首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We screened the GJB2 gene for mutations in 534 (108 multiplex and 426 simplex) probands with non‐syndromic sensorineural deafness, who were ascertained through the only residential school for the deaf in Mongolia, and in 217 hearing controls. Twenty different alleles, including four novel changes, were identified. Biallelic GJB2 mutations were found in 4.5% of the deaf probands (8.3% in multiplex, 3.5% in simplex). The most common mutations were c.IVS1 + 1G > A (c.‐3201G > A) and c.235delC with allele frequencies of 3.5% and 1.5%, respectively. The c.IVS1 + 1G > A mutation appears to have diverse origins based on associated multiple haplotypes. The p.V27I and p.E114G variants were frequently detected in both deaf probands and hearing controls. The p.E114G variant was always in cis with the p.V27I variant. Although in vitro experiments using Xenopus oocytes have suggested that p.[V27I;E114G] disturbs the gap junction function of Cx26, the equal distribution of this complex allele in both deaf probands and hearing controls makes it a less likely cause of profound congenital deafness. We found a lower frequency of assortative mating (37.5%) and decreased genetic fitness (62%) of the deaf in Mongolia as compared to the western populations, which provides an explanation for lower frequency of GJB2 deafness in Mongolia.  相似文献   

2.
Hereditary hearing loss (HHL) is an extremely common disorder. About 70% of HHL is non-syndromic, with autosomal recessive forms accounting for approximately 85% of the genetic load. Although very heterogeneous, the most common cause of HHL in many different world populations is mutations of GJB2, a gene that encodes the gap junction protein connexin 26 (Cx26). This study investigates the contribution of GJB2 to the autosomal recessive non-syndromic deafness (ARNSD) load in the Iranian population. One hundred sixty eight persons from 83 families were studied. GJB2-related deafness was diagnosed in 9 families (4, 35delG homozygotes; 3, 35delG compound heterozygotes; 1, W24X homozygote; 1, non-35delG compound heterozygote). The carrier frequency of the 35delG allele in this population was approximately 1% (1/83). Because the relative frequency of Cx26 mutations is much less than in the other populations, it is possible that mutations in other genes play a major role in ARNSD in Iran.  相似文献   

3.
Hereditary hearing loss (HHL) is a very common disorder. When inherited in an autosomal recessive manner, it typically presents as an isolated finding. Interestingly and unexpectedly, in spite of extreme heterogeneity, mutations in one gene, GJB2, are the most common cause of congenital severe-to-profound deafness in many different populations. In this study, we assessed the contributions made by GJB2 mutations and chromosome 13 g.1777179_2085947del (the deletion more commonly known as del (GJB6-D13S1830) that includes a portion of GJB6 and is hereafter called Delta(GJB6-D13S1830)) to the autosomal recessive non-syndromic deafness (ARNSD) genetic load in Iran. Probands from 664 different nuclear families were investigated. GJB2-related deafness was found in 111 families (16.7%). The carrier frequency of the 35delG mutation showed a geographic variation that is supported by studies in neighboring countries. Delta(GJB6-D13S1830) was not found. Our prevalence data for GJB2-related deafness reveal a geographic pattern that mirrors the south-to-north European gradient and supports a founder effect in southeastern Europe.  相似文献   

4.
Using Affymetrix 10K arrays, we searched for regions of homozygosity in 51 Turkish families including at least three members with either congenital or prelingual autosomal recessive non-syndromic sensorineural hearing loss (ARNSSNHL), and identified four families whose deafness mapped to the DFNB6 locus on 3p21 containing the TMIE gene. Mutation analysis revealed the p.R84W mutation in all four families. Screening of this mutation in 254 families with ARNSSNHL, without GJB2 mutations, revealed four additional affected families. A novel mutation was found in a non-complementary marriage between a deaf couple who were homozygous for p.R84W and p.W57X, respectively with two affected children who were compound heterozygotes. Six of the TMIE families originated from southeastern Anatolia, making p.R84W a common cause of hearing loss in that region with a relative frequency of 10.3% (95% CI is 2.5–18.1%). The overall prevalence of the p.R84W mutation in ARNSSNHL in Turkey is 2.4% (95% CI is 0.7–4.0%). Genotyping of single-nucleotide polymorphisms flanking the TMIE gene revealed a conserved haplotype, suggesting a single origin for p.R84W from a common ancestor 1250 years ago (95% CI is 650–2500 years). We conclude that p.R84W could be a common mutation in other Middle Eastern populations and should be included in mutation screening offered to individuals with ARNSSNHL.  相似文献   

5.
Mutations in GJB2 are the most common cause of hereditary congenital hearing loss in many countries and are found in about half of persons with severe-to-profound congenital autosomal recessive non-syndromic hearing loss (ARNSHL). We report the results of GJB2 mutation screening in 209 consecutive persons with congenital deafness of indeterminate etiology using an allele-specific polymerase chain reaction assay, single-strand conformational polymorphism analysis, and direct sequencing. GJB2 allele variants were detected in 74 of 209 deaf individuals (35%). Over one-fourth of screened individuals were either homozygous (n=31) or heterozygous (n=24) for the 35delG mutation. Of those with the 35delG mutation, 51 (92.7%) were diagnosed with GJB2-related deafness. Nineteen persons were identified with other GJB2 allele variants - two novel deafness-causing mutations (R32C, 645-648delTAGA), one mutation of unknown significance (E47K), and one benign polymorphism (I128I). While these data enable health care professionals to provide parents and patients with improved genetic counseling data, difficulty still exists is determining whether some missense mutations compromise auditory function and are deafness-causing.  相似文献   

6.
目的了解婚前聋人基因检测及婚配生育情况,为预防耳聋提供依据。方法对自愿接受基因检测的情侣耳聋基因突变进行检测。结果聋人婚配模式是15对聋人与聋人婚配的9对占60%;聋人与健听人婚配占26.67%;聋人与重听人结婚的占13.33%。其中9对聋与聋在婚前进行遗传咨询占60.O%,接受致聋基因检测的仅有3对占20.0%。生育正常12例后代,1例听力正常的女孩为GJB2235delc杂合突变携带者,1例男婴,重度耳聋为SLC26A4IVS7—2A〉G杂合突变。结论婚前进行常见耳聋基因检测,是对耳聋预防与出生缺陷干预的有效措施。  相似文献   

7.
Several studies have reported that mutations in the GJB2 gene (coding for connexin26) are a common cause of recessive non-syndromic hearing impairment. A GJB2 mutant allele, 35delG, has been found to have a high prevalence in most ethnic groups. Though mutations in the GJB2 gene have been shown to cause autosomal recessive deafness in Indian families, the frequencies of the various mutations are still unknown. In the present study, we analyzed 45 Indian families belonging to three different states, namely, Karnataka, Tamil Nadu, and Delhi with non-syndromic hearing impairment and an apparently autosomal recessive mode of inheritance. All the families were initially screened for three mutations (W24X, W77X, and Q124X) by using allele-specific PCR primers; mutations were confirmed by DNA sequencing. Families that were heterozygous or negative for tested mutations of the GJB2 gene were sequenced directly to identify the complementary mutation and other mutations in GJB2. Four families were homozygous for W24X, constituting around 8.8%. In two families, the affected individuals were compound heterozygotes for W24X; one family (DKB16) carried 35delG with W24X while the other family (DKB7) carried R143W with W24X. We suggest that W24X is a common allele among the mutations screened, causing autosomal recessive non-syndromic hearing impairment (ARNSHI) in the Indian population.  相似文献   

8.
Mutations in GJB2 (which encodes the gap-junction protein connexin 26) are the most common cause of genetic deafness in many populations. To date, more than 100 deafness-causing mutations have been described in this gene. The majority of these mutations are inherited in an autosomal recessive manner, but approximately 19 GJB2 mutations have been associated with dominantly inherited hearing loss. One, W44C, was first identified in two families from France. We subsequently described a family in the United States with the same mutation. In these families, W44C segregates with a dominantly inherited, early-onset, progressive, sensorineural deafness that is worse in the high frequencies. Since that report, we have tested additional family members and identified two siblings who are compound heterozygous for the W44C and K15T mutations. Their father, the original proband, is heterozygous for the dominant W44C mutation, and their mother is compound heterozygous for two recessively inherited mutations, K15T and 35delG. Both children have a profound, sensorineural deafness and use manual communication, in contrast to their parents and other relatives whose hearing losses are less severe and who can communicate orally. The difference in phenotype may be a result of the disruption of different functions of the gap-junction protein by the two mutations, which have an additive effect.  相似文献   

9.
Two loci for nonsyndromic recessive deafness located on chromosome 21q22.3 have previously been reported, DFNB8 and DFNB10. Recently a gene which encodes a transmembrane serine protease, TMPRSS3 or ECHOS1, was found to be responsible for both the DFNB8 and DFNB10 phenotypes. To determine the contribution of TMPRSS3 mutations in the general congenital/childhood nonsyndromic deaf population we performed mutation analysis of the TMPRSS3 gene in 448 unrelated deaf patients from Spain, Italy, Greece, and Australia who did not have the common 35delG GJB2 mutation. From the 896 chromosomes studied we identified two novel pathogenic mutations accounting for four mutant alleles and at least 16 nonpathogenic sequence variants. The pathogenic mutations were a 1-bp deletion resulting in a frameshift and an amino acid substitution in the LDLRA domain of TMPRSS3. From this and another study we estimate the frequency of TMPRSS3 mutations in our sample as 0.45%, and approximately 0.38% in the general Caucasian childhood deaf population. However, TMPRSS3 is still an important contributor to genetic deafness in populations with large consanguineous families.  相似文献   

10.
A systematic approach, involving haplotyping and genotyping, to the molecular diagnosis of non-syndromic deafness within 50 families and 9 sporadic cases from Algeria is described.Mutations at the DFNB1 locus (encompassing the GJB2 and GJB6 genes) are responsible for more than half of autosomal recessive prelingual non-syndromic deafness in various populations. A c.35delG mutation can account for up to 85% of GJB2 mutations and two large deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) have also been reported in several population groups.In view of the genetic heterogeneity a strategy was developed which involved direct analysis of DFNB1. In negative familial cases, haplotype analysis was carried out, where possible, to exclude DFNB1 mutations. Following this, haplotype analysis of five Usher syndrome loci, sometimes involved in autosomal non-syndromic hearing loss, was carried out to identify cases in which Usher gene sequencing was indicated. When homozygosity was observed at a locus in a consanguineous family, the corresponding gene was exhaustively sequenced.Pathogenic DFNB1 genotypes were identified in 40% of the cases. Of the 21 cases identified with 2 pathogenic mutations, c.35delG represented 76% of the mutated alleles. The additional mutations were one nonsense, two missense and one splicing mutation. Four additional patients were identified with a single DFNB1 mutation. None carried the large deletions.Three families with non-syndromic deafness carried novel unclassified variants (UVs) in MYO7A (1 family) and CDH23 (2 families) of unknown pathogenic effect.Additionally, molecular diagnosis was carried out on two Usher type I families and pathogenic mutations in MYO7A and PCDH15 were found.  相似文献   

11.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

12.
Screening of 12 Turkish families with apparently autosomal recessive nonsyndromic sensorineural deafness without GJB2 and mtDNA m.1555A > G mutations for 11 previously mapped recessive deafness loci showed a family in which hearing loss cosegregated with the DFNB9 (OTOF) locus. Three affected children were later found to carry a novel homozygous c.3032T > C (p.Leu1011Pro) mutation in the OTOF gene. Both parents were heterozygous for the mutation. p.Leu1011Pro alters a conserved leucine residue in the C2D domain of otoferlin. Pure tone audiometry of the family showed severe to profound sensorineural hearing loss (with U-shape audiograms) in children, and normal hearing in the parents. Otoacoustic emissions and auditory brainstem response (ABR) suggested the presence of auditory neuropathy in affected individuals.  相似文献   

13.
Connexin26 gene ( GJB2): prevalence of mutations in the Chinese population   总被引:5,自引:0,他引:5  
Liu Y  Ke X  Qi Y  Li W  Zhu P 《Journal of human genetics》2002,47(12):688-690
The connexin26 gene ( GJB2) has been shown to be responsible for DFNB1 and DFNA3 (Autosomal Recessive Hereditary Nonsyndromic Deafness Locus 1 and Autosomal Dominant Hereditary Nonsyndromic Deafness Locus 3). Two hundred ten independently ascertained Chinese probands with nonsyndromic hearing loss (NSHL) were evaluated for mutations in GJB2, including 43 probands from families with more than one sib with NSHL, likely indicating dominant inheritance, and sporadic cases of NSHL, compatible with recessive inheritance. Of the 210 probands, 43 (20%) were homozygous or heterozygous for mutations in GJB2. Four different mutations were identified: 35delG, 109G-A, 235delC, and 299-300delAT. It was confirmed that GJB2 mutations are an important cause of hearing loss in this population. Of these four mutations, 235delC was the most prevalent at 93%; yet the 35delG mutation, which is the most common GJB2 mutation in Caucasian subjects (Europeans and Americans), was found in low frequency in the present study. It appears from our limited data and reports from other East Asians that 235delC is the most prevalent GJB2 mutation in these populations. GJB2 mutations are consistent with ethnic predilections.  相似文献   

14.
Mutations in the transmembrane channel-like gene 1 (TMC1) cause prelingual autosomal recessive (DFNB7/11) and postlingual progressive autosomal dominant (DFNA36) nonsyndromic hearing loss. To determine the genetic causes of autosomal recessive nonsyndromic hearing loss (ARNSHL) in the northeast and east of Turkey, 65 unrelated families without mutations in the protein coding region of the GJB2 (GJB2-negative) were analyzed. A genomewide scan for homozygosity and linkage analysis in one of these families revealed a 13.2 cM critical region between D9S273 and D9S153 at chromosome 9p13.2-q21.31 with a maximum two-point lod score of 4.00 at theta=0.0 for marker D9S175. TMC1 is in this critical region. Homozygosity screening with intragenic markers for TMC1 in the remaining 64 families suggested involvement of this gene in three additional families. Subsequent sequencing of TMC1 in these four families revealed four novel homozygous mutations, c.776A>G [p.Tyr259Cys], c.821C>T [p.Pro274Leu], c.1334G>A [p.Arg445His], and c.1083_1087delCAGAT [p.Arg362ProfrX6]. Our results indicate that TMC1 mutations account for at least 6% (4/65) of ARNSHL in GJB2-negative Turkish families from the northeast and east of Turkey.  相似文献   

15.
Recessive mutations of SLC26A4 (PDS) are a common cause of Pendred syndrome and non-syndromic deafness in western populations. Although south and east Asia contain nearly one half of the global population, the origins and frequencies of SLC26A4 mutations in these regions are unknown. We PCR amplified and sequenced seven exons of SLC26A4 to detect selected mutations in 274 deaf probands from Korea, China, and Mongolia. A total of nine different mutations of SLC26A4 were detected among 15 (5.5%) of the 274 probands. Five mutations were novel and the other four had seldom, if ever, been identified outside east Asia. To identify mutations in south Asians, 212 Pakistani and 106 Indian families with three or more affected offspring of consanguineous matings were analysed for cosegregation of recessive deafness with short tandem repeat markers linked to SLC26A4. All 21 SLC26A4 exons were PCR amplified and sequenced in families segregating SLC26A4 linked deafness. Eleven mutant alleles of SLC26A4 were identified among 17 (5.4%) of the 318 families, and all 11 alleles were novel. SLC26A4 linked haplotypes on chromosomes with recurrent mutations were consistent with founder effects. Our observation of a diverse allelic series unique to each ethnic group indicates that mutational events at SLC26A4 are common and account for approximately 5% of recessive deafness in south Asians and other populations.  相似文献   

16.
Considerable differences exist for the spectrum of GJB2 mutations in different populations. Screening for the c.35delG mutation in 256 independent probands, 154 multiplex (familial) and 102 simplex (sporadic), coming from different regions of Turkey revealed 37 (14.5%) homozygotes. The allele frequency of c.35delG ranged from 5% to 53% in different cities. Parental consanguinity was noted in 34% of c.35delG homozygotes, yet it was 55% in c.35delG negatives (p=0.034). Further screening for GJB2 mutations in multiplex families demonstrated the presence of c.167delT and L90P mutations as well as a novel complex mutation, c.236_239delTGCAinsAGATCCG, in single alleles, leading to compound heterozygosity with c.35delG. The homozygous E120del mutation was found in another case. The V27I polymorphism was detected in five alleles, one of which was associated with the E114G change. Assortative mating was a significant factor predicting to detect biallelic mutations in the GJB2 gene. These results confirm the overwhelming majority of c.35delG in the Turkish deaf individuals as well as the presence of other changes detected in Caucasian and Asian populations.  相似文献   

17.
GJB2 mutation analysis was performed in 179 unrelated subjects with sporadic or familial hearing loss (HL). Among 57 families, 18 showed a vertical transmission of HL, the disease being present in two or three generations. Besides 155 nonsyndromic cases, 24 patients presenting with extra-auditory clinical signs were included in the molecular study. GJB2 mutation analysis was also performed in 19 subjects with an anamnestic history of perinatal risks factors for acquired HL. The 35delG mutation accounted for 22.1% of analyzed chromosomes in sporadic cases and 39.4% in familial cases; 35delG prevalence reached 41% in autosomal recessive and 44.4% in pseudodominant pedigrees. Two novel GJB2 mutations were identified in compound heterozygosity with 35delG allele (D159V, 284ins/dup[CACGT]). Two 35delG homozygous subjects were identified among HL cases classified as environmental in origin. Four patients 35delG heterozygous (35delG/V95M, 35delG/L90P, 35delG/167delT, and 35delG/?) and two homozygous presented with extra-auditory clinical signs involving different organs (skin, vascular system, hemopoietic lineages, and thyroid). In a high proportion of 35delG heterozygous HL patients (52%), no second GJB2 mutation was detected. The reported data highlight the complexity of the genetic epidemiology of GJB2-linked deafness, further enlarging the spectrum of situations in which GJB2 mutation analysis should be performed. The presence of extra-auditory signs in a significant portion of GJB2-mutated patients suggests the possibility that GJB2 loss of function could contribute to clinical phenotypes presenting in association with deafness. This hypothesis deserves further investigation. The failure to identify a presumed partnering GJB2 mutation in a high proportion of deaf patients remains a challenging problem to be clarified.  相似文献   

18.
Mutations in the DFNB1 locus, where two connexin genes are located (GJB2 and GJB6), account for half of congenital cases of nonsyndromic autosomal recessive deafness. Because of the high frequency of DFNB1 gene mutations and the availability of genetic diagnostic tests involving these genes, they are the best candidates to develop a risk prediction model of being hearing impaired. People undergoing genetic counseling are normally interested in knowing the probability of having a hearing impaired child given his/her family history. To address this, a Mendelian model that predicts the probability of being a carrier of DFNB1 mutations, using family history of deafness, has been developed. This probability will be useful as additional information to decide whether or not a genetic test should be performed. This model incorporates Mendelian mode of inheritance, the age of onset of the disease, and the current age of hearing family members. The carrier probabilities are obtained using Bayes' theorem, in which mutation prevalence is used as the prior distribution. We have validated our model by using information from 305 families affected with congenital or progressive nonsyndromic deafness, in which genetic analysis of GJB2 and GJB6 had already been performed. This model works well, especially in homozygous carriers, showing a high discriminative power. This indicates that our proposed model can be useful in the context of clinical counseling of autosomal recessive disorders.  相似文献   

19.
Implementing DNA diagnostics in clinical practice for extremely heterogeneous diseases such as hearing loss is challenging, especially when attempting to reach high sensitivity and specificity in a cost‐effective fashion. Next generation sequencing has enabled the development of such a test, but the most commonly used genomic target enrichment methods such as hybridization‐based capture suffer from restrictions. In this study, we have adopted a new flexible approach using microdroplet PCR‐based technology for target enrichment, in combination with massive parallel sequencing to develop a DNA diagnostic test for autosomal recessive hereditary hearing loss. This approach enabled us to identify the genetic basis of hearing loss in 9 of 24 patients, a success rate of 37.5%. Our method also proved to have high sensitivity and specificity. Currently, routine molecular genetic diagnostic testing for deafness is in most cases only performed for the GJB2 gene and a positive result is typically only obtained in 10–20% of deaf children. Individuals with mutations in GJB2 had already been excluded in our selected set of 24 patients. Therefore, we anticipate that our deafness test may lead to a genetic diagnosis in roughly 50% of unscreened autosomal recessive deafness cases. We propose that this diagnostic testing approach represents a significant improvement in clinical practice as a standard diagnostic tool for children with hearing loss. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Prelingual non-syndromic (isolated) deafness is the most frequent hereditary sensory defect. In >80% of the cases, the mode of transmission is autosomal recessive. To date, 14 loci have been identified for the recessive forms (DFNB loci). For two of them, DFNB1 and DFNB2, the genes responsible have been characterized; they encode connexin 26 and myosin VIIA, respectively. In order to evaluate the extent to which the connexin 26 gene (Cx26) contributes to prelingual deafness, we searched for mutations in this gene in 65 affected Caucasian families originating from various countries, mainly tunisia, France, New Zealand and the UK. Six of these families are consanguineous, and deafness was shown to be linked to the DFNB1 locus, 10 are small non consanguineous families in which the segregation of the trait has been found to be compatible with the involvement of DFNB1, and in the remaining 49 families no linkage analysis has been performed. A total of 62 mutant alleles in 39 families were identified. Therefore, mutations in Cx26 represent a major cause of recessively inherited prelingual deafness since according to the present results they would underlie approximately half of the cases. In addition, one specific mutation, 30delG, accounts for the majority (approximately 70%) of the Cx26 mutant alleles. It is therefore one of the most frequent disease mutations so far identified. Several lines of evidence indicate that the high prevalence of the 30delG mutation arises from a mutation hot spot rather than from a founder effect. Genetic counseling for prelingual deafness has been so far considerably impaired by the difficulty in distinguishing genetic and non genetic deafness in families presenting with a single deaf child. Based on the results presented here, the development of a simple molecular test could be designed which should be of considerable help.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号