首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Objectives

The aim of this study was to evaluate the influence of two adhesive systems and the post space region on the degree of conversion of dual resin cement and its bond strength to root dentin.

Material and Methods

One three-step etch-andrinse (All-bond 2, Bisco) and another one-step self-etch (Xeno III, Dentsply) adhesive systems were applied on 20 (n=10) crownless bovine incisors, at 12-mm-deep post space preparation, and a fiber post (DT Light Post, Bisco) was cemented using a dual cure resin cement (Duo-Link, Bisco). Three transverse sections (3 mm) were obtained, being one from each study region (cervical, middle and apical). The degree of conversion of the dual cure resin cement was determined by a micro-Raman spectrometer. The data (%) were submitted to repeated-measures analysis of variance and Tukey''s test (p<0.05).

Results

For both groups, the degree of conversion means (%) (All bond 2cervical = 69.3; All bond 2middle = 55.1; All bond 2apical= 56; Xeno IIIcervical = 68.7; Xeno IIImiddle = 68.8; Xeno IIIapical = 54.3) were not significantly different along the post space regions (p<0.05).

Conclusion

Neither the adhesive nor the post space region influenced the degree of conversion of the cement layer.  相似文献   

2.

Objectives

To evaluate the effect of luting cement and thermomechanical loading on the retention of glass fibre posts in root canals.

Methods

One hundred and forty-four single-rooted human premolars were endodontically treated and restored with RelyX Fibre Posts. The teeth were divided into four groups according to the cements used (Fuji I, Fuji CEM, RelyX Unicem and RelyX ARC). Each group was further divided into two subgroups according to the method of ageing (immediately tested and after thermomechanical loading). Bond strength was evaluated using a pull-out test. Microleakage was examined quantitatively with dye penetration. The dentine–cement-post bonding interface was assessed using scanning electron microscopy. Data were analysed with two-way ANOVA (pull-out test) and Kruskal–Wallis analysis (microleakage).

Results

The pull-out bond strength and microleakage were significantly affected by the type of cement and ageing. Although RelyX ARC showed the highest bond strength before thermomechanical loading (p < 0.05), the sealing ability of this cement was worse than those exhibited in Fuji CEM and RelyX Unicem (p < 0.05). After thermomechanical loading, pull-out strengths of Fuji I and Fuji CEM were significantly increased, whereas that of RelyX ARC group significantly decreased (p < 0.05). The sealing ability of Fuji CEM was significantly better than the two resin cement groups (p < 0.05) after ageing.

Conclusion

Fuji CEM demonstrates increased pull-out strength after thermomechanical loading and favourable sealing ability compared with the other cements.

Clinical significance

Resin-modified glass ionomer cements have the potential benefit of achieving long-term retention when used for luting glass fibre post to root canal dentine. So it may be recommended for the cementation of glass fibre post in clinics.  相似文献   

3.
《Dental materials》2019,35(9):1227-1237
ObjectivesTo evaluate the effect of excitation laser power in Raman spectrometry by comparing the spectra and the degree of conversion (DC) values obtained using excitation powers between 300 and 1000 mW.MethodsFive commercial and three experimental resin composites were light cured at 1200 mW/cm2 for 10–20 s from a commercial blue-violet LED dental curing unit. Raman spectra were collected from composite specimens within 9 min after light-curing. The excitation laser (1064 nm) was focused on the spot of 0.4 mm in diameter. The following powers were used for specimen excitation (mW): 300, 400, 600, 800, and 1000. From Raman spectra, the DC values were calculated and compared among different laser powers. Also, vector-normalized Raman spectra collected using the lowest excitation power (300 mW) were compared to those collected using the maximum excitation power (1000 mW).ResultsVarying the excitation laser power between 300 and 1000 mW resulted in statistically significant differences in both the DC values and the intensity of particular spectral features. The effect of varying laser power on Raman spectra and obtained DC values was material-dependent. The DC values measured within an individual material using different laser powers varied between 3.2 and 7.2% (absolute DC difference). The spectral bands affected by variations in laser power were assigned to symmetric and asymmetric stretching of −CH2 (2900-3100 cm−1), symmetric stretching of aliphatic CC (1640 cm−1) and scissoring of C–H (1458 cm−1).SignificanceThe DC can be artificially elevated through increasing excitation laser power. This effect should be considered in Raman spectroscopic evaluations of DC in specimens during ongoing post-cure polymerization.  相似文献   

4.
AIM: To investigate the effects of luting agent and thermocycling on bond strengths to root canal dentine. METHODOLOGY: Extracted maxillary canines (n =144) were root filled and divided into six groups of 24 teeth each. Fibre posts (FRC Postec) were inserted using six luting agents: Panavia F, Multilink, Variolink II, PermaFlo DC, RelyX Unicem and Clearfil Core. Each root was sliced into six discs (thickness 1 mm) representing the coronal, middle and apical part of the root canal. Push-out tests were performed 24 h after post insertion (n = 12) as well as after thermocycling (5000x; 5-55 degrees C, 30 s) (n = 12). Statistical analysis was conducted using analysis of variance (anova) followed by post-hoc comparisons (Tukey-B). The influence of thermocycling on bond strengths was investigated for each material and region separately using t-tests. RESULTS: The bond strengths were significantly affected by the luting agent (P < 0.001), the root position (P = 0.003) and thermocycling (P < 0.001; three-way anova). RelyX had significantly higher bond strengths compared with all other materials (P < 0.05; Tukey-B). The apical region of the root canal had significantly higher bond strengths compared with the middle and coronal region (P < 0.05; Tukey-B). After thermocycling for RelyX a significant increase in bond strengths was detected for the middle and apical region (P < 0.01; t-test, Bonferroni factor 18). CONCLUSIONS: Bond strengths were affected significantly by luting agent and root position. RelyX had higher bond strengths compared with other materials. The apical region of the canals was characterized by significantly higher bond strengths.  相似文献   

5.
Unreacted monomers in adhesive systems may cause a reduction in material properties, an increase in the long-term instability of the restoration, and pulpal irritation. The degree of dentine demineralization, adhesive penetration, and the degree of conversion (DC) across the dentine–adhesive interface of self-etch adhesives were measured using micro-Raman spectroscopy. Two-step, self-etch AdheSE, one-step self-etch AdheSE One, and etch-and-rinse Excite (control) (Ivoclar Vivadent AG, Schaan, Liechtenstein) were studied. Nine human molars were allocated to three groups and a flat dentine surface was prepared. A smear layer was produced by grinding dentine with 600-grit silicone-carbide discs under water. After application and polymerization of the adhesive, teeth were sectioned to produce four 1–mm-thick slices per tooth for micro-Raman spectroscopy. There were statistically significant differences in the depth of dentine demineralization between all adhesives. The depth and degree of demineralization decreased in the order: Excite>AdheSE>AdheSE One. The mean ± standard deviation (SD) values for DC within the adhesive layer were 85.2 ± 2.9% (Excite), 81.4 ± 4.2% (AdheSE), and 54.3 ± 10.1% (AdheSE One), and within the hybrid layer were 55.2 ± 22.5% (Excite), 65.1 ± 16.9% (AdheSE), and 42.0 ± 16.2% (AdheSE One). All systems showed a discrepancy between dentine demineralization and adhesive penetration. A significant amount of unreacted monomers were associated with all systems but particularly with the etch-and-rinse system.  相似文献   

6.

Objectives

The aim of this study was to evaluate the effects of C-factor and resin volume on the regional bond strength of dual-cure luting resin to root canal dentine.

Methods

Twelve single-root human premolars were decoronated and post space prepared to a depth of 8 mm, with a diameter of 1.5 mm for six roots and 1.75 mm for the other six. Root canal dentine was treated with a dual-cure bonding system and light-cured for 20 s. Specimens were filled with a dual-cure resin composite with or without insertion of 1.4-mm-diameter light-transmitting glass fibre posts, followed by light-curing for 60 s from the coronal direction. After 24 h water storage, each specimen was serially sliced into eight 0.6 mm × 0.6 mm thick beams for a microtensile bond strength test. Failure modes were observed using SEM. Bond strength data were divided into coronal and apical regions and statistically analysed.

Results

For both sizes of post space, bond strengths dramatically decreased when fibre posts were inserted. There were no significant differences in microtensile bond strength between 1.5 mm and 1.75 mm canal width, regardless of fibre post insertion. Regional differences in bond strength were found only in the resin-filled canals.

Conclusions

: The increase of C-factor of the root canal system by insertion of a fibre post had a detrimental effect on the bond strength to root canal dentine. On the other hand, the change of resin volume had no significant effect on bonding.  相似文献   

7.

Objective

To investigate the correlation of the chemical interaction between model self-etching adhesives and dentine with the degree of conversion (DC) of the adhesives.

Methods

The model self-etching adhesives contained bis[2-methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA) with a mass ratio of 1/1, and 0-40% water contents, respectively. The adhesives were applied either onto the prepared dentine surface or unreactive substrates (such as glass slides), agitated for 15 s, then light-cured for 40 s. The DCs of the adhesives were determined using micro-Raman spectral and mapping analysis.

Results

The DCs of the adhesives cured on the dentine substrate were found to be significantly higher than those on the unreactive glass substrate. Moreover, the DCs of the adhesives displayed a decreasing trend as the distance from the dentine surface became greater. The chemical interaction of the acidic 2MP/HEMA adhesives with the mineral apatite in dentine was proposed to play a significant role for the observations. The chemical interaction could be validated by the spectral comparison in the phosphate regions of 1100 cm−1 and 960 cm−1 in the Raman spectra. The results also revealed a notable influence of water content on the DC of adhesives. The DCs of the adhesive at 10% water content exhibited the highest DC level for both substrates.

Conclusions

Interaction with dentine dramatically improved the degree of conversion of self-etching adhesives. Our ability to chemically characterise the a/d interface including in situ detection of the DC distribution is very important in understanding self-etching adhesive bonding under in vivo conditions.  相似文献   

8.
Aim To evaluate the influence of remaining dentine thickness around post and core systems and the thermo‐mechanical stresses on fracture resistance of bovine roots. Methodology This study involved 288 bovine incisor roots with standardized dimensions. Roots were randomly distributed into 24 groups (n = 12) according to root conditions [intact, semi‐weakened, or weakened] and post and core systems [custom cast core, composite resin core, prefabricated metallic post, or prefabricated carbon fibre post], submitted or not to thermomechanical aging [5000 thermal cycles and 100 000 mechanical cycles at a 135‐degree angle to the long axis of the root]. Specimens were submitted to a tangential compressive load (135° angle) at a crosshead speed of 0.5 mm min?1 until failure. Fracture resistance data were analyzed using 3‐way anova and Tukey test: α = 5%. Results Roots restored with composite resin cores demonstrated no resistance to mechanical aging. No statistically significant difference was observed between aged and nonaged specimens involving all post‐systems. Roots restored with custom cast cores had the highest fracture strength, followed by prefabricated metallic posts and carbon fibre posts, regardless of root conditions and thermomechanical aging. The remaining dentine thickness affected significantly roots restored with custom cast cores; weakened roots had a lower fracture resistance. Conclusions Although custom cast cores had a higher fracture resistance when compared to the other techniques, the results were highly dependent on remaining dentine thickness. Prefabricated posts performed in a similar manner in intact, semi‐weakened and weakened roots reinforced with composite resin.  相似文献   

9.
OBJECTIVES: To verify the relationship between contraction stress and degree of conversion (DC) in different composites (Filtek Z250, Filtek A110, Tetric Ceram and Heliomolar). METHODS: For the contraction stress test, composite (2 mm thick) was applied between two 5-mm diameter glass rods, mounted in a tensilometer. DC was determined by Infrared Photoacoustic spectroscopy in specimens with similar dimensions and geometry, submitted to identical curing conditions. Specimens were exposed to different energy densities (4.5, 13.5, 27.0, 54.0 and 108.0 J/cm2) by varying exposure time. Contraction stress and DC were recorded 10 min after the beginning of photoactivation. Results were analyzed by ANOVA/Tukey's test and regression analysis. RESULTS: For contraction stress, the interaction between composite and energy density was significant. Stress values ranged between 0.6+/-0.2 and 2.0+/-0.3 MPa at 4.5 J/cm2, 2.3+/-0.5 and 4.3+/-0.4 MPa at 13.5 J/cm2, 3.8+/-0.5 and 5.8+/-0.9 MPa at 27.0 J/cm2, 4.2+/-0.8 and 7.9+/-0.9 MPa at 54.0 J/cm2 and 6.6+/-0.8 and 8.1+/-0.9 MPa at 108.0 J/cm2. Tetric Ceram (39+/-5.8%) showed a higher average DC than the other materials. Heliomolar (28+/-5.2%) showed an average DC similar to Filtek Z250 (32+/-6.6%) and to Filtek A110 (24+/-7.5%) regardless of the energy density level. No significant increase in DC was observed above 27 J/cm2. CONCLUSIONS: At high energy levels, DC had a tendency to level off earlier than contraction stress values. SIGNIFICANCE: Using high energy densities may cause a significant increase in stress values, without producing a significant increase in conversion.  相似文献   

10.
11.

Objectives

To determine the degree of conversion (DC) over 48 h post-curing of resin mixtures containing trimethylbenzoyl-diphenylphosphine oxide (TPO) initiator cured by a polywave or a monowave LED light-curing unit (LCU).

Methods

In resin mixtures based on equal weight percent (wt%) of BisGMA and TEGDMA the following initiators were added: 0.2 wt% camphorquinone (CQ) + 0.8 wt% ethyl-4-dimethylaminobenzoate (EDMAB) (Group 1); 1 wt% TPO (Group 2) and 0.1 wt% CQ + 0.4 wt% EDMAB + 0.5 wt% TPO (Group 3). Half of the samples in each group (n = 5) were cured using a polywave (bluephase® G2, Ivoclar Vivadent) or a monowave LED LCU (bluephase®, Ivoclar Vivadent). The DC was measured using micro-Raman spectroscopy within 5 min and then 1, 3, 6, 24 and 48 h post-irradiation. The data were analysed using general linear model and two-way ANOVA for the factors ‘time’, ‘material’, ‘surface’ and ‘LCU’ at α = 0.05.

Results

The initial DC values obtained upon light curing remained similar over a 48 h period. bluephase® G2 produced the highest DC in Group 2 followed by Group 3, and Group 1. bluephase® resulted in the highest DC in Group 1, followed by Group 2 and Group 3 (p < 0.05).

Conclusions

Unfilled resin materials containing both TPO– and CQ–amine initiators are effectively cured using bluephase® G2. Resin mixture with the same wt% of initiators is better cured when TPO is the only initiator, compared to CQ–amine only or combined TPO and CQ–amine system. After initial light cure, no additional conversion of uncured monomers was detected in an unfilled resin material over 48 h at 37 °C.  相似文献   

12.
PurposeTo investigate the effects of different curing modes, including tack cure, on the degree of conversion (DC) and mechanical parameters of dual-cured luting agents for all-ceramic restorations.MethodsImmediate light curing, intermittent light curing (2-s tack cure and a 1-min interval before the main cure), delayed light cuing (2-min delay) and chemical or no light curing were used to cure two dual-cured luting agents, RelyX Unicem and PermaCem 2.0, through a 1.5-mm thick lithium disilicate ceramic slide. DC (n = 3), micro-hardness (n = 5), shrinkage strain (n = 4) and shrinkage stress (n = 3) were measured under the aforementioned curing modes. The data were analyzed using two-way ANOVA and post-hoc Tukey HSD test, with the level of significance set at α = 0.05.ResultsFor both luting agents, all the light-curing modes produced similar final DC, but using chemical cure only could significantly reduce the DC. The mechanical parameters followed a similar pattern. There were positive but nonlinear correlations between DC and the other mechanical parameters, with the increase in these parameters with DC being slower initially.ConclusionsProvided adequate light curing is applied to a dual-cured luting agent, delaying the light curing or using a tack cure first to facilitate seating of a restoration may not have a significant impact on the luting agent’s final degree of conversion. However, using chemical cure only may result in inadequate cure of the luting agent and is recommended only for highly opaque restorations.  相似文献   

13.
Suboptimally polymerized monomers may be responsible for the reduced material properties of simplified adhesives and their inherent bonded interface instability. This study was performed to determine the degree of cure within the hybrid layers produced by three one-step self-etch adhesives in situ using Raman microspectroscopy and to investigate nanoleakage expression. Dentin disks were bonded with AdheSE One, Adper Prompt L-Pop, or iBond. Composite layers of 2-mm thickness were built up in bulk on the polymerized adhesive surfaces and then the adhesive–dentin interfaces were exposed to a micro-Raman beam. Adhesive penetration was calculated using the relative intensities of bands associated with mineral and adhesive, and the degree of conversion (DC) was evaluated. Interfacial nanoleakage expression was evaluated on the same specimens. The DC values for the tested adhesives were found to increase in the following order: AdheSE One (48 ± 16%) < Adper Prompt L-Pop (83 ± 2%) = iBond (90 ± 6%; P  < 0.05). AdheSE One showed greater nanoleakage expression than iBond or Adper Prompt L-Pop. Increased nanoleakage expression was associated with AdheSE One that showed the lowest DC. This suggests that a low DC may affect the quality and the long-term stability of the adhesive interface owing to the elution of unreacted monomers forming a porous and highly permeable hybrid layer.  相似文献   

14.
15.
This study was designed to determine the effects of the heat curing time on a urethane tetramethacrylate (UTMA)-based hybrid resin and specifically on the degree of conversion (DC) and cytotoxicity. The materials used in this study were Estenia, a new-generation hybrid resin, and an experimental fiber reinforcement, Br-100. The DC values of the hybrid resin samples were measured using a Fourier transform infrared (FTIR) spectrophotometer after 180s of light curing followed by heat curing (0, 15, 30, and 60min). A method comparing intensities of C = C and N—H vibrations of the sample was used to calculate the final DC values. FTIR spectra were measured both inside and on the surface of the sample. The calculated DC values increased by increasing the heat curing times. After light curing only and after 15-min heat curing, the DC values inside the samples were smaller than the corresponding DC values at the surfaces of the samples. After 60min of heat curing, the samples achieved homogeneous polymerization (DC% = 65). The cytotoxicity of the material was studied from the glass fiber-reinforced hybrid resin samples, which were first light cured and then heat cured (15, 30, and 60min). Cytotoxicity was tested using both direct contact and extract methods. For the extract tests, the test specimens were incubated in a cell culture media at 37°, 54°, or 72°C for 24h. The heat curing times used had no effect on cytotoxicity. The incubation temperature, however, did have a significant effect. The extract obtained from 72°C incubation showed a cytotoxic effect whereas the others did not. The direct contact test did not show cytotoxicity.  相似文献   

16.
17.
将葡萄籽提取物原花青素(proanthocyanidin,PA)分别用乙醇、丙酮、蒸馏水配制成不同浓度的预处理剂,利用傅里叶红外光谱测试PA预处理对Single Bond 2和Prime&Bond NT两种全酸蚀粘接系统双键转化率的影响.结果发现不同溶剂、浓度的PA预处理剂组2种全酸蚀粘接剂的双键转化率与阴性对照组均无统计学差异(P>0.05).提示原花青素预处理对全酸蚀粘接系统固化性能无显著影响.  相似文献   

18.

Objective

To test the following hypotheses: (1) degree of conversion (DC) and polymerization stress (PS) increase with composite temperature (2) reduced light-exposure applied to pre-heated composites produces similar conversion as room temperature with decreased PS.

Methods

Composite specimens (diameter: 5 mm, height: 2 mm) were tested isothermally at 22 °C (control), 40 °C, and 60 °C using light-exposures of 5 or 20 s (control). DC was accessed 5 min after light initiation by FTIR at the specimen bottom surface. Maximum and final PS were determined, also isothermally, for 5 min on a universal testing machine. Non-isothermal stress was also measured with composite maintained at 22 °C or 60 °C, and irradiated for 20 s at 30 °C. Data were analyzed using two-way ANOVA/Tukey and Student's t-test (α = 5%).

Results

Both DC and isothermal maximum stress increased with temperature (p < 0.001) and exposure duration (p < 0.001). Isothermal maximum/final stress (MPa) were 3.4 ± 2.0b/3.4 ± 2.0A (22 °C), 3.7 ± 1.5b/3.6 ± 1.4A (40 °C) and 5.1 ± 2.0a/4.0 ± 1.6A (60 °C). Conversion values (%) were 39.2 ± 7.1c (22 °C), 50.0 ± 5.4b (40 °C) and 58.5 ± 5.7a (60 °C). The reduction of light exposure duration (from 20 s to 5 s) with pre-heated composite yielded the same or significantly higher conversion (%) than control (22 °C, 20 s/control: 45.4 ± 1.8b, 40 °C, 5 s s: 45.1 ± 0.5b, 60 °C, 5 s s: 53.7 ± 2.7a, p < 0.01). Non-Isothermal conditions showed significantly higher stress for 60 °C than 22 °C (in MPa, maximum: 4.7 ± 0.5 and 3.7 ± 0.4, final: 4.6 ± 0.6 and 3.6 ± 0.4, respectively).Clinical significance: Increasing composite temperature allows for reduced exposure duration and lower polymerization stress (both maximum and final) while maintaining or increasing degree of conversion.  相似文献   

19.

Objective

To determine the degree of conversion (DC) of different type of resin-based composites (RBC) in eight-millimeter-deep clinically relevant molds, and investigate the influence of exposure time and pre-heating on DC.

Methods

Two-millimeter-thick samples of conventional sculptable [FiltekZ250 (FZ)], flowable [Filtek Ultimate Flow (FUF)] and polyacid-modified [Twinky Star Flow (TS)] RBCs, and four-millimeter-thick samples of flowable bulk-fill [Filtek Bulk Fill Flow (FBF), Surefil SDR (SDR)] and sculptable fibre-reinforced [EverX Posterior (EX)] RBCs were prepared in an eight-millimeter-deep mold. The RBCs temperature was pre-set to 25, 35 and 55 °C. The RBCs were photopolymerized with the recommended and its double exposure time. The DC at the top and bottom was measured with micro-Raman spectroscopy. Data were analyzed with ANOVA and Scheffe post-hoc test (p < 0.05).

Results

The differences in DC% between the top/bottom and the recommended/extended exposure time were significant for the materials, except SDR (64.5/63.0% and 67.4/63.0%). FUF (69.0% and 53.4%) and TS (64.9% and 60.9%) in 2 mm provided higher DC% at the top and bottom with the recommended curing time, compared to the other materials, except SDR. Pre-heating had negative effect on DC at the bottom in flowable RBCs (FUF: 48.9%, FBF: 36.7%, SDR: 43%, TS: 54.7%). Pre-heating to 55 °C significantly increased the DC% in fibre-reinforced RBC (75.0% at the top, 64.7% at the bottom).

Significance

Increased exposure time improves the DC for each material. Among bulk-fills, only SDR performed similarly, compared to the two-millimeter-thick flowable RBCs. Pre-heating of low-viscosity RBCs decreased the DC% at the bottom. Pre-heating of fibre-reinforced RBC to 55 °C increased the DC% at a higher rate than the extended curing time.  相似文献   

20.
《Dental materials》2023,39(4):442-453
ObjectiveThe purpose was to compare the degree of conversion (DC), monomer elution (ME), polymerization shrinkage (PS) and porosity of two addition-fragmentation chain transfer (AFCT) modified resin-based composites (RBC) light-cured with rapid- (RP), turbo- (TP) or conventional polymerization (CP) settings.MethodsCylindrical samples (6-mm wide, 4-mm thick) were prepared from Tetric PowerFill (TPF) and Filtek One Bulk (FOB). Four groups were established according to the polymerization settings: 3s-RP, 5s-TP, 10s-CP and 20s-CP. Samples in 1 mm thickness with 20s-CP settings served as controls. The DC at the top and bottom surfaces was measured with micro-Raman spectroscopy. ME was detected with high-performance liquid chromatography. PS and porosity were analyzed by micro-computed tomography. ANOVA and Tukey’s post-hoc test, multivariate analysis and partial eta-squared statistics were used to analyze the data (p < 0.05).ResultsFOB showed higher DC values (61.5–77.5 %) at the top compared to TPF (43.5–67.8 %). At the bottom TPF samples achieved higher DCs (39.9–58.5 %) than FOB (18.21–66.18 %). Extending the curing time increased DC (except the top of FOB) and decreased ME. BisGMA release was the highest among the detected monomers from both RBCs. The amount was three-fold more from TPF. The factor Material and Exposure significantly influenced DC and ME. PS (1.8–2.5 %) did not differ among the groups and RBCs except for the lowest value of TPF cured with the 3s_RP setting (p = 0.03). FOB showed 4.5-fold lower porosity (p < 0.001). Significantly higher pore volume was detected after polymerization in 3s_RP (p < 0.001).SignificanceHigh-irradiance rapid 3-s curing of AFCT modified RBCs resulted in inferior results for some important material properties. A longer exposure time is recommended in a clinical situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号