首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
CpG dinucleotides are unevenly distributed in the vertebrate genome. Bulk DNA is depleted of CpGs and most of the cytosines in the dinucleotide in this fraction are methylated. On the other hand, CpG islands, which are often associated with genes, are unmethylated at testable sites in all normal tissues with the exception of genes on the inactive X chromosome. We used Hpa II/Msp I analysis and ligation-mediated polymerase chain reaction to examine the methylation of the MyoD1 CpG island in adult mouse tissues, early cultures of mouse embryo cells, and immortal fibroblastic cell lines. The island was almost devoid of methylation at CCGG sites in adult mouse tissues and in low-passage mouse embryo fibroblasts. In marked contrast, the island was methylated in 10T 1/2 cells and in six other immortal cell lines showing that methylation of this CpG island had occurred during escape from senescence. The island became even more methylated in chemically transformed derivatives of 10T 1/2 cells. Thus, CpG islands not methylated in normal tissues may become modified to an abnormally high degree during immortalization and transformation.  相似文献   

6.
7.
Predicting aberrant CpG island methylation   总被引:15,自引:0,他引:15       下载免费PDF全文
Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context.  相似文献   

8.
9.
10.
11.
Genomic sequencing was used to study the in vivo methylation pattern of two CpG sites in the promoter region of the avian vitellogenin gene. The CpG at position +10 was fully methylated in DNA isolated from tissues that do not express the gene but was unmethylated in the liver of mature hens and estradiol-treated roosters. In the latter tissue, this site became demethylated and DNase I hypersensitive after estradiol treatment. A second CpG (position -52) was unmethylated in all tissues examined. In vivo genomic footprinting with dimethyl sulfate revealed different patterns of DNA protection in silent and expressed genes. In rooster liver cells, at least 10 base pairs of DNA, including the methylated CpG, were protected by protein(s). Gel-shift assays indicated that a protein factor, present in rooster liver nuclear extract, bound at this site only when it was methylated. In hen liver cells, the same unmethylated CpG lies within a protected region of approximately equal to 20 base pairs. In vitro DNase I protection and gel-shift assays indicate that this sequence is bound by a protein, which binds both double- and single-stranded DNA. For the latter substrate, this factor was shown to bind solely the noncoding (i.e., mRNA-like) strand.  相似文献   

12.
13.
Epigenetic inheritance, the transmission of gene expression states from parent to daughter cells, often involves methylation of DNA. In eukaryotes, cytosine methylation is a frequent component of epigenetic mechanisms. Failure to transmit faithfully a methylated or an unmethylated state of cytosine can lead to altered phenotypes in plants and animals. A central unresolved question in epigenetics concerns the mechanisms by which a locus maintains, or changes, its state of cytosine methylation. We developed "hairpin-bisulfite PCR" to analyze these mechanisms. This method reveals the extent of methylation symmetry between the complementary strands of individual DNA molecules. Using hairpin-bisulfite PCR, we determined the fidelity of methylation transmission in the CpG island of the FMR1 gene in human lymphocytes. For the hypermethylated CpG island of this gene, characteristic of inactive-X alleles, we estimate a maintenance methylation efficiency of approximately 0.96 per site per cell division. For de novo methylation efficiency (E(d)), remarkably different estimates were obtained for the hypermethylated CpG island (E(d) = 0.17), compared with the hypomethylated island on the active-X chromosome (E(d) < 0.01). These results clarify the mechanisms by which the alternative hypomethylated and hypermethylated states of CpG islands are stably maintained through many cell divisions. We also analyzed a region of human L1 transposable elements. These L1 data provide accurate methylation patterns for the complementary strand of each repeat sequence analyzed. Hairpin-bisulfite PCR will be a powerful tool in studying other processes for which genetic or epigenetic information differs on the two complementary strands of DNA.  相似文献   

14.
15.
Abstract: The in situ hybridization technique was used for the localization on human chromosomes of single-copy and repeated sequences and, in addition, for the characterization of altered human chromosomes. Two anonymous clones, single or low-copy, obtained from a human X chromosome library were localized on the distal part of the long arm and in the paracentromeric region of X chromosome, respectively. A genomic fragment of the single-copy thyroglobulin (TG) gene was used to confirm the localization on the distal part of the long arm of chromosome 8. The localization and distribution on human chromosomes of the glyceraldehyde-3-phosphate dehydrogenase (GAPD) multigene family obtained by in situ hybridization and by somatic cell hybrids were compared. A phosphoglycerate kinase (PGK) c-DNA clone, which detects genic and pseudogenic sequences on the X chromosome, was used for the characterization of three small ring markers present in unrelated female patients.  相似文献   

16.
The mechanisms that regulate hepatitis B virus (HBV) replication within the liver are poorly understood. Given that methylation of CpG islands regulates gene expression in human tissues, we sought to identify CpG islands in HBV-DNA and to determine if they are methylated in human tissues. In silico analysis demonstrated three CpG islands in HBV genotype A sequences, two of which were of particular interest because of their proximity to the HBV surface gene start codon (island 1) and to the enhancer 1/X gene promoter region (island 2). Human sera with intact virions that were largely unmethylated were used to transfect HepG2 cells and HBV-DNA became partially methylated at both islands 1 and 2 by day 6 following exposure of HepG2 to virus. Examination of three additional human sera and 10 liver tissues showed no methylation in sera but tissues showed methylation of island 1 in six of 10 cases and of island 2 in five of 10 cases. The cell line Hep3B, with integrated HBV, showed complete methylation of island 1 but no methylation of island 2. In conclusion, HBV-DNA can be methylated in human tissues and methylation may play an important role in regulation of HBV gene expression.  相似文献   

17.
18.
We report here a detailed study of developmental changes in the methylation status of specific sites in a single-copy tissue-specific gene, from the germ cell through the early embryo to adult tissues. Two sites at the 5' end of the mouse apolipoprotein AI gene were unmethylated in the ovulated unfertilized oocytes and methylated in the sperm. In contrast, a third site, located upstream of the gene, was methylated and a CpG island within the gene was unmethylated in both oocyte and sperm. The methylated sites, regardless of maternal or paternal origin, underwent demethylation in the early embryo (8-16 cells) and stayed unmethylated through the late blastocyst stage. During gastrulation, non-CpG island sites underwent methylation, followed by gradual demethylation at specific sites in tissues parallel to expression of the gene (liver and intestine). The formation of the mature tissue-specific methylation pattern of the apolipoprotein AI gene, therefore, involves the following three major events: (i) erasure of the germ-cell methylation pattern (at the 8- to 16-cell stage), (ii) formation of a new methylation pattern by de novo methylation of non-CpG island sites (during gastrulation), and (iii) tissue-specific demethylation associated with the onset of expression of the gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号