首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao B  Zhao W 《Medical physics》2008,35(5):1978-1987
In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of +/-25 degrees was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 microm. The detector can be read out in full resolution or 2 x 1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate (up to 2 frames per second) is adequate for tomosynthesis.  相似文献   

2.
Oblique incidence of x rays on an imaging detector causes blurring that reduces spatial resolution. For simple projection imaging this effect is small and often ignored. However, for breast tomosynthesis, the incidence angle can be larger (>20 degrees), leading to increased blur for some of the projections. The modulation transfer function (MTF) is measured for a typical phosphor-coupled flat-panel detector versus angular incidence of the x-ray beam for two x-ray spectra: 26 kV Mo/Mo and 40 kV Rh/Al. At an incidence angle of 40 degrees the MTF at 5 mm(-1) falls by 35% and 40% for each spectrum, respectively (and 65%/80% at 8 mm(-1)). Increasing the detector absorber thickness to achieve improved quantum efficiency will cause the blurring effect due to beam obliquity to become greater. The impact of this blur is likely to cause misregistration and increased relative noise in tomosynthesis reconstructed images.  相似文献   

3.
Boyce SJ  Samei E 《Medical physics》2006,33(4):984-996
Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 microm) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR2 efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ indicating that there are task dependent tradeoffs associated with magnification. The cross over point varies depending upon focal spot size, pixel size, x-ray energy, and source-to-image-distance (SID). For mammography, the cross over point occurs for a 0.3 mm focal spot while a 0.6 mm focal spot indicates that magnification does not improve image quality due to focal spot blurring. Thus, the benefit of magnification may be limited. For general radiography (as well as mammotomography), and chest radiography, the cross over point changes with SID. For a system with a 0.3 mm focal spot, 100 microm pixel size, a 2 m SID, and the applicable tissue thickness and scatter components, optimal magnification improved SNR2 by approximately 1.2 times for mammography and 1.5 times for general radiography (and mammotomography). These results indicate that the optimal geometry can improve image quality without changing patient dose or otherwise reduce dose without compromising image quality.  相似文献   

4.
Multiprojection imaging is a technique in which a plurality of digital radiographic images of the same patient are acquired within a short interval of time from slightly different angles. Information from each image is combined to determine the final diagnosis. Projection data are either reconstructed into slices as in the case of tomosynthesis or analyzed directly as in the case of multiprojection correlation imaging technique, thereby avoiding reconstruction artifacts. In this study, the authors investigated the optimum geometry of acquisitions of a multiprojection breast correlation imaging system in terms of the number of projections and their total angular span that yield maximum performance in a task that models clinical decision. Twenty-five angular projections of each breast from 82 human subjects in our breast tomosynthesis database were each supplemented with a simulated 3 mm mass. An approach based on Laguerre-Gauss channelized Hotelling observer was developed to assess the detectability of the mass in terms of receiver operating characteristic (ROC) curves. Two methodologies were developed to integrate results from individual projections into one combined ROC curve as the overall figure of merit. To optimize the acquisition geometry, different components of acquisitions were changed to investigate which one of the many possible configurations maximized the area under the combined ROC curve. Optimization was investigated under two acquisition dose conditions corresponding to a fixed total dose delivered to the patient and a variable dose condition, based on the number of projections used. In either case, the detectability was dependent on the number of projections used, the total angular span of those projections, and the acquisition dose level. In the first case, the detectability approximately followed a bell curve as a function of the number of projections with the maximum between 8 and 16 projections spanning angular arcs of about 23 degrees-45 degrees, respectively. In the second case, the detectability increased with the number of projections approaching an asymptote at 11-17 projections for an angular span of about 45 degrees. These results indicate the inherent information content of the multi-projection image data reflecting the relative role of quantum and anatomical noise in multiprojection breast imaging. The optimization scheme presented here may be applied to any multiprojection imaging modalities and may be extended by including reconstruction in the case of digital breast tomosynthesis and breast computed tomography.  相似文献   

5.
Matrix inversion tomosynthesis (MITS) uses linear systems theory, along with a priori knowledge of the imaging geometry, to deterministically distinguish between true structure and overlying tomographic blur in a set of conventional tomosynthesis planes. In this paper we examine the effect of total scan angle (ANG), number of input projections (N), and plane separation/number of reconstructed planes (NP) on the MITS impulse response (IR) and modulation transfer function (MTF), with the purpose of optimizing MITS imaging of the chest. MITS IR and MTF data were generated by simulating the imaging of a very thin wire, using various combinations of ANG, N, and NP. Actual tomosynthesis data of an anthropomorphic chest phantom were acquired with a prototype experimental system, using the same imaging parameter combinations as those in the simulations. Thoracic projection data from two human subjects were collected for corroboration of the system response analysis in vivo. Results suggest that ANG=20 degrees, N=71, NP=69 is the optimal combination for MITS chest imaging given the inherent constraints of our prototype system. MITS chest data from human subjects demonstrates that the selected imaging strategy can effectively produce high-quality MITS thoracic images in vivo.  相似文献   

6.
The performance of a commercial digital mammographic system working in 2D planar versus tomosynthesis mode was evaluated in terms of the image signal difference to noise ratio (SDNR). A contrast detail phantom was obtained embedding 1 cm Plexiglas, including 49 holes of different diameter and depth, between two layers containing a breast-simulating material. The phantom was exposed with the details plane perpendicular to the X-ray beam using the manufacturer’s standard clinical breast acquisition parameters. SDNR in the digital breast tomosynthesis (DBT) images was higher than that of the full-field digital mammography (FFDM) for 38 out of 49 details in complex background conditions. These differences (p < 0.05) are statistically significant for 19 details out of 38. The relative SDNR results for DBT and FFDM images showed a dependence on the diameter of the details considered. This paper proposes an initial framework for a global image quality evaluation for commercial systems that can operate with different image acquisition modality using the same detector.  相似文献   

7.
Three algorithms for breast tomosynthesis reconstruction were compared in this paper, including (1) a back-projection (BP) algorithm (equivalent to the shift-and-add algorithm), (2) a Feldkamp filtered back-projection (FBP) algorithm, and (3) an iterative Maximum Likelihood (ML) algorithm. Our breast tomosynthesis system acquires 11 low-dose projections over a 50 degree angular range using an a-Si (CsI:Tl) flat-panel detector. The detector was stationary during the acquisition. Quality metrics such as signal difference to noise ratio (SDNR) and artifact spread function (ASF) were used for quantitative evaluation of tomosynthesis reconstructions. The results of the quantitative evaluation were in good agreement with the results of the qualitative assessment. In patient imaging, the superimposed breast tissues observed in two-dimensional (2D) mammograms were separated in tomosynthesis reconstructions by all three algorithms. It was shown in both phantom imaging and patient imaging that the BP algorithm provided the best SDNR for low-contrast masses but the conspicuity of the feature details was limited by interplane artifacts; the FBP algorithm provided the highest edge sharpness for microcalcifications but the quality of masses was poor; the information of both the masses and the microcalcifications were well restored with balanced quality by the ML algorithm, superior to the results from the other two algorithms.  相似文献   

8.
Filtered backprojection reconstruction is an efficient image reconstruction method which is widely used in CT and 3D x-ray imaging. The way data have to be filtered depends on the acquisition geometry and the number of projections (views) which were acquired. For standard geometries like circle or helix it is known how to effectively filter the data. But there are acquisition geometries for which the application of standard filters yields poor results, e.g. in situations where the number of views is very small or for a limited angular range. In tomosynthesis, both conditions apply, i.e. the number of projections is typically very small and, moreover, the angular coverage is much less than 180°. This paper proposes a new method to design effective filters which are specific for the acquisition geometry. Examples from x-ray tomosynthesis are utilized to demonstrate the excellent performance of the proposed method.  相似文献   

9.
Previous work has shown that for nine common radiographic projections (AP abdomen, AP cervical spine, LAT cervical spine, PA chest, LAT chest, AP hip, AP lumbar spine, LAT lumber spine, and AP pelvis) increasing the total x-ray tube filtration from 2.5 mm Al equivalent (the regulatory minimum for general diagnostic radiology) to 4.0 mm Al equivalent, reduces the average effective dose and average skin entrance dose by 9% and 16%, respectively, using a 400 speed screen-film system. In this study, the effects of this filtration increase on x-ray tube loading and image quality were assessed. For the above projections and filtration increase, mean absolute and percentage increases in tube loading were 2.9 mAs and 15%, respectively, for a constant film density and fixed kVp. Tube current (mA) increases of 25% (a worst case) resulted in no statistically significant loss in focal spot resolution due to blooming for both large (1.2 mm) and small (0.6 mm) focal spot sizes, except at high mA low kVp techniques. The latter losses were below 10%, and when the image receptor blur was incorporated, the total system spatial resolution losses were on the order of one-quarter to one-half these values for typical clinical geometries. Radiographs of a contrast phantom taken with 2.5 and 4.0 mm total Al equivalent x-ray tube filtration were compared at 60, 70, 81, 90, 102, and 121 kVp. No statistically significant changes were observed with regard to (1) test object conspicuity as reported by three observers, (2) image contrast, as measured using a densitometer with a 3 mm aperture (+/-0.0017 OD, 95% confidence level), and (3) pixel value image noise, image contrast-to-noise ratios, and image signal-to-noise ratios, as measured using a scanning densitometer with a 12-bit acquisition depth and 85 micron pixel size (+/-2.5%, +/-3.1%, and +/-2.5%, 95% confidence levels, respectively). These results, combined with the linear no-threshold model for radiation risk and the ALARA principle, suggest that general radiography should be carried out using a minimum of 4.0 mm total Al equivalent filtration.  相似文献   

10.
Digital tomosynthesis is an imaging technique to produce a tomographic image from a series of angular digital images in a manner similar to conventional focal plane tomography. Unlike film focal plane tomography, the acquisition of the data in a C-arm geometry causes the image receptor to be positioned at various angles to the reconstruction tomogram. The digital nature of the data allows for input images to be combined into the desired plane with the flexibility of generating tomograms of many separate planes from a single set of input data. Angular datasets were obtained of a low contrast detectability (LCD) phantom and cadaver breast utilizing a Lorad stereotactic biopsy unit with a coupled source and digital detector in a C-arm configuration. Datasets of 9 and 41 low-dose projections were collected over a 30 degrees angular range. Tomographic images were reconstructed using a Backprojection (BP) algorithm, an Iterative Subtraction (IS) algorithm that allows the partial subtraction of out-of-focus planes, and an Algebraic Reconstruction (AR) algorithm. These were compared with single view digital radiographs. The methods' effectiveness at enhancing visibility of an obscured LCD phantom was quantified in terms of the Signal to Noise Ratio (SNR), and Signal to Background Ratio (SBR), all normalized to the metric value for the single projection image. The methods' effectiveness at removing ghosting artifacts in a cadaver breast was quantified in terms of the Artifact Spread Function (ASF). The technology proved effective at partially removing out of focus structures and enhancing SNR and SBR. The normalized SNR was highest at 4.85 for the obscured LCD phantom, using nine projections and IS algorithm. The normalized SBR was highest at 23.2 for the obscured LCD phantom, using 41 projections and an AR algorithm. The highest normalized metric values occurred with the obscured phantom. This supports the assertion that the greatest value of tomosynthesis is in imaging fibroglandular breasts. The ASF performance was best with the AR technique and nine projections.  相似文献   

11.
Real-time medical imaging systems such as reflectance confocal microscopes and optical coherence microscopes are being tested in multiple-patient and multiple-center clinical trials. The modulation transfer function (MTF) of these systems at any given time influences the image information content and can affect the interpretation of the images. MTF is difficult to measure in real-time scanning systems when imaging at the Nyquist limit. We describe a measurement technique similar to the electronic imaging resolution standards ISO-12233 (electronic cameras) that can be applied to scanned spot imaging systems with asynchronous pixel clocks. This technique requires the acquisition of a single image of a reflective stripe object. An asynchronous pixel clock induces subpixel jitter in the edge location. The jitter is removed using a Fourier method, and an oversampled edge response function is calculated using algorithms developed in MATLAB. This technique provides fast, simple to use, and repeatable full-width at half maximum lateral resolution and MTF measurements based on only one test image. We present the results for reflectance confocal microscopes operating at 0.9 numerical aperture.  相似文献   

12.
This work is intended to investigate the spatial resolution properties in cone beam CT by estimating the point spread functions (PSFs) in the reconstructed 3D images through simulation. The point objects were modeled as 3D delta functions. Their projections onto the detector plane were analytically derived and blurred with 2D PSFs estimated and used to represent the detector and focal spot blurring effects. The 2D PSF for detector blurring was computed from the line spread function measured for a typical a-Si/CsI flat panel detector used for general radiography. The focal spot blurring effect was simulated for an x-ray source with a nominal focal spot size of 0.6 mm and 1.33 x magnification at the rotating center. Projection images were computed and sampled with an interval significantly smaller than the detector pixel size to avoid aliasing. Images were reconstructed using the Feldkamp algorithm with the five different filter functions. Reconstructed PSFs were plotted and analyzed to investigate the effects of detector blurring alone, focal spot blurring alone, or a combination of the two on the PSFs and their variations with the radial distance and z-level. Effects of binning and reconstruction filters were also studied. Our results show that the PSFs due to detector blurring are largely symmetric and vary little with the locations of the point objects. With focal spot blurring only or added to detector blurring, the PSFs along the rotation axis were largely symmetric but became increasingly asymmetric as the point objects were moved away from the rotation axis. The PSFs were found to become wider in the axial (anode to cathode) direction as the objects were moved toward the cathode side. The 3D PSFs may be approximated by an ellipsoid with three different axial lengths. They were found to point upright along the rotating axis but tilt toward the rotating axis as the point object was moved away from the axis.  相似文献   

13.
Knowledge of the statistical properties of reconstructed single photon emission computed tomography (SPECT) and positron emission tomography (PET) images would be helpful for optimizing acquisition and image processing protocols. We describe a non-parametric bootstrap approach to accurately estimate the statistical properties of SPECT or PET images whatever the noise properties in the projections and the reconstruction algorithm. Using analytical simulations and real PET data, this method is shown to accurately predict the statistical properties, including the variance and covariance, of reconstructed pixel values for both linear (filtered backprojection) and non-linear (ordered subset expectation maximization) reconstruction algorithms.  相似文献   

14.
A test-bed system has been developed for imaging phantoms with tomosynthesis and volumetric computed tomography. This system incorporates an amorphous silicon flat panel detector on a movable gantry and a computer-controlled rotational positioning stage. In this paper, an analysis of the sensitivity of reconstructed images to geometrical misalignment is presented. Application of this method to circular digital tomosynthesis is examined, with spatial resolution in the focal plane as the criterion for evaluating the effect of misalignment. A software-based method is presented for correcting data for imperfect system alignment prior to image reconstruction. Experimental results yield reconstructed images with spatial resolution approaching the theoretical limit based on detector pixel size and accounting for data interpolation.  相似文献   

15.
We developed a novel digital tomosynthesis (DTS) reconstruction method using a deformation field map to optimally estimate volumetric information in DTS images. The deformation field map is solved by using prior information, a deformation model, and new projection data. Patients' previous cone-beam CT (CBCT) or planning CT data are used as the prior information, and the new patient volume to be reconstructed is considered as a deformation of the prior patient volume. The deformation field is solved by minimizing bending energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. The new patient DTS volume is then obtained by deforming the prior patient CBCT or CT volume according to the solution to the deformation field. This method is novel because it is the first method to combine deformable registration with limited angle image reconstruction. The method was tested in 2D cases using simulated projections of a Shepp-Logan phantom, liver, and head-and-neck patient data. The accuracy of the reconstruction was evaluated by comparing both organ volume and pixel value differences between DTS and CBCT images. In the Shepp-Logan phantom study, the reconstructed pixel signal-to-noise ratio (PSNR) for the 60 degrees DTS image reached 34.3 dB. In the liver patient study, the relative error of the liver volume reconstructed using 60 degrees projections was 3.4%. The reconstructed PSNR for the 60 degrees DTS image reached 23.5 dB. In the head-and-neck patient study, the new method using 60 degrees projections was able to reconstruct the 8.1 degrees rotation of the bony structure with 0.0 degrees error. The reconstructed PSNR for the 60 degrees DTS image reached 24.2 dB. In summary, the new reconstruction method can optimally estimate the volumetric information in DTS images using 60 degrees projections. Preliminary validation of the algorithm showed that it is both technically and clinically feasible for image guidance in radiation therapy.  相似文献   

16.

PURPOSE  

Tomosynthesis is a 3-dimensional mammography technique that generates thin slices separated one to the other by typically 1 mm from source data sets. The relatively high image noise in these thin slices raises the value of 1-cm thick slices computed from the set of reconstructed slices for image interpretation. In an initial evaluation, we investigated the potential of different algorithms for generating thick slices from tomosynthesis source data (maximum intensity projection—MIP; average algorithm—AV, and image generation by means of a new algorithm, so-called softMip). The three postprocessing techniques were evaluated using a homogeneous phantom with one textured slab with a total thickness of about 5 cm in which two 0.5-cm-thick slabs contained objects to simulate microcalcifications, spiculated masses, and round masses. The phantom was examined by tomosynthesis (GE Healthcare). Microcalcifications were simulated by inclusion of calcium particles of four different sizes. The slabs containing the inclusions were examined in two different configurations: adjacent to each other and close to the detector and with the two slabs separated by two 1-cm thick breast equivalent material slabs. The reconstructed tomosynthesis slices were postprocessed using MIP, AV, and softMip to generate 1-cm thick slices with a lower noise level. The three postprocessing algorithms were assessed by calculating the resulting contrast versus background for the simulated microcalcifications and contrast-to-noise ratios (CNR) for the other objects. The CNRs of the simulated round and spiculated masses were most favorable for the thick slices generated with the average algorithm, followed by softMip and MIP. Contrast of the simulated microcalcifications was best for MIP, followed by softMip and average projections. Our results suggest that the additional generation of thick slices may improve the visualization of objects in tomosynthesis. This improvement differs from the different algorithms for microcalcifications, speculated objects, and round masses. SoftMip is a new approach combining features of MIP and average showing image properties in between MIP and AV.  相似文献   

17.
X-ray fluoroscopy places stringent design requirements on new flat-panel (FP) detectors, requiring both low-noise electronics and high data transfer rates. Pixel-binning, wherein data from more that one detector pixel are collected simultaneously, not only lowers the data transfer rate but also increases x-ray counts and pixel signal-to-noise ratio (SNR). In this study, we quantitatively assessed image quality of image sequences from four acquisition methods; no-binning and three types of binning; in synthetic images using a clinically relevant task of detecting an extended guidewire in a four-alternative forced-choice paradigm. Binning methods were conventional data-line (D) and gate-line (G) binning, and a novel method in which alternate frames in an image sequence used D and G binning. Two detector orientations placed the data lines either parallel or perpendicular to the guide wire. At a low exposure of 0.6 microR (1.548 x 10(-10) C/kg) per frame, irrespective of detector orientation, D binning with its reduced electronic noise was significantly (p<0.1) better than the other acquisition methods. On average, alternate binning performed better than G binning. At a higher exposure of 4.0 microR (10.32 x 10(-10) C/kg) per frame, with data lines parallel to the guidewire, detection with D binning was significantly (p<0.1) better than G binning. However, with data lines perpendicular to the guidewire, G binning was significantly (p<0.1) better than D binning because the partial area effect was reduced. Alternate binning was the best binning method when results were averaged over both orientations, and it was as good as the best binning method at either orientation. In addition, at low and high exposures, alternate binning gave a temporally fused image with a smooth guidewire, an important image quality feature not assessed in a detection experiment. While at high exposure, detection with no binning was as good, or better, than the best binning method, it might be impractical at fluoroscopy imaging rates. A computational observer model based on signal detection theory successfully fit data and was used to predict effects of similar acquisition methods. Results from this study suggest the use of exposure-dependent detector binning in fluoroscopy that switches between D binning and alternate binning at low and high exposures, respectively.  相似文献   

18.
Digital tomosynthesis mammography (DTM) is a promising new modality for breast cancer detection. In DTM, projection-view images are acquired at a limited number of angles over a limited angular range and the imaged volume is reconstructed from the two-dimensional projections, thus providing three-dimensional structural information of the breast tissue. In this work, we investigated three representative reconstruction methods for this limited-angle cone-beam tomographic problem, including the backprojection (BP) method, the simultaneous algebraic reconstruction technique (SART) and the maximum likelihood method with the convex algorithm (ML-convex). The SART and ML-convex methods were both initialized with BP results to achieve efficient reconstruction. A second generation GE prototype tomosynthesis mammography system with a stationary digital detector was used for image acquisition. Projection-view images were acquired from 21 angles in 3 degrees increments over a +/- 30 degrees angular range. We used an American College of Radiology phantom and designed three additional phantoms to evaluate the image quality and reconstruction artifacts. In addition to visual comparison of the reconstructed images of different phantom sets, we employed the contrast-to-noise ratio (CNR), a line profile of features, an artifact spread function (ASF), a relative noise power spectrum (NPS), and a line object spread function (LOSF) to quantitatively evaluate the reconstruction results. It was found that for the phantoms with homogeneous background, the BP method resulted in less noisy tomosynthesized images and higher CNR values for masses than the SART and ML-convex methods. However, the two iterative methods provided greater contrast enhancement for both masses and calcification, sharper LOSF, and reduced interplane blurring and artifacts with better ASF behaviors for masses. For a contrast-detail phantom with heterogeneous tissue-mimicking background, the BP method had strong blurring artifacts along the x-ray source motion direction that obscured the contrast-detail objects, while the other two methods can remove the superimposed breast structures and significantly improve object conspicuity. With a properly selected relaxation parameter, the SART method with one iteration can provide tomosynthesized images comparable to those obtained from the ML-convex method with seven iterations, when BP results were used as initialization for both methods.  相似文献   

19.
Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523?776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual-energy breast tomosynthesis can be performed optimally at 49 kVp with alternative copper and tin filters, with reconstruction following weighted subtraction. The optimum technique provides best visibility of iodine against structured breast background in dual-energy contrast-enhanced breast tomosynthesis.  相似文献   

20.
The purpose of this work was to develop methods to measure the presampled two-dimensional modulation transfer function (2D MTF) of digital imaging systems. A custom x-ray "point source" phantom was created by machining 256 holes with diameter 0.107 mm through a 0.5-mm-thick copper plate. The phantom was imaged several times, resulting in many images of individual x-ray "spots." The center of each spot (with respect to the pixel matrix) was determined to subpixel accuracy by fitting each spot to a 2D Gaussian function. The subpixel spot center locations were used to create a 5 x oversampled system point spread function (PSF), which characterizes the optical and electrical properties of the system and is independent of the pixel sampling of the original image. The modulus of the Fourier transform of the PSF was calculated. Next, the Fourier function was normalized to the zero frequency value. Finally, the Fourier transform function was divided by the first-order Bessel function that defined the frequency content of the holes, resulting in the presampled 2D MTF. The presampled 2D MTF of a 0.1 mm pixel pitch computed radiography system and 0.2 mm pixel pitch flat panel digital imaging system that utilized a cesium iodide scintillator was measured. Comparison of the axial components of the 2D MTF to one-dimensional MTF measurements acquired using an edge device method demonstrated that the two methods produced consistent results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号