first derivative of the ratio spectra ((1)DD) by measuring the amplitude at 316.3 and 284 nm for (1)D and (1)DD, respectively. (I) can be determined in the presence of up to 70% and 80% of (II) by the (1)D and (1)DD, respectively. The linearity range of both the methods was the same (5.8-26.2 microg ml(-1)) with mean percentage recovery of 100.08 +/- 0.84 and 100.06 +/- 1.06 for (1)D and (1)DD, respectively. (1)D method was used to study kinetics of (I) photo-degradation that was found to follow a first-order reaction. The t(1/2) was 20.2 min while K (reaction rate constant) was 0.0336 mol min(-1). Both methods were applied to the analysis of (I) in bulk powder and in pharmaceutical formulations. Also a spectrofluorimetric method is described to determine (I) at very low concentrations (25-540 ng ml(-1)) where (I) is converted to its photo-degradate (II), which possesses a native fluorescence that could be measured. The proposed method was applied for the analysis of tablets containing rofecoxib as well as to rofecoxib-spiked human plasma.  相似文献   

17.
Granisetron is a selective 5‐HT3 receptor antagonist used in prevention and treatment of chemotherapy‐induced nausea and vomiting. The drug is available in tablet dosage form and parenteral dosage form containing benzyl alcohol as a preservative. The main route of degradation of granisetron is through hydrolysis. The present work describes the development of a simple, rapid, and reliable first derivative spectrophotometric method for the determination of granisetron in presence of its hydrolytic products as well as the formulations adjuvant and benzyl alcohol. The method is based on the measurement of the first derivative response of granisetron at 290 nm where the interference of the hydrolytic products, the co‐formulated adjuvant and benzyl alcohol is completely eliminated. The proposed method was validated with respect to specificity, linearity, selectivity, accuracy, precision, robustness, detection, and quantification limits. Regression analysis showed good correlation between the first derivative response and the concentration of granisetron over a range of 8–16 μg ml?1. Statistical analysis proved the accuracy of the proposed method compared with a reference stability indicating high performance liquid chromatography method. The described method was successfully applied to the determination of granisetron in different batches of tablets and ampoules. The assay results obtained in this study strongly encourage us to apply the validated method for the quality control and routine analysis of tablets and parenteral preparations containing granisetron. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, accurate and economic spectrophotometric method for the determination of aripiprazole in tablet formulation is proposed. In the present method acidic solution of the aripiprazole formed colored ion-association complexes with bromocresol green, soluble in chloroform. Yellowish orange chromogen showed λ(max) at 414 nm and obeyed Beer's law in the concentration range of 10-60 μg/ml. Statistical analysis and recovery studies validated the method. The proposed method is rapid, precise and accurate and can be applied for the routine estimation of aripiprazole in the laboratory.  相似文献   

19.
Paracetamol is a widely used nonsalicylate analgesic and antipyretic drug. The existing methods for the determination of paracetamol in biological fluids are mainly HPLC techniques, although there are some reported methods based on spectrophotometric determinations. However, all these methods involve some extraction or derivatisation procedures. In the present study the UV spectra of investigated samples were recorded over the wavelength range 220-400 nm (lambda step 0.21 nm; scan speed 60 nm/min) and second-order derivative spectra were calculated. Second-order derivative spectra of different blank urine samples displayed the presence of a zero-crossing point at 245-247 nm defined as lambdazc. The zero-order absorption spectra of paracetamol in water displays maximum absorbance at 243 nm, while in second derivative spectra, a minimum peak at 246 nm was observed. Therefore, the application of zero-crossing technique to the second-derivative UV absorption spectrum should be useful for the determination of paracetamol using 2Dlambdazc. The proposed method enables determination of total paracetamol in urine directly and simply by reading the 2Dlambdazc of the diluted samples. The obtained results were in good accordance with published data on cumulative urinary excretion after per oral administration of paracetamol obtained applying different spectrophotometric methods of determination. It could be useful for biopharmaceutical characterisation of drug products (monitoring of the levels of paracetamol in urine in bioavailability testing, for the evaluation of in vitro-in vivo correlation and screening of different formulations during drug product development).  相似文献   

20.
A highly sensitive kinetic spectrophotometric method was developed for the determination of captopril (CPL) and ethamsylate (ESL) in pharmaceutical preparations and biological fluids. The method is based on a catalytic acceleration of the reaction between sodium azide and iodine in an aqueous solution. Concentration range of 0.1-1.5 microg ml(-1) for CPL and 0.3-3 microg ml(-1) for ESL was determined by measuring the decrease in the absorbance of iodine at 348 nm by a fixed time method. The decrease in absorbance after 5 min was markedly correlated to the concentration. The relative standard deviations obtained were 1.30 and 1.87 for CPL and ESL, respectively, in pure forms. Correlation coefficients were 0.9997 and 0.9999 for CPL and ESL, respectively. The detection limits were determined as (S/N = 3) were 20 ng ml(-1) for CPL and 50 ng ml(-1) for ESL. The proposed procedure was successively applied for the determination of both drugs in pharmaceutical preparations and in biological fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号