首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Congenital adrenal hyperplasia (CAH) due to 21‐hydroxylase deficiency is caused by mutations in the gene CYP21 encoding the enzyme steroid 21‐hydroxylase. In addition to deletions, approximately 20 different point mutations have been reported, and still novel mutations are detected. This makes genetic diagnosis as well as carrier detection of 21‐hydroxylase deficiency a complicated matter. We developed a simple nonradioactive assay based on the polymerase chain reaction (PCR) in combination with denaturing gradient gel electrophoresis (DGGE) to screen for mutations in the CYP21 gene. DGGE allows a fast scanning of PCR‐amplified segments of genes for the presence or absence of any single base pair alterations. We have performed this technique on the coding sequence and intron‐exon junctions of CYP21. Our results emphasize that this procedure constitutes a fast and reliable approach when performing diagnosis of 21‐hydroxylase deficiency. Hum Mutat 13:385–389, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. More than 90% of CAH cases are caused by mutations of the CYP21 gene. Approximately 75% of the defective CYP21 genes are generated through intergenic recombination, termed "apparent gene conversion," from the neighboring CYP21Ppseudogene. A chimeric CYP21P/CYP21gene with its 5' end corresponding to CYP21P and 3' end corresponding to CYP21 has been identified. This type of gene is nonfunctional because it produces a truncated protein. We found two distinct chimeric genes in CAH patients. Both genes had a sequence with -300 nucleotides of the 5' head as the CYP21P gene. The coding region consisted of a fusion molecule with the CYP21P gene in two different regions. One of the junctions was located in the chi-like sequence of GCTGGGC in the third intron and the other was in the minisatellite consensus TGGCAGGAGG of exon 5 of the CYP21P gene. In addition, analysis of restriction fragment length polymorphism for these two 3.3-kb chimeric molecules showed that these sequences arose as a consequence of unequal crossover between the CYP21Pand CYP21 genes. It is plausible that both consensus sequences are responsible for the gene conversion of these two chimeric genes.  相似文献   

3.
The frequency of 12 different mutations of the steroid 21-hydroxylase gene (CYP21) was investigated in 129 French patients affected by congenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency. Eighty-nine percent of the CAH chromosomes were characterized. The most frequent mutations were a C-G substitution in intron 2, the deletion of the CYP21 gene and a T-A substitution in exon 4 in the severe form of the disease, and a G-T substitution in exon 7 in the nonclassic form. The correlation between the genotypes and the clinical forms of the disease showed marked variation in the phenotype from a single genotype, suggesting that individual variation and undetected additional mutations on the same CAH chromosome accounted for the phenotype. In 65 informative meioses of CAH families, no de novo mutation was found. © Wiley-Liss, Inc.  相似文献   

4.
More than 90% of congenital adrenal hyperplasia (CAH) cases are caused by 21-hydroxylase deficiency. In this study, the CYP21 gene was genotyped in 56 Portuguese unrelated patients with clinical symptoms of 21-hydroxylase deficiency, in a total of 112 independent alleles. CYP21A2 mutations were identified in 99.1% of the alleles. The most common point mutation was 1688G>T (25.9%). A previously unreported partial gene conversion, extending from exon 1 to 7, was found in 16.1% of the alleles, in most cases associated to the mutation 1688G>T in the other chromosome, and in patients with nonclassical CAH. Other three distinct partial gene conversions were also identified, with lower frequencies: one extends from exon 1 to 3 and the others from exons 3 to 7 and 3 to 8. Two novel mutations were identified in two salt-wasting patients: a putative splicing mutation, IVS2+5G>A, and the transition 2557C>T, that gives rise to the nonsense mutation R445X. Seven point mutations and a partial gene conversion were responsible for 88 of the studied disease causing alleles, and the overall concordance between genotype and phenotype was 92.9%. With this study the molecular basis of CAH was characterized, for the first time, in Portuguese patients, providing useful results for clinicians in terms of prediction of disease severity, genetic and prenatal counseling.  相似文献   

5.
CYP21 mutations and congenital adrenal hyperplasia   总被引:3,自引:0,他引:3  
Lee HH 《Clinical genetics》2001,59(5):293-301
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder caused mainly by defects in the steroid 21-hydroxylase (CYP21) gene. More than 90% of CAH cases are caused by mutations of the CYP21 gene on chromosome 6p21.3. The wide range of CAH phenotypes is associated with multiple mutations known to affect 21-hydroxylase enzyme activity. To date, 56 different CYP21 mutations have been reported, mostly point mutations, but small deletions or insertions have been described too, as well as complete gene deletions. Fifteen mutations, constituting 90-95% of alleles, are derived from intergenic recombination of DNA sequences between the CYP21 gene and the highly homologous CYP21P pseudogene, while the remaining are spontaneous mutations. A reliable and accurate detection of CYP21 mutations is not only important for clinical diagnosis, but also for carrier detection as there is a high variability in the basal level of 17-hydroxyprogesterone between normal and heterozygous individuals. Several strategies based on polymerase chain reaction (PCR)-driven amplification with allele-specific oligonucleotides to the CYP21 gene have been developed. It has been demonstrated that one reaction for PCR amplification of the CYP21 gene and the chimeric CYP21P/CYP21 gene using mixed primers in combination with nested PCR and single-strand conformation polymorphism is considered highly efficient and accurate for molecular diagnosis of CAH due to 21-hydroxylase deficiency.  相似文献   

6.
目的研究先天性肾上腺皮质增生症(congenitaladrenalhyperplasia,CAH)患者21-羟化酶基因启动子区域的突变。方法用PCR、SSCP、内切酶酶谱分析及测序分析方法对12例CAH患者的21-羟化酶基因启动子区域进行研究。结果12例患者中有6例出现异常SSCP条带,其中1例在CK-2(-101)结合区域内的KpnⅠ内切酶识别位点及其-201处的TaqⅠ内切酶识别位点存在突变,并经测序证实。结论在CAH患者-21羟化酶基因启动子区域存在突变,可能为CAH发病机理之一。  相似文献   

7.
The majority of congenital adrenal hyperplasia (CAH) cases arise from mutations in the steroid 21-hydroxylase (CYP21) gene. Without reliance on HLA gene linkage analysis, we have developed primers for differential polymerase chain reaction (PCR) amplification of the CYP21 gene and the non-functional CYP21P gene. Using the amplification created restriction site (ACRS) approach for direct mutational detection, a secondary PCR was then performed using a panel of primers specific for each of the 11 known mutations associated with CAH. Subsequent restriction analysis allowed not only the detection but also the determination of the zygosity of the mutations analysed. Existing deletion of the CYP21 gene could also be detected. In the analysis of 20 independent chromosomes in 11 families of CAH patients in Taiwan, four CYP21 mutation types, besides deletion, were detected. Interestingly, in five different alleles, the CYP21P pseudogene contained some polymorphisms generally associated with the CYP21 gene. These results suggest gene conversion events that are occurring in both CYP21P and CYP21 genes. Our combined differential PCR-ACRS protocol is simple and direct and is applicable for prenatal diagnosis of CAH using chorionic villi or amniotic cells.  相似文献   

8.
Congenital adrenal hyperplasia (CAH) comprises a group of autosomal recessive disorders caused by an enzymatic deficiency which impairs the biosynthesis of cortisol and, in the majority of severe cases, also the biosynthesis of aldosterone. Approximately 95% of all CAH cases are caused by mutations in the steroid 21-hydroxylase gene (CYP21A2). The CYP21A2 gene and its inactive pseudogene (CYP21A1P) are located within the HLA class III region of the major histocompatibility complex (MHC) locus on chromosome 6p21.3. In this study, we describe chimeric CYP21A1P/CYP21A2 genes detected in our patients with 21-hydroxylase deficiency (21OHD). Chimeric CYP21A1P/CYP21A2 genes were present in 171 out of 508 mutated CYP21A2 alleles (33.8%). We detected four types of chimeric CYP21A1P/CYP21A2 genes: three of them have been described previously as CH-1, CH-3, CH-4, and one type is novel. The novel chimeric gene, termed CH-7, was detected in 21.4% of the mutant alleles. Possible causes of CYP21A1P/CYP21A2 formation are associated with 1) high recombination rate in the MHC locus, 2) high recombination rate between highly homologous genes and pseudogenes in the CYP21 gene area, and 3) the existence of chi-like sequences and repetitive minisatellite consensus sequences in CYP21A2 and CYP21A1P which play a role in promoting genetic recombination.  相似文献   

9.
目的 研究先天性肾上腺皮质增生症(CAH)患者21-羟化酶基因启动子区域的突变。方法 用PCR、SSCP、内切酶酶谱分析及测序分析方法对12例CAH患者的21-羟化酶基因启动子区域进行研究。结果 12例患者中有6例出现异常SSCP条带,其中1例在CK-2(-101)结合区域内的KpnⅠ内切酶识别位点及其-201处的TaqⅠ内切酶识别位点存在突变,并经测序证实。结论 在CAH患者-21羟化酶基因启动  相似文献   

10.
The HLA haplotype A3-Cw6-B47-C4A91-BQ0-DR7 is associated with congenital adrenal hyperplasia (CAH), since it only carries the dysfunctional steroid 21-hydroxylase A pseudogene as well as the 5' adjacent complement C4A gene. The recombination site leading to the deletion of the complement C4B and steroid 21-hydroxylase B genes in this haplotype was studied by determining the 21-hydroxylase genomic DNA sequence in comparison to the standard CYP21A- and CYP21B-specific sequences. A 200-bp region between exons 7 and 8 was identified as a possible recombination site. Thus the deleted area comprises the 3' end of the CYP21A pseudogene, the entire C4B gene and the 5' end of the CYP21B gene. The findings were confirmed by PCR amplification of a 1.8-kb fragment of the CYP21 gene. This PCR system is specific for CYP21A/B recombinant genes and may be used for screening among CAH patients carrying this type of deletion.  相似文献   

11.
12.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. More than 90% of CAH cases are caused by mutations of the CYP21 gene. Approximately 75% of the defective CYP21 genes are generated through intergenic recombination, termed “apparent gene conversion,” from the neighboring CYP21P pseudogene. A chimeric CYP21P/CYP21 gene with its 5′ end corresponding to CYP21P and 3′ end corresponding to CYP21 has been identified. This type of gene is nonfunctional because it produces a truncated protein. We found two distinct chimeric genes in CAH patients. Both genes had a sequence with −300 nucleotides of the 5′ head as the CYP21P gene. The coding region consisted of a fusion molecule with the CYP21P gene in two different regions. One of the junctions was located in the chi-like sequence of GCTGGGC in the third intron and the other was in the minisatellite consensus TGGCAGGAGG of exon 5 of the CYP21P gene. In addition, analysis of restriction fragment length polymorphism for these two 3.3-kb chimeric molecules showed that these sequences arose as a consequence of unequal crossover between the CYP21P and CYP21 genes. It is plausible that both consensus sequences are responsible for the gene conversion of these two chimeric genes. Received: March 13, 2002 / Accepted: June 17, 2002  相似文献   

13.
Congenital adrenal hyperplasia (CAH) due to steroid 21‐hydroxylase (CYP21A2) deficiency is the commonest inborn error in steroid hormone biosynthesis. Functional in vitro assessment of mutant activity generally correlates well with clinical phenotype and therefore has contributed greatly to phenotype prediction in this CAH variant. Three CYP21A2 sequence variants (g.1641C>T, p.A265V; g.1752G>C, p.W302S; and g.2012A>G, p.D322G) identified in patients with non‐classic and simple virilizing CAH were characterized using a yeast co‐expression system and a computational three‐dimensional CYP21A2 model. Computational analysis of the mutants in the three‐dimensional structural model predicted no relevant effect of p.A265V, while p.W302S and p.D322G were predicted to impact significantly on enzyme function. Consistent with these findings, in vitro mutant analysis revealed enzyme activity similar to wild‐type for p.A265V, whereas p.W302S and p.D322G exerted activities compatible with simple virilizing and non‐classical CAH, respectively. The results indicate that p.A265V is an allelic variant rather than a disease‐causing amino acid change, whilst p.W302S and p.D322G could be confirmed as functionally relevant mutations. These findings emphasize the value of in vitro functional analysis of sequence variations in predicting genotype‐phenotype correlations and disease severity. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Mutations in the CYP21A2 gene encoding the 21-hydroxylase enzyme account for >90% of congenital adrenal hyperplasia (CAH) cases. Approximately 20% of mutant alleles carrying large deletion/duplication have also been reported. Herein, we describe the use of the multiplex ligation-dependent probe amplification (MLPA) method for convenient and rapid detection of deletions/duplications in the CYP21A2 gene. We used MLPA to analyze the gene dose of CYP21A2 MLPA in 13 Korean patients who previously underwent direct sequencing for the molecular diagnosis of CAH. The MLPA assays identified 5 patients with CYP21A2 deletions; all 5 patients carried a single mutant allele peak in sequence analysis. These results demonstrate the diagnostic usefulness of MLPA to detect CYP21A2 deletions/duplications for diagnosis of CAH.  相似文献   

15.
先天性肾上腺皮质增生症(Congenital adrenal hyperplasia,CAH)属于常见常染色体隐性遗传病,有着广泛的临床表现。CYP21A2基因是先天性肾上腺皮质增生症的致病基因,90%-95%的21-羟化酶缺乏症患者在CYP21A2基因上存在有害突变。了解CYP21A2基因编码区的常见突变谱和突变热点,主要包括基因的点突变、小缺失、小插入和完全重组等,同时分析基因型与表现型的关系,有着重要的意义。本研究在阐述2-羟化酶缺乏症的分子基础上,就近几年国内外21-羟化酶缺乏症相关内容进行简要综述。  相似文献   

16.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. A 9.3-kb fragment generated by NdeI and AseI digestion by Southern blot analysis indicated that a consequence of deletion of the C4-CYP21 repeat module was the production of a distinct chimeric CYP21P/CYP21 molecule. In the present study, we report a novel CYP21 genotype in two CAH families in which the gene appeared as 9.4- and 3.3-kb fragments by TaqI digestion, rather than as a chimeric gene. From the analysis of PCR amplification patterns and DNA sequencing, we found that there was a duplication of 111 bases from codons 21 to 57 inserted at codon 58 in exon 1 of the CYP21 gene. In addition, codon 21 in the repeated sequence changed from TGG to AGG. Furthermore, this novel CYP21 gene present in both CAH families showed no mutations at IVS2-12A/C>G, 707-714delGAGACTAC, and P30L. Interestingly, the 5' end region of these two CYP21 genes showed the sequence of the CYP21P gene at nucleotides (nt) -103, -110, -123, and thereafter. Our data suggest that these two CYP21 genes are caused by deletion of the CYP21P, XA, RP2, and C4B genes. Possibly, the additional 111-base duplicated coding sequence may be generated by multiple intergenic recombinations, while there seems to be no relationship with deletion of the CYP21P-C4B regions.  相似文献   

17.
Congenital adrenal hyperplasia (CAH) is most commonly due to 21-hydroxylase deficiency and presents with a wide spectrum of clinical manifestations, from prenatal virilization and salt-wasting in the neonatal period to precocious pubarche and late-onset hyperandrogenic symptoms during adulthood. A limited number of mutations account for the majority of all mutated alleles, but a growing number of rare mutations are responsible for the disease in some patients. By sequence analysis of the CYP21A2 gene, we identified two novel (I171N and L446P) and two rare (R341P and R426H) mutations in seven Italian patients with CAH. One of the patients was diagnosed with mild non-classical CAH and was found to be a compound heterozygote (I171N/V281L), while all other patients showed severe phenotypes with latent or manifest salt-wasting. The residual activities measured after expression of the four mutant enzymes in COS-1 cells were all below 1% towards both natural substrates (17-OH-progesterone and progesterone) compared with the wild-type protein. All four mutations are, thus, associated with severe enzyme deficiency and are predicted to cause classic CAH if found in trans with other mutations causing severe enzyme deficiency.  相似文献   

18.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder which causes more than 90% of CAH cases due to defects in the steroid 21-hydroxylase gene (CYP21A2). The frequency of large mutations was determined in 200 ethnic Chinese (i.e., Taiwanese) CAH patients belonging to 200 families with different clinical forms of CYP21A2 deficiency over 10 years of molecular diagnoses. For a large-gene deletion (or conversion) and the CYP21A2 deletion identification, a PCR product covering the TNXB gene and the 5′-end of the CYP21A2 gene with TaqI endonuclease digestion was analyzed by electrophoresis on agarose gels. For CYP21A2 mutational analysis, secondary PCR amplification of the amplification-created restriction site method was applied. From the results of the analysis, we found that large-gene deletions (or conversions) occurred in 7.5% of the alleles including three different types of the chimeric CYP21A1P/CYP21A2 genes and the haplotype of IVS2-12A/C>G in combination with the 707-714del mutation (without the P30L mutation). The CYP21A2 deletion occurred in 2.0% of the alleles which contained three types of the chimeric TNXA/TNXB genes with two novel ones. We concluded that the CYP21A2 deletion in the ethnic Chinese (Taiwanese) patients exhibits a low occurrence, with the haplotype of the IVS2-12A/C>G in combination with the 707-714del mutation (without the P30L mutation) being prevalent among large gene deletions or conversions.  相似文献   

19.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disease with a wide range of clinical manifestation. In 90‐95% of the cases it is caused by 21‐hydroxylase deficiency (OMIM #201910) due to mutations of the CYP21 gene (GDB Accession #M12792). In most cases the CYP21‐inactivating point mutations are transferred by apparent gene conversions from CYP21P to CYP21. In only a few cases point mutations have been described, which are not present in the pseudogene. Using Southern blot analysis and DNA sequencing we have identified a novel mutation (141delT) of the CYP21 gene in a patient suffering from the salt wasting form of CAH. This results in a premature termination of a truncated protein at amino acid position 51 (L51X), which is likely to result in an enzyme with no activity. This novel mutation has not been reported to occur in the CYP21P alleles and it was not found in the CYP21P alleles in this CAH family. Hum Mutat 14:90–91, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Two steroid 21-hydroxylase genes (CYP21A and CYP21B) alternate in tandem with two genes for the fourth component of complement (C4A and C4B) on the short arm of chromosome 6 between the loci of HLA-B and HLA-DR. The CYP21B gene encodes an adrenal microsomal cytochrome P-450, which is specific for steroid 21-hydroxylation (P450c21). A defect of this protein would cause 21-hydroxylase deficiency, which is an autosomal recessive disease and is the most common cause of congenital adrenal hyperplasia (CAH). On the other hand, the CYP21A gene, which is homologous to the CYP21B gene up to 98% in the nucleotide sequences, is a pseudogene due to several mutations in the coding region. One of the mutations is a C----T change leading a termination codon, TAG, in the 8th exon. 1) I cloned a CYP21B gene from a patient homozygous for HLA-Bw75-DRw9 by descent. I found a C----T change in the 8th exon of the CYP21B gene. This mutation would prevent a synthesis of 21-hydroxylase and was thought to be a crucial change to cause CAH in this patient. Because there was no apparent gross change in the organization of the C4-CYP21 region and this mutation is usually found in the CYP21A pseudogene, it seemed that a gene conversion-like event transferred the mutation from the CYP21A gene to the CYP21B gene. 2) A population study on the organization of C4-CYP21 region revealed that a reciprocal change, i.e. a T----C change in the 8th exon of the CYP21A gene, was observed in two HLA haplotypes, HLA-B44-DRw13 and HLA-Bw46-DRw8 haplotypes in Japanese population. The reciprocal changes also may be considered as a result of gene conversion-like events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号