首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
PURPOSE: The purpose of this study was to investigate the proton metabolic differences of the right parietal cortex with experimental brain contusions of ICR mouse induced by fluid percussion injury (FPI) compared to normal controls and to test the possibility that 1H magnetic resonance spectroscopy (MRS) findings could provide neuropathologic criteria in the diagnosis and monitoring of traumatic brain contusions. MATERIALS AND METHODS: A homogeneous group of 20 ICR male mice was used for MRI and in vivo 1H MRS. Using image-guided, water-suppressed in vivo 1H MRS with a 4.7 T MRI/MRS system, we evaluated the MRS measurement of the relative proton metabolite ratio between experimental brain contusion of ICR mouse and healthy control subjects. RESULTS: After trauma, NAA/Cr ratio, as a neuronal marker decreased significantly versus controls, indicating neuronal loss. The ratio of NAA/Cr in traumatic brain contusions was 0.90+/-0.11, while that in normal control subjects was 1.13+/-0.12 (P=0.001). The Cho/Cr ratio had a tendency to rise in experimental brain contusions (P=0.02). The Cho/Cr ratio was 0.91+/-0.17, while that of the normal control subjects was 0.76+/-0.15. However, no significant difference of Glx/Cr was established between the experimental traumatic brain injury models and the normal controls. DISCUSSION AND CONCLUSIONS: The present 1H MRS study shows significant proton metabolic changes of parietal cortex with experimental brain contusions of ICR mouse induced by FPI compared to normal controls. In vivo 1H MRS may be a useful modality for the clinical evaluation of traumatic contusions and could aid in better understanding the neuropathologic process of traumatic contusions induced by FPI.  相似文献   

2.
With the use of localized 13C MRS in conjunction with [1-(13)C]-D-glucose infusion, it is possible to study brain glycogen metabolism in vivo. The purpose of this study was to validate in vivo 13C MRS measurements by comparing them with results from a standard biochemical assay. To increase the [1-(13)C] glycogen concentration, 11 rats were subjected to an episode of acute hypoglycemia followed by a mild hyperglycemic recovery period during which [1-(13)C]-D-glucose was infused. The total brain [1-(13)C] glycogen of the same animal was determined from the enzymatically determined total brain glycogen content, which was fixed by focused microwave irradiation (4 kW in 1.4 s) immediately after the end of the in vivo NMR measurements. The corresponding isotopic enrichment (IE) of glycogen was measured by in vitro 1H MRS of protons bound to glucose C1-alpha. The in vivo [1-(13)C] glycogen concentration was strongly correlated to the in vitro [1-(13)C] glycogen content determined by biochemical measurement in a linear manner (R=0.79). The results are consistent with the notion that localized 13C MRS measurements closely reflect 13C glycogen content in the brain.  相似文献   

3.
Differences in proton MRS T(2) values for phosphocreatine (PCr) and creatine (Cr) methyl groups (3.0 ppm) were investigated in studies of phantoms and human brain. Results from phantom studies revealed that T(2) of PCr in solution is significantly shorter than T(2) of Cr. Curve-fitting results indicated that the amplitude-TE curves of the total Cr resonance at 3.0 ppm in human brain (N = 26) fit a biexponential decay model significantly better than a monoexponential decay model (P < 0.006), yielding mean T(2) values of 117 +/- 21 ms and 309 +/- 21 ms. Using a localized, long-TE (272 ms) point-resolved spectroscopy (PRESS) proton MRS during 2 min of photic stimulation (PS), an increase of 12.1% +/- 3.5% in the mean intensity of the total Cr resonance in primary visual cortex (VI) was observed at the end of stimulation (P < 0.021). This increase is consistent with the conversion of 26% of PCr in VI to Cr, which is concordant with (31)P MRS findings reported by other investigators. These results suggest a significantly shorter T(2) for PCr than for Cr in vivo. This difference possibly could be exploited to quantify regional activation in functional spectroscopy studies, and could also lead to inaccuracies in some circumstances when the Cr resonance is used as an internal standard for (1)H MRS studies in vivo.  相似文献   

4.
A novel method based on interleaved localized 31P- and 1H MRS is presented, by which lactate accumulation and the accompanying changes in high energy phosphates in human skeletal muscle can be monitored simultaneously during exercise and recovery. Lactate is quantified using a localized double quantum filter suppressing the abundant lipid signals while taking into account orientation dependent signal modulations. Lactate concentration after ischemic exercise directly quantified by DQF 1H spectroscopy was 24 +/- 3 mmol/L cell water, while 22 +/- 3 mmol/L was expected on the basis of 31P MRS acquired simultaneously. Lactate concentration in a sample of porcine meat was estimated to be 40 +/- 7 mmol/L by means of DQF quantitation, versus 39 +/- 5 mmol/L by biochemical methods. Excellent agreement is shown between lactate concentrations measured noninvasively by 1H MRS, measured biochemically ex vivo, and inferred indirectly in vivo from changes in pH, P(i), and PCr as obtained from 31P MRS data.  相似文献   

5.
Vitamin C (ascorbate) and glutathione (GSH) are the two most concentrated non-enzymatic antioxidants in the human brain. Double editing with (DEW) MEGA-PRESS at 4T was designed in this study to measure both antioxidants in the same amount of time previously required to measure one. In the occipital lobe of four human subjects, resolved ascorbate (Asc) and GSH resonances were detected repeatedly and simultaneously using DEW MEGA-PRESS. The Asc and GSH concentrations measured using LCModel analysis of DEW MEGA-PRESS spectra were 0.8 +/- 0.1 and 1.0 +/- 0.1 micromol/g (mean +/- SD), with average Cramer-Rao lower bounds (CRLB) of 10% and 7%, respectively. Aside from the effects of J-modulation at a common echo time (TE), double editing did not compromise sensitivity. To determine the extent to which the oxidized forms of Asc and GSH contribute to DEW MEGA-PRESS spectra in vivo, chemical shifts and coupling constants for dehydroascorbate (DHA) and oxidized glutathione (GSSG) were measured at physiologic pH and temperature. DHA does not contribute to the 3.73 ppm DEW MEGA-PRESS Asc resonance. GSSG contributions to the DEW MEGA-PRESS GSH resonance (3.0 ppm) are negligible under physiologic conditions, and would be evidenced by a distinct GSSG resonance (3.3 ppm) at exceptionally high concentrations.  相似文献   

6.
In in vivo (1)H spectroscopy, the signal at 1.32 ppm is usually assigned to lactate. This resonance position is shared with threonine at physiological pH. The similarity of spectral patterns of lactate and threonine renders the separate measurement of either threonine or lactate without and even with editing technically challenging. In this study, the threonine signal was detected using a single-shot multiple-bond editing technique and quantified in vivo in both rat and human brains. A threonine concentration was estimated at 0.8 +/- 0.3 mM (mean +/- SD, n = 6) in the rat brain and at approximately 0.33 mM in the human brain.  相似文献   

7.
High-resolution 1H surface coil NMR spectroscopy (MRS) was used to evaluate in vivo the cerebral metabolism changes in rat brain induced by a glial tumor growing in situ. Tumor cells (C6 glioma cells) were stereotaxically placed in the right hemisphere superficially. 1H MRS was performed using 5-mm surface coils implanted over the right hemisphere and the water was suppressed using a binomial sequence. As the intracerebral tumor size increased, there was a marked decrease in the N-acetyl aspartate level and an increase in the 1.3 ppm peak. Edition of this peak showed that lactate increased but lipids increased much more than lactate. Moreover the ratio between the choline-phosphocholine and creatine-phosphocreatine peaks changed. This study demonstrates that high-resolution surface coil 1H MRS can be used to monitor changes in metabolism associated with growth of an experimentally induced rat brain tumor in situ.  相似文献   

8.
In vivo (31)P spectra were acquired from the human primary visual cortex at 7 T. The relaxation times of the cerebral metabolites, intracellular pH, rate constant (k(f)) of the creatine kinase (CK) reaction, and nuclear Overhauser enhancement (NOE) on the detected phosphorus moieties from irradiation of the water spins were measured from normal subjects. With a 5-cm-diameter surface coil, 3D (31)P chemical shift imaging was performed with a spatial resolution of 7.5 ml and an acquisition resolution of 8 min, resulting in a signal-to-noise ratio (SNR) for phosphocreatine (PCr) resonance of 32. The apparent T(1) and T(2) of PCr measured at 7 T were 3.37 +/- 0.29 s and 132.0 +/- 12.8 ms, respectively, which were considerably longer than those of adenosine triphosphate (ATP) (T(1): 1.02-1.27 s; T(2): 25-26 ms). The NOE measured in this study was 24.3% +/- 1.6% for PCr, and 10% for ATP. The k(f) measured in the human primary visual cortex was 0.24 +/- 0.03 s(-1). The results from this study suggest that ultra-high-field strength is advantageous for performing in vivo (31)P magnetic resonance spectroscopy (MRS) in the human brain.  相似文献   

9.
The purpose of this study was to evaluate whether the detection of choline-containing compounds in in vivo (1)H magnetic resonance spectroscopy (MRS) of breast lesions is specific for carcinomas, whether a choline peak in in vivo (1)H MRS can be detected under physiological conditions of increased metabolism in breast parenchyma, and whether analysis of lipid signals can differentiate between various breast lesions and tissues. Forty patients and volunteers were examined with in vivo (1)H MR spectroscopy. Three spectra with identical localization but increasing echo times were obtained. Choline-containing compounds were detected in 9 of 11 carcinomas and in 2 of 11 benign lesions. A choline signal was also detected in five of seven volunteers who were breast-feeding at the time of examination, demonstrating that choline compounds can be detected by in vivo (1)H MRS in breast tissue under physiological conditions. Analysis of lipid signals did not contribute to differentiation between various breast lesions and tissues. J. Magn. Reson. Imaging 1999;10:159-164.  相似文献   

10.
A strategy for proton decoupled carbon-13 MR spectroscopy ((1H)-13C MRS) with a strong static magnetic field (3.0 T) in vivo was investigated. The proton decoupling improves the signal-to-noise ratio, however, the effect of the decoupling power on the human body, especially in strong magnetic fields, should be considered. In order to establish a technique for monitoring the metabolism of glucose in the liver using (1H)-13C MRS at 3.0 T, two phantom experiments were performed. To assess whether the decoupling energy conformed to SAR limits defined by the IEC, temperature rises inside an agar gel phantom were monitored during a (1H)-13C MRS experiment. Then, the decoupling conditions of a glucose solution phantom were systematically optimized with combinations of decoupling bandwidth and power. The reliability of this procedure was discussed in conjunction with IEC guidelines.  相似文献   

11.
The goals of this study were to compare 31P magnetic resonance spectroscopy (MRS) and 1H magnetic resonance imaging (MRI) of human subjects and phantoms at 1.5 and 2.0 T. The 31P signal-to-noise (S/N) ratios in phantom standards and in localized volumes in human brain and liver were compared at 1.5 and 2.0 T. In addition, T1 values for 31P resonances in human brain, 31P linewidths of metabolites in human brain and liver, 1H S/N in a phantom standard, and MR image quality in human head and body were compared at the two field strengths. The results of our study showed that at the higher strength field, (1) in vivo 31P MRS studies benefited from up to 32% improvement in S/N; (2) in vivo 31P MRS studies also benefited from increased spectral dispersion; (3) the quality of MR head images remained comparable; and (4) body images showed some decrease in image quality due to increased chemical shift, and flow and motion artifacts.  相似文献   

12.
Cerebral phosphorylated metabolites, possibly involved in membrane and myelin sheath metabolism, were measured and quantified using proton-decoupled (31)P ({(1)H}-(31)P) MRS in 32 children and 28 adults. Age-dependent changes were determined for phosphorylethanolamine (PE), phosphorylcholine (PC), glycerophosphorylethanolamine (GPE), glycerophosphorylcholine (GPC), and phosphocreatine (PCr) concentrations. In the neonate, PE dominates the spectrum and decreases with age along with PC, whereas GPE, GPC, and PCr increase in concentration with postnatal age. PE (1.23 +/- 0.13 mM) and GPE (0.57 +/- 0.08 mM) co-resonate with choline in (1)H MRS. Together with PC (0.57 +/- 0.12 mM) and GPC (0. 94 +/- 0.13 mM) these four metabolites accounted for all of the visible (1)H MRS choline in normal adult brain. Children with diseases that affect myelination were found to have abnormal ?(1)H?-(31)P MRS. The new quantitative assay may provide novel insights in determining and monitoring normal and abnormal brain maturation noninvasively. Magn Reson Med 42:643-654, 1999.  相似文献   

13.
Proton-decoupled 31P MRS in untreated pediatric brain tumors.   总被引:2,自引:0,他引:2  
Proton-decoupled (31)P and (1)H MRS was used to quantify markers of membrane synthesis and breakdown in eight pediatric patients with untreated brain tumors and in six controls. Quantitation of these compounds in vivo in humans may provide important indicators for tumor growth and malignancy, tumor classification, and provide prognostic information. The ratios of phosphoethanolamine to glycerophosphoethanolamine (PE/GPE) and phosphocholine to glycerophosphocholine (PC/GPC) were significantly higher in primitive neuroectodermal tumors (PNET) (16.30 +/- 5.73 and 2.97 +/- 0.93) when compared with controls (3.42 +/- 1.62, P < 0.0001 and 0.45 +/- 0.13, P < 0.0001) and with other tumors (3.93 +/- 3.42, P < 0.001 and 0.65 +/- 0.30, P < 0.0001). Mean PC/PE was elevated in tumors relative to controls (0.48 +/- 0.11 versus 0.24 +/- 0.05, P < 0.001), but there was no difference between PNET and other tumors. Total choline concentration determined with quantitative (1)H MRS was significantly elevated (4.78 +/- 3.33 versus 1.73 +/- 0.56 mmol/kg, P < 0.05), whereas creatine was reduced in tumors (4.89 +/- 1.83 versus 8.28 +/- 1.50 mmol/kg, P < 0.05). A quantitative comparison of total phosphorylated cholines (PC+GPC)/ATP measured with (31)P MRS and total choline measured with (1)H MRS showed that in tumors a large fraction of the choline signal (>54 +/- 36%) was not accounted for by PC and GPC. The fraction of unaccounted choline was particularly large in PNET (>78 +/- 7%). The pH of tumor tissue was higher than the pH of normal brain tissue (7.06 +/- 0.03 versus. 6.98 +/- 0.03, P < 0.001).  相似文献   

14.
Image-guided localized proton MR spectroscopy (MRS) of normal breasts and breast tumors (ductal and undifferentiated carcinomas) was performed using a dedicated double breast coil. In vivo 1H MR spectra from 10 normal volunteers showed signals from water and lipids only, even in breasts with small contribution of fatty breast tissue. In the spectra from 6 of the 12 examined patients, an intense signal assigned to choline compounds was detected. The signal was also detected at lower levels in the remaining patients. This study shows that in vivo 1H MRI/MRS examinations of breast tumors can be performed within an examination time of 45 to 60 minutes. Signals from breast tumor metabolites may be detected using in vivo 1H MRS.  相似文献   

15.
Glutathione has major roles in removing free radicals and toxins from normal tissues, but its presence in tumor cells hinders the effectiveness of many anticancer therapies. Analysis of short echo time brain tumor (1)H spectra at 1.5 T using a linear combination of metabolite spectra (LCModel) suggested a significant contribution of glutathione to meningioma spectra. By in vivo MRS (TE = 30 ms, TR = 2020 ms), reduced glutathione was found to be significantly elevated in meningiomas (3.3 +/- 1.5 mM, Mann Whitney, P < 0.005) compared to normal white matter (1.2 +/- 0.15 mM) and low-grade gliomas (1.0 +/- 0.26 mM), in agreement with published histofluorescence studies of tumor biopsies. Glx concentrations were also found to be elevated in meningiomas compared to astrocytomas or normal white matter, indicative of metabolic differences. The ability to noninvasively quantify reduced glutathione in vivo may aid selection of treatment therapies and also provide an indication of tumor aggressiveness.  相似文献   

16.
Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla.   总被引:1,自引:0,他引:1  
A new coil design for sensitivity-enhanced 13C MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for 13C MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous circularly polarized 1H B1 field for 1H decoupled 13C MRS. A quadrature 1H birdcage coil optimized for minimal local RF heating makes broadband 1H decoupling in the entire human brain possible at 3 Tesla while remaining well within international safety guidelines for RF absorption. Apart from a substantial increase in sensitivity compared to conventional small linear coils, the quadrature 13C coil combined with the quadrature 1H birdcage coil allows efficient cross polarization (CP) in the brain, resulting in an additional 3.5-fold sensitivity improvement compared to direct 13C measurements without nuclear Overhauser enhancement (NOE) or polarization transfer. Combined with the gain in power efficiency, this setup allows broadband 1H to 13C CP over large areas of the brain. Clear 13C resonances from glutamate (Glu), glutamine (Gln), aspartate (Asp), lactate (Lac), and gamma-aminobutyrate (GABA) carbon spins in the human brain demonstrate the quality of 13C MR spectra obtained in vivo with this coil setup.  相似文献   

17.
Commercial solutions for pentobarbital anesthesia typically contain water H spectra. The purpose of the present study was to measure the concentration of metabolites in the rat brain in vivo under pentobarbital anesthesia using 1H MRS. Resonances of PG, but not ethanol, were observed in the rat brain. Chemical shifts and J-coupling constants for PG were measured at 37 degrees C and pH 7.1 and used for spectral simulation. Inclusion of the simulated PG spectrum in the basis set for LCModel analysis enabled accurate fitting of in vivo spectra. This work demonstrates that concentration of brain metabolites can be reliably measured using 1H spectroscopy under pentobarbital anesthesia. The chemical shifts and J-coupling values reported here can be used to simulate the spectrum of PG at any field strength, with various pulse sequences.  相似文献   

18.
AIM: To discuss the advantages of ultra-high field (7T) for 1H and 13C magnetic resonance spectroscopy (MRS) studies of metabolism.made at both 3 and 7T using 1H MRS. Measurements of glycogen and lipids in muscle were measured using 13C and 1H MRS respectively. RESULTS: In the brain, increased signal-to-noise ratio (SNR) and dispersion allows spectral separation of the amino-acids glutamate, glutamine and γ-aminobutyric acid (GABA), without the need for sophisticated editing sequences. Improved quantification of these me-tabolites is demonstrated at 7T relative to 3T. SNR was 36% higher, and measurement repeatability (% coefficients of variation) was 4%, 10% and 10% at 7T, vs 8%, 29% and 21% at 3T for glutamate, glutamine and GABA respectively. Measurements at 7T were used to compare metabolite levels in the anterior cingulate cortex (ACC) and insula. Creatine and glutamate levels were found to be significantly higher in the insula compared to the ACC (P < 0.05). In muscle, the increased SNR and spectral resolution at 7T enables interleaved studies of glycogen (13C) and intra-myocellular lipid (IMCL) and extra-myocellular lipid (EMCL) (1H) following exercise and refeeding. Glycogen levels were sig-nificantly decreased following exercise (-28% at 50% VO2 max; -58% at 75% VO2 max). Interestingly, levels of glycogen in the hamstrings followed those in the quadriceps, despite reduce exercise loading. No changes in IMCL and EMCL were found in the study. CONCLUSION: The demonstrated improvements in brain and muscle MRS measurements at 7T will increase the potential for use in investigating human metabolism and changes due to pathologies.  相似文献   

19.
BACKGROUND AND PURPOSE: Current diagnostic methods for head and neck metastasis are limited for monitoring recurrence and assessing oxygenation. 1H MR spectroscopy (1H MRS) provides a noninvasive means of determining the chemical composition of tissue and thus has a unique potential as a method for localizing and characterizing cancer. The purposes of this investigation were to measure 1H spectral intensities of total choline (Cho), creatine (Cr), and lactate (Lac) in vivo in human lymph node metastases of head and neck cancer for comparison with normal muscle tissue and to examine relationships between metabolite signal intensities and tissue oxygenation status. METHODS: Volume-localized Lac-edited MRS at 1.5 T was performed in vivo on the lymph node metastases of 14 patients whose conditions were untreated and who had primary occurrences of squamous cell carcinoma. MRS measurements were acquired also from the neck muscle tissue of six healthy volunteers and a subset of the patients. Peak areas of Cho, Cr, and Lac were calculated. Tissue oxygenation (pO2) within the abnormal lymph nodes was measured independently using an Eppendorf polarographic oxygen electrode. RESULTS: Cho:Cr ratios were significantly higher in the nodes than in muscle tissue (node Cho:Cr = 2.9 +/- 1.6, muscle Cho:Cr = 0.55 +/- 0.21, P = .0006). Lac was significantly higher in cancer tissue than in muscle (P = .01) and, in the nodes, showed a moderately negative correlation with median pO2 (r = -.76) over a range of approximately 0 to 30 mm Hg. Nodes with oxygenation values less than 10 mm Hg had approximately twice the Lac signal intensity as did nodes with oxygenation values greater than 10 mm Hg (P = .01). Cho signal intensity was not well correlated with pO2 (r = -.46) but seemed to decrease at higher oxygenation levels (>20 mm Hg). CONCLUSION: 1H MRS may be useful for differentiating metastatic head and neck cancer from normal muscular tissue and may allow for the possibility of assessing oxygenation. Potential clinical applications include the staging and monitoring of treatment.  相似文献   

20.
Creatine depletion in the non-viable infarcted human heart was previously demonstrated with proton magnetic resonance (MR) spectroscopy (1H MRS). In the present study, we assessed total creatine (CR) in human hearts with non-ischemic dysfunctions such as cardiomyopathy. Using cardiac-gated 1H MRS with MR image-guided PRESS localization, we measured septal CR in healthy and diseased human hearts. Fifteen patients with chronic heart failure (CHF, left ventricular ejection fraction < 45%) and 14 age-matched normal subjects were examined. Myocardial CR was significantly (p < 0.001) lower in failing hearts (15.1+/-SD 5.0 micromol/g wet weight, range 8.0-22.9) than in normal hearts (27.6+/-4.1 micromol/g wet weight, range 20.8-36.2). Myocardial CR concentrations in six heart failure patients with plasma B-type natriuretic peptide (BNP) levels of > 200 pg/ml (11.5+/-0.9 micromol/g wet weight, range 9.9-12.3) were significantly lower than those in four heart failure patients with plasma BNP levels of < 200 pg/ml (19.8+/-2.5 micromol/g wet weight, range 17.7-22.9, p < 0.001). Thus, our study showed that myocardial CR was decreased in non-ischemic dysfunctional hearts. Noninvasive measurements of myocardial CR by 1H MRS may be useful in the assessment of the severity of heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号