首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regularly cycling, proestrous female rats received infusions of 200 ng of the serotonin (5-HT) 1A receptor agonist, (±) 8-hydroxy 2-(di-n-propylamino) tetralin-HBr (8-OH-DPAT), or 200 ng 8-OH-DPAT and 1000 or 2000 ng of N-(3-trifluoro-methylphenyl) piperazine hydrochloride (TFMPP) or 2-(1-piperazinyl) quinoline dimaleate (quipazine). Infusions were made bilaterally into the ventromedial nucleus of the hypothalamus (VMN). Animals receiving 200 ng 8-OH-DPAT exhibited a decline in lordosis behavior following infusion. Rats receiving 8-OH-DPAT and 1000 or 2000 ng quipazine or TFMPP were protected from the lordosis-inhibiting effects of 8-OH-DPAT, alone. Although both quipazine and TFMPP act on multiple 5-HT receptors, they overlap in their agonist action at 5-HT2 receptors. Consequently, these results provide further evidence supporting the contention that within the VMN, both 5-HT1A and 5-HT2 receptor subtypes contribute to the modulation of lordosis behavior in the female rat. The data are discussed in terms of the relative potency of 5-HT at 5-HT receptors mediating inhibition and facilitation of lordosis behavior.  相似文献   

2.
Drugs that enhance serotonergic neurotransmission reduce food intake by directly or indirectly activating serotonergic receptors. In contrast drugs that inhibit serotonergic neurotransmission such as the 5-HT1A agonist 8-hydroxy-2-(di-n-propyl-amino)tetralin (8-OH-DPAT) stimulate food intake. The present study examined the effects of 8-OH-DPAT on the feeding suppressant action of the indirect 5-HT agonists fenfluramine (FEN; 0.63–2.5 mg/kg) and fluoxetine (FLU; 2.5–10 mg/kg), as well as the 5-HT1B/2C agonist 1-(3-trifluoromethylphenyl)piperazine (TFMPP; 0.5–2 mg/kg). 8-OH-DPAT (62.5–250 μg/kg) was administered 5 min prior to FEN, FLU or TFMPP, injected 30 min before food access. While FEN, FLU and TFMPP dose-dependently reduced 2 h food intake, 8-OH-DPAT stimulated eating behavior. 8-OH-DPAT (62.5–250 μg/kg) pretreatment reversed the anorectic action of FEN (1.25 mg/kg) and FLU (5 mg/kg) but not TFMPP (1 mg/kg). Separate groups of rats were injected with 5,7-dihydroxytryptamine (5,7-DHT; 3 μg free base) into both the dorsal and median raphe, which resulted in extensive 5-HT depletion in hypothalamus (80%), striatum and hippocampus (90%). In both 5,7-DHT and vehicle-injected rats, FEN (1.25 mg/kg) and FLU (5 mg/kg) suppressed feeding. In 5,7-DHT treated rats, however, the ability of 8-OH-DPAT (125 μg/kg) to block FEN and FLU induced anorexia was attenuated. That is, 8-OH-DPAT pretreatment did not reverse the feeding inhibitory effects of either FEN or FLU. Further, the ability of FEN and FLU to suppress food intake was not altered by the 5,7-DHT lesion. These findings suggest that the reversal of FEN and FLU anorexia by 8-OH-DPAT is partially dependent on the integrity of brain 5-HT systems since their disruption compromises the ability of this 5-HT1A agonist to antagonize the feeding suppressant action of either FEN or FLU. However, the ability of treatments which impair 5-HT neurotransmission to reverse FEN and FLU induced suppression of food intake may depend upon whether this impairment is acute and reversible (8-OH-DPAT), or chronic and irreversible (5,7-DHT).  相似文献   

3.
In animal models of depression, the 5-HT1A agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), buspirone, gepirone and ipsapirone administered i.p. have been shown to mimic the behavioural effects of antidepressants. For instance, in the present study, using the learned helplessness paradigm, 8-OH-DPAT dose-dependently reversed helpless behaviour. To assess the possible role of pre- or postsynaptic 5-HT1A receptors in this effect, the ability of 8-OH-DPAT to reduce helpless behaviour was investigated following (1) i.p. administration (0.125 or 0.25 mg/kg/day) in rats whose ascending 5-HT neurons were partially destroyed by previous 5,7-dihydroxytryptamine (5,7-DHT) injection (5 micrograms free base in 0.6 microliter) into the raphe nuclei or (2) after local microinjection (0.1 or 1.0 microgram in 0.5 microliter) into the raphe nuclei or into the septum. The reversal of helpless behaviour by 8-OH-DPAT (i.p.) was still observed in 5,7-DHT-treated rats with telencephalic 5-HT uptake reduced by 50-75% depending on the region. 8-OH-DPAT microinjected into the raphe nuclei did not reverse helpless behaviour; in contrast, 8-OH-DPAT microinjected into the septum reversed helpless behaviour. These results suggest that the ability of 8-OH-DPAT to reverse helpless behaviour probably involved the stimulation of postsynaptic rather than presynaptic 5-HT1A receptors.  相似文献   

4.
Uphouse L  Wolf A 《Brain research》2004,1013(2):260-263
Sexually receptive proestrous rats with bilateral cannulae in the ventromedial nucleus of the hypothalamus (VMN) were infused with 200 ng of (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) or with 8-OH-DPAT plus varying concentrations (200 to 2000 ng) of the 5-HT1A receptor antagonist, N-[2[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635). 8-OH-DPAT inhibited lordosis behavior within 15 min of the infusion and every dose of WAY100635 prevented the inhibition. When non-sexually receptive, ovariectomized rats, hormonally primed with 0.5 microg estradiol benzoate and 500 microg progesterone, were infused with WAY100635 (400 to 2000 ng), the 5-HT1A receptor antagonist did not facilitate lordosis responding. These findings support earlier findings that activation of 5-HT1A receptors in the mediobasal hypothalamus inhibits lordosis behavior. However, they further demonstrate that tonic activation of 5-HT1A receptors is not responsible for the absence of sexual receptivity in suboptimally hormonally primed ovariectomized rats.  相似文献   

5.
Summary In order to establish whether the 5-HT1A or the 5HT1B agonists, 8-OH-DPAT or TFMPP, produce their facilitatory or inhibitory actions on masculine sexual behaviour via a mechanism involving: (a) the serotonin synthesis or release; (b) the stimulation of presynaptic receptors, or (c) the stimulation of somatodendritic receptors, three series of experiments were performed. The administration of the serotonin synthesis inhibitor, p-chlorophenylalanine (p-CPA, 300mg/kg×3 days), facilitated sexual behaviour but does not interfere neither with the inhibitory nor with the facilitatory effects of TFMPP (0.5mg/kg) or 8-OH-DPAT (0.5 mg/kg), respectively. The icv or the intraraphé administration of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), slightly stimulated masculine sexual behaviour and produced a decrease in serotonin and its metabolite levels. In lesioned animals TFMPP (0.5 mg/kg) resulted in an inhibitory effect reflected as a prolongation of the ejaculation latency. The inhibitory effect of this drug on mounting behaviour was not observed in 5,7-DHT treated rats. In lesioned animals 8-OH-DPAT (0.5 mg/kg) produced the same facilitatory effect. Present data indicate that serotonergic postsynaptic receptors mediate both the inhibitory and the facilitatory actions of TFMPP or 8-OH-DPAT in copulation. All data further support the idea that endogenous serotonin acts via the stimulation of 5-HT1B receptors to induce its inhibitory effects on masculine sexual behaviour.  相似文献   

6.
Heidenreich BA  Napier TC 《Neuroreport》2000,11(13):2849-2853
To clarify the role of the 5-HT system in limbic outputs, the present study compared the effects of the 5-HT1A agonist 8-OH-DPAT and the 5-HT1B agonist CP-94253 with the non-selective 5-HT agonist TFMPP on the firing rate of ventral pallidal (VP) neurons recorded in chloral hydrate-anesthetized rats. 8-OH-DPAT (0.25-256 microg/kg i.v.) dose-dependently enhanced (9/26 neurons) or suppressed (8/26) activity, and the 5-HT1A antagonist (+)WAY-100135 often attenuated these responses. TFMPP (0.011-1.453 mg/kg i.v.) dose-dependently reduced the firing rate of 7/8 VP neurons tested. In contrast, CP-94253 (0.013-12.8 mg/kg i.v.) had little or no effect. In sum, these data suggest that the 5-HT1A receptor appears to be particularly important in influencing limbic outputs mediated via the VP.  相似文献   

7.
Ovariectomized female rats were used to test the possibility that the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), inhibits cyclic AMP (cAMP) accumulation in the mediobasal hypothalamus. Tissue slices were incubated with forskolin or with the beta-adrenergic receptor agonist, isoproterenol, to stimulate accumulation of cAMP. Both compounds increased accumulation of cAMP. The 5-HT(1A) receptor agonist, 8-OH-DPAT, reduced cAMP accumulation after stimulation by isoproterenol, but not after forskolin stimulation. These findings are discussed in terms of putative differences in the mechanisms whereby 5-HT(1A) receptors are able to inhibit stimulation of adenylate cyclase. The potential significance of these findings to 5-HT(1A) receptor-mediated inhibition of female rat lordosis behavior is also discussed.  相似文献   

8.
The effects of chronic depletion of serotonin on feminine sexual behavior (lordosis), cytosolic progestin receptors and estradiol nuclear receptors were investigated. Intrahypothalamic administration of 5,7-dihydroxytryptamine (5,7-DHT) markedly enhanced lordotic responding in estradiol benzoate (EB)-primed, 5,7-DHT-treated female rats and in EB-progesterone primed, 5,7-DHT-treated male rats. Cytosolic progestin receptors were measured in preoptic-hypothalamic nuclei related to reproductive function in sham and 5,7-DHT-treated rats after EB priming. In both sexes, no differences between sham and 5,7-DHT-treated subjects were noted for progestin binding in the medial preoptic nucleus, ventromedial nucleus or arcuate-median eminence area. Estrogen-nuclear complexes were measured in the same brain nuclei of female rats following EB priming, and no differences between sham and 5,7-DHT-treated rats were found. Under the conditions employed, it would appear that, despite marked elevations in lordotic responsivity, the accumulation of estrogen nuclear receptors and the levels of estrogen inducible progestin receptors remain unaltered after chronic depletion of serotonin. Thus, serotonergic influences on lordosis do not appear to involve changes in the expression of steroid receptor levels in preoptic-hypothalamic nuclei known to mediate hormone-dependent neuroendocrine processes.  相似文献   

9.
Serotonin (5-HT) is generally inhibitory to male rat sexual behavior. However, the 5-HT1A agonist 8-hydroxy-di-propylaminotetralin (8-OH-DPAT), injected either systemically or into the medial preoptic area (MPOA), facilitates ejaculation. Three experiments were conducted to test the effects of 8-OH-DPAT on 5-HT and dopamine (DA) neurotransmission in the MPOA, a very important site for the control of male sexual behavior. In Experiment 1, systemically injected 8-OH-DPAT (0.4 mg/kg) decreased extracellular 5-HT levels in the MPOA as measured by in vivo microdialysis. In Experiment 2, 8-OH-DPAT (500 μM) administered directly into the MPOA via reverse dialysis increased extracellular levels of both DA and 5-HT; pretreatment with the selective 5-HT1A antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide hydrochloride (p-MPPI) failed to prevent 8-OH-DPAT's stimulatory effects on DA and 5-HT levels in the MPOA. In Experiment 3, 8-OH-DPAT (8 μg) co-injected with 5,7-dihydroxytryptamine (5,7-DHT; 6 μg) prevented neurotoxic depletion of 5-HT in the site of injection (MPOA). Because systemic and MPOA injections of 8-OH-DPAT resulted in opposite effects on extracellular 5-HT in the MPOA, yet both can facilitate ejaculation, these data suggest that moderate changes in 5-HT in the MPOA may have relatively little influence on male copulatory behavior. Instead, the facilitative effects of 8-OH-DPAT in the MPOA on male copulatory behavior may result, at least in part, from stimulatory effects of 8-OH-DPAT on DA transmission. Facilitative effects of systemic injections of 8-OH-DPAT may result from decreased 5-HT release in several sites.  相似文献   

10.
S Y Wu  M Y Wang  N J Dun 《Brain research》1991,554(1-2):111-121
Intracellular recordings were made from motoneurons in transverse spinal cord slices from immature (12-20 day) rats and the effects of 5-HT on dorsal root evoked excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials were assessed. With or without causing a membrane polarization, 5-HT (1-300 microM) depressed synaptic responses; the IC50 was 6 microM. The inhibitory effect was potentiated by the uptake inhibitor fluoxetine. The 5-HT1A/1B agonists 5-CT and 8-OH-DPAT and the 5-HT1B/1C agonist TFMPP reduced the synaptic responses as well, with an IC50 of 0.26, 2.2 and 0.28 microM, respectively. The synaptic depressant effect was not antagonized by methysergide (0.1-1 microM), ketanserin (1-5 microM) and MDL 72222 (1-10 microM). Methysergide alone diminished the synaptic responses in some of the motoneurons. Spiperone (1-10 microM) partially and fully antagonized the depressant effect of 5-HT and 8-OH-DPAT, but was ineffective against 5-CT and TFMPP. The 5-HT-induced synaptic depression was not accompanied by a concomitant reduction of glutamate-induced depolarizations; the latter were enhanced after repeated exposure to 5-HT in some motoneurons. Finally, 5-HT reduced the afterhyperpolarization following a single spike or a train of spikes. The results indicate that 5-HT inhibits synaptic responses in motoneurons via presynaptic 5-HT1 receptors, the activation of which reduces the liberation of excitatory and inhibitory transmitters from respective nerve endings.  相似文献   

11.
NAN-190: agonist and antagonist interactions with brain 5-HT1A receptors   总被引:1,自引:0,他引:1  
NAN-190 has been reported to be a 5-HT1A antagonist in drug discrimination studies. In order to determine if the effect of NAN-190 was directly due to competitive inhibition at 5-HT1A receptors, 5-HT1A-mediated inhibition of adenylyl cyclase in hippocampal membranes was investigated. NAN-190 (10(-10)-10(-5) M), by itself, was found to have no effect on forskolin-stimulated adenylyl cyclase. NAN-190, however, did shift the 5-carboxamidotryptamine (a 5-HT1A agonist) log-concentration inhibition curve to the right in a concentration-dependent manner, typical of competitive antagonism. Schild analysis revealed a KB of 1.9 nM for NAN-190. Thus, NAN-190 appeared to be a potent competitive 5-HT1A antagonist using the in vitro adenylyl cyclase system. [3H]NAN-190 was synthesized and its 5-HT1A receptor binding properties were characterized and compared with the 5-HT1A agonist radioligand, [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT). The 5-HT1A agonists, serotonin (5-HT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) competed with equal affinities regardless of the radioligand used to label the 5-HT1A receptors. [3H]NAN-190 and [3H]8-OH-DPAT labeled the same number of sites in rat hippocampus, striatum and frontal cortex. Guanosine-5'-O-(3-thio)triphosphate (GTP gamma S) and 5-guanylyl-imidodiphosphate (GppNHp), non-hydrolyzable analogs of GTP, inhibited specific [3H]NAN-190 binding. Adenosine-5'-O-(3-thio)triphosphate (ATP gamma S) and 5-adenylyl-imidodiphosphate (AppNHp) were ineffective. This guanylyl nucleotide-specific effect is generally associated with agonist radioligand binding to a GTP-binding protein coupled receptor. However, [3H]8-OH-DPAT was far more sensitive than [3H]NAN-190 to the Bmax reducing effects of GTP and GTp gamma S. We propose that the test for a reduction in Bmax by non-hydrolyzable guanylyl nucleotides may be more sensitive than other tests for quantifying agonist activity and may demonstrate that NAN-190 has low intrinsic activity. In summary, NAN-190 displayed antagonist-like properties in functional models of 5-HT1A receptor activity and possibly partial agonist-like properties in radioligand binding experiments.  相似文献   

12.
This study investigated whether serotonergic lesion may affect density, sensitivity, and plasticity of muscarinic receptors in hippocampus and cerebral cortex. Intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) in rats produced a 90% reduction in cortical and hippocampal 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents. In these brain areas, the 5,7-DHT lesion did not affect the overall density of muscarinic receptors or those of M1 and non-M1 muscarinic receptor subtypes as assayed using [3H]N-methylscopolamine ([3H]NMS), [3H]pirenzepine, and [3H]NMS in the presence of pirenzepine, respectively. In addition, the binding of the muscarinic agonist [3H]oxotremorine-M (OXO-M), taken as an indirect index of coupling efficiency of non-M1 receptors with G-proteins, did not change significantly in cortex and hippocampus of 5,7-DHT-lesioned rats. Similarly, carbachol-induced accumulation of [3H]inositol phosphates (InPs) in hippocampal miniprisms showed no significant differences between tissues from 5,7-DHT-lesioned and sham-operated rats. In sham-operated rats, an intraperitoneal (i.p.) injection of scopolamine (10 mg/kg once daily) during 21 days caused an increased density of [3H]NMS binding sites in cortex (+20%) and hippocampus (+26%). This up-regulation was restricted to non-M1 receptors subtypes. In 5,7-DHT-lesioned rats, chronic scopolamine failed to modify significantly the density of cortical or hippocampal M1 or non-M1 receptors. These results suggest 1) that 5-HT denervation did not affect the density and sensitivity of muscarinic receptors and 2) that the ability of cortical and hippocampal non-M1 receptors to up-regulate following repeated injection of scopolamine requires the integrity of 5-HT neurons terminating in these brain structures.  相似文献   

13.
The circadian timekeeping system exhibits many functional changes with aging, including a loss of sensitivity to time cues such as systemic injections of the serotonergic agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). In order to elucidate the neurochemical mechanisms responsible for this age-related loss of sensitivity of the circadian pacemaker to serotonin agonists, the present study used quantitative autoradiography to determine whether aging decreases serotonin receptor populations in male Syrian hamsters. Four neuroanatomical regions that regulate circadian timekeeping were studied (the suprachiasmatic nuclei [SCN], the lateral geniculate nuclei [LGN], and the median raphe nucleus [MRN] and dorsal raphe nucleus [DRN]). The specific binding of [3H]8-OH-DPAT to serotonin7 (5-HT7) and serotonin1A (5-HT1A) receptors was investigated by competitive inhibition with ritanserin and pindolol, respectively. The results showed that the SCN, IGL, MRN, and DRN of the male Syrian hamster exhibited specific binding of [3H]8-OH-DPAT to both the 5-HT7 and 5-HT1A receptors, and that the latter receptor subtype is more abundant in all of these regions. At 17-19 months of age, a 50% decrease in 5-HT7 receptors was found in the DRN but not in any other regions. No significant age-related changes in 5-HT1A receptors were observed in any regions examined. The finding that a marked decrease in 5-HT7 receptors occurs in the DRN at the age previously characterized by loss of sensitivity to 8-OH-DPAT suggests that this region and this receptor subtype play important roles in 8-OH-DPAT induction of circadian phase shifts in vivo and that they constitute an important locus of aging in the circadian timing system.  相似文献   

14.
G-protein activation mediated by serotonin 5-HT1A receptors in human and monkey brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPgammaS binding to whole-hemisphere brain sections. [35S]GTPgammaS binding was stimulated by the mixed 5-HT1A/1B/1D agonist L 694247 (10 microm) in human brain regions enriched in 5-HT1A binding sites [e.g. hippocampus (132-137%), superficial layers of the neocortex (37-61%), and cingulate and entorhinal cortex (34 and 32%, respectively)]. L 694247 caused virtually no stimulation in regions with 5-HT1B/1D receptors, such as substantia nigra, caudate nucleus and putamen. Similar results were obtained with monkey brain sections. The L 694247-mediated [35S]GTPgammaS-binding responses in human and monkey brain sections were antagonized by the selective, silent 5-HT1A antagonist WAY 100635 (10 microm). The 5-HT1B inverse agonist SB 224289 (10 microm) did not affect the [35S]GTPgammaS-binding response of L 694247. The distribution pattern of the [35S]GTPgammaS-binding response and the antagonist profile suggest the L 694247-induced response in human and monkey brain is mediated by 5-HT1A receptors. A weak stimulation of [35S]GTPgammaS binding was also observed in human hippocampus with either 10 microm 8-OH-DPAT (25 +/- 4%) or naratriptan (42 +/- 2%) compared with that obtained with L 694247. In conclusion, G-protein activation by 5-HT1A receptors can be measured in human and monkey brain sections. L 694247 appears to possess higher efficacy at 5-HT1A receptors compared with 8-OH-DPAT and naratriptan.  相似文献   

15.
The present experiments tested the hypothesis that one of the critical mechanisms underlying genetically defined aggressiveness involves brain serotonin 5-HT1A receptors. 5-HT1A receptor density, the receptor mRNA expression in brain structures, and functional correlates for 5-HT1A receptors identified as 8-OH-DPAT-induced hypothermia and lower lip retraction (LLR) were studied in Norway rats bred for 59 generations for the lack of aggressiveness and for high affective aggressiveness with respect to man. Considerable differences between the highly aggressive and the nonaggressive rats were shown in all three traits. A significant decrease in B(max) of specific receptor binding of [3H]8-OH-DPAT in the frontal cortex, hypothalamus, and amygdala and a reduction in 5-HT1A receptor mRNA expression in the midbrain of aggressive rats were found. 5-HT1A receptor agonist 8-OH-DPAT (0.5 mg/kg, i.p.) produced a distinct hypothermic reaction in nonaggressive rats and did not affect significantly the body temperature in aggressive rats. Similar differences were revealed in 8-OH-DPAT-induced LLR: LLR was expressed much more in nonaggressive than in aggressive animals. Additionally, 8-OH-DPAT (0.5 mg/kg i.p.) treatment significantly attenuated the aggressive response to man. The results demonstrated an association of aggressiveness with reduced 5-HT1A receptor expression and function, thereby providing support for the view favoring the idea that brain HT1A receptor contributes to the genetically defined individual differences in aggressiveness.  相似文献   

16.
Ovariectomized rats with bilateral cannulae near the ventromedial nucleus of the hypothalamus were hormonally primed with 10 microg estradiol benzoate and 500 microg progesterone. Sexually receptive females were infused bilaterally with 200 ng of the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), or with a combination of 200 ng 8-OH-DPAT and 2000 ng of the 5-HT(2) receptor agonist, (+/-)-2,5-dimethoxy-4-iodophenyl-2-aminopropane HCl (DOI). 8-OH-DPAT inhibited lordosis behavior and DOI reduced this inhibition. However, if females were preinfused with the PKC inhibitor, bisindolymaleimide I hydrochloride (BIM), DOI's effect was eliminated. BIM's attenuation of the effects of DOI was time-dependent. When BIM was infused 90 min, but not 30 min, before the 5-HT receptor agonists, BIM eliminated DOI's protection against the lordosis-inhibiting effects of 8-OH-DPAT. A concentration of BIM as low as 10(-5) nmol in a 0.5 microl infusion volume was effective and there was little evidence of dose responsivity between 10(-5) and 10(-1) nmol of BIM. In contrast, prior infusion with vehicle or with 10(-7) nmol BIM had no impact on the female's response to the 5-HT receptor agonists. These findings allow the suggestion that DOI's ability to increase PKC may be responsible for attenuation of the effects of 8-OH-DPAT on lordosis behavior.  相似文献   

17.
Summary 8-OH-DPAT (2.5–10 mg/kg) and buspirone (10 mg/kg) but not 5,7DHT (200 g/mouse), pCPA (75 and 150 mg/kg, three times), ritanserin (0.1 and 0.2 mg/kg), LY 53857 (1.5 and 3 mg/kg), GR 38032 F (0.1–100 g/kg), TFMPP (5 and 20 mg/kg) and mCPP (2.5 and 5 mg/kg) antagonized the rise in body temperature that occurs to the last mice removed from their group housing, which was termed as stress-induced hyperthermia (SIH). Ro 15-1788, at a dose which blocked the effect of diazepam on SIH, did not reverse the anxiolytic effect of buspirione. Instead, when cerebral 5-HT content was reduced to 50% by 5,7-DHT-induced lesion, the effect of buspirone on SIH was decreased. TFMPP 5 mg/kg did not shorten significantly the onset of SIH as could have been expected by an anxiogenic drug, while the dose of 20 mg/kg did not modify the pattern of SIH at all. The lower dose of TFMPP evoked a hyperthermic and the higher a hypothermic response.Abbreviations TFMPP m-trifluoromethylphenylpiperazine - mCPP m-chlorophenylpiperazine - pCPA P-chlorophenylalanine - 5,7 DHT 5,7 dihydroxytryptamine - 8-OH-DPAT 8-hydroxy-2-(di-N-propylamino)tetralin - 5-HT serotonin  相似文献   

18.
To study the involvement of serotonin (5-HT) receptor subtypes in behavioral supersensitivity following neonatal 5,7-dihydroxytryptamine (5,7-DHT) lesions, we measured acute behavioral responses to a single dose of selective 5-HT1A (8-OH-DPAT) or 5-HT2,1C (DOI) agonist compared to 5-hydroxytryptophan (5-HTP) in rats injected with 5,7-DHT intraperitoneally or intracisternally 14 weeks earlier. Only intraperitoneal 5,7-DHT injection resulted in brainstem 5-HT hyperinnervation, but cortical 5-HT depletions were also less. Effects of DOI, such as shaking behavior and forepaw myoclonus, were enhanced by 5,7-DHT lesions made intracisternally not intraperitoneally, whereas 8-OH-DPAT-evoked behaviors, such as forepaw myoclonus and head weaving, were enhanced more by the intraperitoneal route. The main consequence of intraperitoneal compared to intracisternal 5,7-DHT injection on supersensitivity to 5-HT agonists was increased presynaptic 5-HT1A responses and decreased 5-HT2,1C responses. In contrast, 5-HTP evoked more shaking behavior and less of the serotonin syndrome with the intraperitoneal compared to the intracisternal route of 5,7-DHT injection. Behavioral supersensitivity to 5-HTP, which was attributable to 5-HT1A, 5-HT2,1C, and possibly to other 5-HT receptors, was orders of magnitude greater than that elicited by direct receptor agonists and more clearly differentiated between rats with 5,7-DHT lesions and their controls, and between routes of 5,7-DHT injections, than responses to 5-HT agonists at the dose studied. 5,7-DHT induced dysregulation of 5-HT receptors, including both presynaptic and postsynaptic changes and altered interactions between receptor subtypes, better explains these data than postsynaptic changes alone.  相似文献   

19.
Ovariectomized, hormone-primed rats were used to test the hypothesis that progesterone treatment attenuated the effects of the 5-HT(1A) receptor agonist, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on female rat lordosis behavior. Based upon prior evidence that prepriming with estradiol benzoate (EB) reduced the ability of 8-OH-DPAT to inhibit lordosis behavior, rats were preprimed with 10 microg EB 7 days before a second priming with 10 microg EB followed 48 h later with 500 microg progesterone or vehicle. Independent of the presence of progesterone, prepriming with EB attenuated the lordosis-inhibiting effects of systemic treatment with 8-OH-DPAT. However, progesterone also reduced the effects of 8-OH-DPAT and this effect was also seen in females primed only once with EB. In contrast, progesterone was relatively ineffective in attenuating the effects of bilateral infusion with 8-OH-DPAT into the ventromedial nucleus of the hypothalamus (VMN). The failure of progesterone to substantially reduce the effects of VMN infusion with 8-OH-DPAT contrasts with prior studies in which estrogen's protective action against the drug did include the VMN. Thus, while both estrogen and progesterone reduce the lordosis-inhibiting effect of 8-OH-DPAT, the mechanisms responsible for the effects of the two gonadal hormones may be different. Priming with progesterone also prevented the effects of 5 min of restraint. When rats were hormonally primed with EB and oil, rats showed a transient, but significant, decline in lordosis behavior 5 and 10 min after restraint. Rats primed with EB and progesterone were unaffected by the restraint. These results are discussed in terms of their implications for the role of progesterone in altering the 5-HT(1A) receptor modulation of lordosis behavior.  相似文献   

20.
Summary 8-OH-DPAT (8-hydroxy-2-[di-n-propylamino] tetralin) is a novel aminotetralin derivative which has been proposed to be a serotonin (5-HT) agonist devoid of dopamine agonist effects. We now report that the administration of 8-OH-DPAT, like known 5-HT agonists, produced a rapid elevation of serum prolactin concentrations in male rats. The prolactin response to 8-OH-DPAT, like that induced by other 5-HT agonists, was greatly potentiated in animals pretreated with the tryptophan hydroxylase inhibitor, para-chlorophenylalanine. However, the 8-OH-DPAT-induced elevation of serum prolactin cocentrations in untreated rats was not dose-dependent and was modest in magnitude compared to that produced by known 5-HT agonists. In contrast to the stimulatory effects of 8-OH-DPAT on prolactin secretionin vivo 8-OH-DPAT suppressed the secretion of prolactin from anterior pituitary tissuein vitro, and this effect was blocked by haloperidol. The results of the present study are supportive of the view that 8-OH-DPAT has dopamine agonist, as well as 5-HT agonist, properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号