首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pure 3.5 Mb subtelomeric deletion syndrome is very rare but causes a recognizable phenotype characterized by prenatal lymphedema with increased nuchal translucency, pronounced muscular hypotonia in infancy, borderline intelligence, postnatal short stature with delayed bone age due to growth hormone deficiency, and multiple minor anomalies including mildly bell-shaped chest, minor congenital heart defects, and a distinct facial gestalt. Terminal deletions including the adjacent approximately 2 Mb NSD1-locus show a compound phenotype with overlap to Sotos syndrome. Larger terminal deletions including also chromosomal bands 5q35.1 and 5q35.2 cause a more severe phenotype with normal body length, significant congenital heart defect, microcephaly, profound developmental retardation or early death due to respiratory failure. Heart defects in the latter are explained by haploinsufficiency of the NKX2.5 gene at 5q35.1. The deletion breakpoint of the 3.5 Mb subtelomeric microdeletion maps to a low copy repeat which is identical to the distal copy of two highly similar regions flanking the recurrent interstitial NSD1 microdeletion. As meiotic mispairing between these low copy repeats seem to be much more likely than a terminal aberration, these neighborhood may prevent occurrence of the subtelomeric deletion syndrome, which could explain the rareness of the latter.  相似文献   

2.
The presence of chromosome-specific low-copy repeats (LCRs) predisposes chromosome 22 to deletions and duplications. The current diagnostic procedure for detecting aberrations at 22q11.2 is chromosomal analysis coupled with fluorescence in situ hybridization (FISH) or PCR-based multiplex ligation dependent probe amplification (MLPA). However, there are copy number variations (CNVs) in 22q11.2 that are only detected by high-resolution platforms such as array comparative genomic hybridization (aCGH). We report on development of a high-definition MLPA (MLPA-HD) 22q11 kit that detects copy number changes at 37 loci on the long arm of chromosome 22. These include the 3-Mb region commonly deleted in DiGeorge/velocardiofacial syndrome (DGS/VCFS), the cat eye syndrome (CES) region, and more distal regions in 22q11 that have recently been shown to be deleted. We have used this MLPA-HD probe set to analyze 363 previously well-characterized samples with a variety of different rearrangements at 22q11 and demonstrate that it can detect copy number alterations with high sensitivity and specificity. In addition to detection of the common recurrent deletions associated with DGS/VCFS, variant and novel chromosome 22 aberrations have been detected. These include duplications within as well as deletions distal to this region. Further, the MLPA-HD detects deletion endpoint differences between patients with the common 3-Mb deletion. The MLPA-HD kit is proposed as a cost effective alternative to the currently available detection methods for individuals with features of the 22q11 aberrations. In patients with the relevant phenotypic characteristics, this MLPA-HD probe set could replace FISH for the clinical diagnosis of 22q11.2 deletions and duplications.  相似文献   

3.
The 22q11.2 deletion syndrome is commonly diagnosed using fluorescence in situ hybridization (FISH) with commercial probes. The chromosomal breakpoints and deletion size are subsequently characterized by short tandem repeat (STR) segregation tests or by further FISH probes. Recently, a multiplex ligation-dependent probe amplification (MLPA) single tube assay was developed to detect deletions of the 22q11.2 region and other chromosomal regions associated with DiGeorge/velocardiofacial syndrome. We have compared the results of these three techniques in a group of 30 patients affected with 22q11.2 deletion syndrome. MLPA correctly called all patients who had been previously diagnosed by FISH. The MLPA results were concordant in all patients with the STR analysis in respect to deletion size. Furthermore, this novel technique resolved seven cases that were undetermined by STR analysis. These results confirm the efficiency of MLPA as a rapid, reliable, economical, high-throughput method for the diagnosis of 22q11.2 deletion syndrome.  相似文献   

4.
A patient with hypotonia, blepharophimosis, ptosis, a bulbous nose, a long philtrum, upturned corners of the mouth, and mild developmental delay was found to have a small subtelomeric deletion of the long arm of chromosome 14 (q32.31-qter). In comparing her phenotype with previously reported patients with similar 14q deletions, due to either a linear deletion or to a ring chromosome 14, a clinically recognizable terminal 14q microdeletion syndrome was evident. Due to the limited number of cases reported, it was not possible to assign specific features to specific regions of terminal 14q. The comparison of features in cases with a linear deletion of 14qter (n = 19) to those in cases with a deletion due to a ring chromosome 14 (n = 23), both with the same breakpoint in 14q, showed that seizures and retinitis pigmentosa have been found only in patients with ring chromosomes. Several hypotheses are put forward to explain this difference: mitotic instability of ring chromosomes; a telomere position effect in ring chromosomes in which the 14p telomere silences nearby gene(s) on the q-arm; and dose-dependent gene(s) involved in seizures and retinitis pigmentosa located on the short arm of chromosome 14. In our opinion, only seizures may be explained by the mitotic instability of ring chromosomes, while both seizures and retinitis pigmentosa may be explained by silencing of gene(s) on 14q by the 14p telomere; the third hypothesis seems unlikely to explain either symptom.  相似文献   

5.
We report on a young female with normal intelligence evaluated for long‐term anxiety. Her history includes prematurity, neonatal feeding problems, surgical correction of congenital heart defects, recurrent upper airway and urinary tract infections, and delayed motor and developmental milestones. Physical examination disclosed small stature and minor dysmorphisms. Chromosome analysis, 22q11.2 FISH analysis, and subtelomeric MLPA testing did not detect any abnormalities. Genome wide SNP Array analysis showed a de novo deletion in 22q11.21q11.22, the so‐called distal 22q11 microdeletion that involves the MAPK1 gene. A diagnosis of panic disorder was made and the patient was successfully treated with a daily dose of 20 mg citalopram. To our knowledge, this is the first adolescent patient with a long history of complaints about anxiety and a distal 22q11 microdeletion. We speculate that genes from the deleted region, especially MAPK1, increase the neurobiological susceptibility to anxiety disorders that may be a part of the psychopathological phenotype of the distal 22q11.2 microdeletion syndrome. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
22q11 Deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans, occurring with an incidence of 1 in 4,000. In most cases the submicroscopic deletion spans 3 Mb, but there are a number of other overlapping and non-overlapping deletions that generate a similar phenotype. The majority of the 22q11.2 microdeletions can be ascertained using a standard fluorescence in situ hybridization (FISH) assay probing for TUPLE1 or N25 on 22q11.2. However, this test fails to detect deletions that are either proximal or distal to the FISH probes, and does not provide any information about the length of the deletion. In order to increase the detection rate of 22q11.2 deletion and to better characterize the size and position of such deletions we undertook a study of 22q11.2 cases using multiplex ligation dependent probe amplification (MLPA). We used MLPA to estimate the size of the 22q11.2 deletions in 51 patients positive for TUPLE1 or N25 (FISH) testing, and to investigate 12 patients with clinical features suggestive of 22q11DS and negative FISH results. MLPA analysis confirmed a microdeletion in all 51 FISH-positive samples as well as microduplications in three samples. Further, it allowed us to delineate deletions not previously detected using standard clinical FISH probes in 2 of 12 subjects with clinical features suggestive of 22q11DS. We conclude that MLPA is a cost-effective and accurate diagnostic tool for 22q11DS with a higher sensitivity than FISH alone. Additional advantages of MLPA testing in our study included determination of deletion length and detection of 22q11.2 duplications. (c) 2007 Wiley-Liss, Inc.  相似文献   

7.
Cryptic subtelomeric rearrangements are suspected to underlie a substantial portion of terminal chromosomal deletions. We have previously described two children, one with an unbalanced subtelomeric rearrangement resulting in deletion of 22q13→qter and duplication of 1qter, and a second with an apparently simple 22q13→qter deletion. We have examined two additional patients with deletions of 22q13→qter. In one of the new patients presented here, clinical findings were suggestive of the 22q13 deletion syndrome and FISH for 22qter was requested. Chromosome studies suggested an abnormality involving the telomere of one 22q (46,XX,?add(22)(q13.3)). FISH using Oncor D22S39 and Vysis ARSA probes confirmed a terminal deletion. A multi-telomere FISH assay showed a signal from 19qter on the deleted chromosome 22. Results were confirmed with 19qtel and 22qtel specific probes. The patient is therefore trisomic for 19qter and monosomic for 22qter. The patient''s mother was found to have a translocation (19;22)(q13.42;q13.31). We also re-examined chromosomes from two patients previously diagnosed with 22q deletions who were not known to have a rearrangement using the multi-telomere assay. One of these patients was found to have a derivative chromosome 22 (der(22)t(6;22)(p25;q13)). No evidence of rearrangement was detected in the other patient. Thus we have found the 22q13 deletion to be associated with a translocation in three of four patients. This report illustrates the usefulness of examining patients with hypotonia, severe language delay, and mild facial dysmorphism for this syndrome and suggests that most of these deletions may be unbalanced subtelomeric rearrangements.  相似文献   

8.
Subtelomeric rearrangements are responsible for 5% to 10% of cases of unexplained mental retardation. Despite their clinical relevance, methods to screen for these cytogenetically invisible abnormalities on a routine base are scarce. We screened patients with idiopathic mental retardation for subtelomeric aberrations using multiplex ligation-dependent probe amplification (MLPA). This recently developed technique is based on PCR amplification of ligated probes hybridized to chromosome ends. Currently, 41 telomeres can be screened in just two multiplex reactions. Four subtelomeric rearrangements (5.3%) were detected in a group of 75 patients with mild to severe mental retardation in combination with dysmorphic features and/or a familial history of mental retardation: two terminal 1p deletions, a terminal 1q deletion, and a terminal 3p deletion. Deletions could be verified by FISH and marker analysis. In one case the MLPA indicated a terminal 21q deletion due to a 3-bp deletion at the site of the probe, giving a false-positive rate of 1.3%. This study demonstrates that MLPA is a fast and reliable screening method, potentially suitable for use in routine diagnostics.  相似文献   

9.
Cryptic telomere deletions have been proposed to be a significant cause of idiopathic mental retardation. We present two unrelated subjects, with normal G banding analysis, in whom 22q telomere deletions were serendipitously detected at two different institutions using fluorescence in situ hybridisation (FISH). Both probands presented with several of the previously described features associated with 22q deletions, including hypotonia, developmental delay, and absence of speech. Our two cases increase the total number of reported 22q telomere deletions to 19, the majority of which were identified by cytogenetic banding analysis. With the limited sensitivity of routine cytogenetic studies (approximately 2-5 Mb), these two new cases suggest that the actual prevalence of 22q telomere deletions may be higher than currently documented. Of additional interest is the phenotypic overlap with Angelman syndrome (AS) as it raises the possibility of a 22q deletion in patients in whom AS has been ruled out. The use of telomeric probes as diagnostic reagents would be useful in determining an accurate prevalence of chromosome 22q deletions and could result in a significantly higher detection rate of subtelomeric rearrangements.  相似文献   

10.
This study was designed to increase the diagnostic detection rate for subtelomeric unbalanced chromosomal rearrangements (UCRs) that are believed to cause 3-5% of all cases of mental retardation (MR), but often remain undetected by routine karyotyping because of limited resolution in light microscopy. Increased detection of such cryptic UCRs may be achieved by CGH- or SNP-array technology adapted for genome wide screening but these techniques are labor-intensive and expensive. We have implemented subtelomeric Multiplex Ligation-dependant Probe Amplification (MLPA), a relatively low cost and technically uncomplicated molecular approach, as a high throughput prospective screening tool for UCRs in MR patients. We prospectively studied a cohort of 466 MR patients and detected 53 aberrant MLPA signals. After exclusion of false-positives, potential familial polymorphisms and of non-cryptic UCRs also found in routine chromosome analysis, 18 cases or 3.9% of total could be confirmed as true cryptic subtelomeric UCRs. These were 6 terminal deletions, 8 unbalanced translocations, 3 Prader-Willi deletions and 1 subtelomeric interstitial deletion. This result increases our laboratory's detection rate in this patient cohort from 8.3% (without MLPA) to 12.2% (with MLPA), representing a 47% improvement. This study demonstrates that when applying MLPA in a routine cytogenetic diagnostic setting, a major increase of the diagnostic yield can be achieved.  相似文献   

11.
Unlike the small proximal 15q deletions causing Prader-Willi and/or Angelman syndrome, distal deletions of the terminal long arm of chromosome 15 have rarely been described. To the best of our knowledge, only four patients with a pure terminal 15q deletion have been documented in the literature. We report here on an unexpected abnormal hybridization pattern for the 15q specific subtelomeric control probe (clone 154P1) of the commercial SNRPN probe in a girl referred for suspicion of Angelman syndrome. Investigation by fluorescent in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones defined a partial monosomy 15q26.2 --> 15qter for a minimal critical region of approximately 5.7 Mb, which is the most distal de novo 15qter deletion reported to date. All the de novo 15qter deletion cases, including ours, presented with pre- and post-natal growth retardation related to the loss of one copy of the IGF1R gene. Based on the comparaison with the previous published cases and owing to the clinical phenotype of our patient, we define a new subtelomeric 15qter syndrome which would be characterized by intrauterine growth retardation and global post-natal growth failure, variable mental retardation, facial anomalies including relative micrognathia and triangular facies and minor malformations of the extremities including proximally placed thumbs, cubitus valgus, and brachydactyly with tappering of the digits.  相似文献   

12.
In this report, we describe two unrelated patients with mental retardation and brachydactyly E classified as patients suffering from Albright hereditary osteodystrophy-like (AHO-like) syndrome. Fluorescence in situ hybridization (FISH) analysis using 8 different subtelomeric probes in 2q36-37 proved that the patients had subtelomeric 2qter deletions of similar size. The recently proposed candidate gene glypican 1 (GPC1) is deleted in both reported patients.  相似文献   

13.
In a female patient with mild mental retardation an interstitial subtelomeric 9q34.3 deletion was identified by a multiplex ligation-dependent probe amplification (MLPA) based screen for subtelomeric abnormalities. Further characterization of the deletion by high-resolution tiling path array-based comparative genomic hybridization (array CGH) revealed a size of 2.2 Mb. The woman lacked the typical 9qter deletion phenotype characteristics, which is inline with the finding that both Eu-HMTase1 (EHMT) genes were present. However, she presented with mild mental retardation, some mild facial dysmorphisms and aplasia cutis. This is another example of an interstitial subtelomeric deletion, which underscores that further characterizing the precise nature of the deletion is of clinical importance. Moreover, it confirms the importance of the Eu-HMTase1 gene as the major causative factor of the classical 9qter syndrome phenotype.  相似文献   

14.
The need to detect clinically significant segmental aneuploidies beyond the range of light microscopy demands the development of new cost-efficient, sensitive, and robust analytical techniques. Multiplex ligation-dependent probe amplification (MLPA) has already been shown to be particularly effective and flexible for measuring copy numbers in a multiplex format. Previous attempts to develop a reliable MLPA to assay all chromosome subtelomeric regions have been confounded by unforeseen copy number variation in some genes that are very close to the telomeres in healthy individuals. We addressed this shortcoming by substituting all known polymorphic probes and using two complementary multiplex assays to minimize the likelihood of false results. We developed this new quantitative MLPA strategy for two important diagnostic applications. First, in a group of cases with high clinical suspicion of a chromosome abnormality but normal, high-resolution karyotypes, MLPA detected subtelomeric abnormalities in three patients. Two were de novo terminal deletions (del(4p) and del(1p)), and one was a derivative chromosome 1 from a maternal t(1p;17p). The range of these segmental aneuploidies was 1.8-6.6 Mb, and none were visible on retrospective microscopy. Second, in a group of six patients with apparently de novo single-chromosome abnormalities containing anonymous chromatin, MLPA identified two cases with simple intrachromosomal duplications: dup(6p) and dup(8q). Three cases showed derivative chromosomes from translocations involving the distal regions of 9q and 4q, 5p and 11q, and 6q and 3p. One case showed a nonreciprocal, interchromosomal translocation of the distal region of 10p-7p. All abnormalities in both groups were confirmed by fluorescence in situ hybridization (FISH) using bacterial artificial chromosomes (BACs). This quantitative MLPA technique for subtelomeric assays is compared with previously described alternative techniques.  相似文献   

15.
We report on a 26-year-old woman with microcephaly, typical facial features of 9q subtelomeric deletion syndrome, exophthalmos, contractures of elbow and knee joints, severe muscular hypotonia, no ability to walk, and no speech development.Array CGH revealed a cryptic 9q34.3 deletion and 2p25.2-p25.3 duplication transmitted by her mother, who was carrying a balanced translocation of chromosomes 2p and 9q. There are about 50 reported cases of deletions of the subtelomeric part of chromosome 9q, however, duplications of only the terminal part of chromosome 2p are rare. Neuroblastoma, diaphragmatic hernia, neural tube defects, broncho-pulmonary abnormalities, and congenital heart defects are conditions associated with partial trisomy of larger fragments of 2p. To our knowledge there is only one case described with an isolated duplication as distal as in the patient reported here. Joint contractures and exophthalmos observed in this patient are also seen in our patient. These features are not allegeable by the deletion 9q34.3 identified in the patient reported here and may be a hint that terminal duplication of 2p could be associated with exophthalmos and contractures.  相似文献   

16.
BackgroundThe 22q13.3 deletion syndrome (or Phelan-McDermid syndrome, MIM 606232) is characterized by developmental delay, absent or severely delayed speech, neonatal hypotonia, autistic behavior, normal to accelerated growth, and minor dysmorphic facial features. Among the three genes in the minimal critical region (from the centromere to the telomere: SHANK3, ACR and RABL2B), the defect in the SHANK3 gene is considered to be the cause of the neurobehavioral symptoms.ObjectiveWe describe the molecular characterization of a de novo interstitial del(22)(q13.3q13.3) disrupting the SHANK3 gene in a child with a phenotype compatible with the 22q13.3 deletion syndrome.MethodsClinical work-up included clinical histories, physical, neurological, and ophthalmological examinations, and imaging of the brain. Commercially available MLPA for subtelomeric analysis, FISH specific probes and quantitative real-time PCR were used to characterize the rearrangement.ResultsSubtelomere analysis by MLPA showed a discrepancy between P036B and P070 kits (MCR Holland®): the P070 MLPA 22q probe (targeting the ARSA gene) showed a deletion but the P036B one (targeting the RABL2B gene) showed a normal result. FISH analysis using LSI TUPLE1/LSI ARSA (Vysis®) probes confirmed deletion of ARSA, whereas FISH with N25/N85A3 (Cytocell®) probes, targeting the SHANK3 locus was normal. Supplemented FISH analysis using BAC clones allowed us to specify the centromeric breakpoint region of the interstitial deletion between clones RP11-354I12 and RP11-232E17, at less than 2 Mb from the telomere. Quantitative real-time PCR of exon 5, 22 and 24 and intron 9 of SHANK3 showed that the telomeric breakpoint occurred between intron 9 and exon 22.ConclusionsThese data highlight the difficulty of performing an appropriate test aimed at looking for cryptic 22q13.3 deletion. Furthermore, the molecular characterization of this interstitial 22q13.3 deletion contributes to the clinical and genetic delineation of the 22q13.3 deletion syndrome.  相似文献   

17.
Delineation of multiple deleted regions in 7q in myeloid disorders.   总被引:8,自引:0,他引:8  
Loss of chromosome material due to deletions of the long arm of chromosome 7, del(7q), is a consistent finding in all types of myeloid disorders, invariably associated with a poor prognosis. Two different segments, 7q22 and 7q32-q33, have been implicated as critical regions of gene loss associated with these disorders. In the present study, we used fluorescence in situ hybridization (FISH) to characterize the 7q22 breakpoint of an apparently balanced t(7;7)(p13;q22) in an acute myeloid leukemia patient. FISH analysis on bone marrow metaphases from this patient revealed that the sequence corresponding to a series of three ordered cosmids from 7q22 was deleted from one of the der(7) chromosomes. These cosmids contain the human homologue of the Drosophila homeobox gene cut (CUTL1) and span a region of approximately 150 kb. Although the proximal boundary of the deleted segment could not be exactly defined, we estimate the size of this deletion to be approximately 500 kb. Subsequently, we carried out FISH studies using the CUTL1 cosmids on a further 16 patients with deletions of 7q and myeloid disorders. The sequence corresponding to at least two of the cosmids was deleted from the del(7q) in 11 out of 14 cases with a proximal breakpoint within 7q22. Further detailed FISH mapping in this series of 17 patients has identified two other nonoverlapping commonly deleted segments at 7q31-q32 and 7q33, respectively. These data confirm and refine other studies, implying that several different genes on 7q may be involved in the pathogenesis of myeloid diseases. Genes Chromosomes Cancer 25:384-392, 1999.  相似文献   

18.
The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals invariably have severe hypotonia with speech and gross motor delay. The facial gestalt is distinct and features absolute or relative micro- or brachycephaly, hypertelorism, synophrys, and/or arched eyebrows, mid-face hypoplasia, a short nose with upturned nares, a protruding tongue with everted lower lip and down-turned corners of the mouth. Approximately half of affected individuals have congenital heart defects (primarily ASD or VSD). A significant minority have epilepsy and/or behavioral and sleep disturbances. A variety of other major and minor eye, ear, genital, and limb anomalies have been reported. Most patients have sub-microscopic deletions of the subtelomere region of chromosome 9q34.3 that range from <400 kb to >3 Mb. The 9qSTDS is caused by haplo-insufficiency of EHMT1, a gene whose protein product (Eu-HMTase1) is a histone H3 Lys 9 (H3-K9) methyltransferase. This was established by identification of three patients with features of the syndrome and either mutations or a balanced translocation in EHMT1. H3-K9 histone methylation is restricted to the euchromatin of mammals and functions to silence individual genes. Deletion size does not correlate with the severity of the 9qSTDS since patients with mutations in EHMT1 are as severely affected as those with submicroscopic deletions. Patients clinically suspected of having the 9qSTDS but with normal subtelomere deletion testing by FISH or MLPA should be considered for detailed 9q MLPA analysis and/or sequencing of EHMT1. EHMT1 is another example in the growing list of genes responsible for brain development that appear to play a role in chromatin remodeling. Published 2007 Wiley-Liss, Inc.  相似文献   

19.
The 22q13 deletion syndrome is associated with global developmental delay, absent or delayed speech, and generalised hypotonia. In this study, the size and nature of 22q13 deletions (n=9) were studied in detail by high-resolution chromosome specific array-based comparative genomic hybridisation (array CGH). The deletion sizes varied considerably between the different patients, that is, the largest deletion spanning 8.4 Mb with the breakpoint mapping to 22q13.2 and the smallest deletion spanning 3.3 Mb with the breakpoint mapping to 22q13.31. In one case, a unique subtelomeric 3.9 Mb deletion associated with a 2.0 Mb duplication of 22q13 was observed, adding to a growing number of similar cases identified for other chromosome ends. Remarkably, this patient had signs suggestive of retinitis pigmentosa, which has never been reported before in the 22q13 deletion syndrome. The identification of two pairs of recurrent proximal breakpoints on 22q13 suggests that these specific regions may be prone to recombination, due to yet unknown genome architectural features. In addition to the copy number changes on 22q13, a duplication of approximately 330 kb on 22q11.1 was observed and shown to be a genetic large-scale copy number variation without clinical consequences. The current study failed to reveal relationships between the clinical features and the deletion sizes. Global developmental delay and absent or severely delayed speech were observed in all patients, whereas hypotonia was present in 89% of the cases (8/9). This study underscores the utility of array CGH for characterising the size and nature of subtelomeric deletions, such as monosomy 22q13, and underlines the considerable variability in deletion size in the 22q13 deletion syndrome regardless of the clinical phenotype.  相似文献   

20.
MLPA analysis for a panel of syndromes with mental retardation (MRS-MLPA) was used for investigation of 258 mentally retarded and dysmorphic patients with normal conventional karyotypes (P064 probe set, MRC-Holland, for detection of (micro)deletions associated with 1p36-deletion, Sotos, Williams-Beuren, Prader-Willi, Angelman, Miller-Dieker, Smith-Magenis, and 22q11-deletion syndromes). Patients were initially referred for HR-CGH analysis and MRS-MLPA was performed retrospectively. MRS-MLPA analysis revealed imbalances in 15/258 patients (5.8%). Ten deletions were identified, including deletions of 1p36, 5q35 (Sotos syndrome), 7q11 (Williams-Beuren syndrome), 17p11 (Smith-Magenis syndrome), 15q11 (Angelman syndrome) and 22q11. Duplications were detected in 5q35, 7q11, 17p13, 17p11 and 22q11. We reviewed another 170 patients referred specifically for MRS-MLPA analysis. Eighty of these patients were referred with a clinical suspicion of a specific syndrome, which was confirmed in 17 patients (21.3%). The remaining 90 patients were referred because of mental retardation and dysmorphism but without suspicion of a specific syndrome. Seven imbalances, including four duplications, were detected in these 90 patients (7.8%). Clinical data regarding three patients investigated by MRS-MLPA are presented. The imbalances carried by these patients include a small interstitial 1p36 deletion, a small duplication of 5q35 (encompassing the NSD1 gene, which is deleted/mutated in Sotos syndrome) and a duplication of 7q11 (reciprocal of the Williams-Beuren syndrome deletion), respectively. MRS-MLPA allows testing for a number of micro-deletions/-duplications in a single experiment, thereby filling a gap between array techniques and single locus techniques. MRS-MLPA combined with Subtelomeric MLPA represents an attractive first test in a clinical algorithm for mental retardation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号