首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ventral pallidum (VP) is a key component of the cortico-basal ganglia circuits that process motivational and emotional information, and also a crucial site for reward. Although the main targets of the two VP compartments, medial (VPm) and lateral (VPl) have already been established, the collateralization patterns of individual axons have not previously been investigated. Here we have fully traced eighty-four axons from VPm, VPl and the rostral extension of VP into the olfactory tubercle (VPr), using the anterograde tracer biotinylated dextran amine in the rat. Thirty to fifty percent of axons originating from VPm and VPr collateralized in the mediodorsal thalamic nucleus and lateral habenula, indicating a close association between the ventral basal ganglia-thalamo-cortical loop and the reward network at the single axon level. Additional collateralization of these axons in diverse components of the extended amygdala and corticopetal system supports a multisystem integration that may take place at the basal forebrain. Remarkably, we did not find evidence for a sharp segregation in the targets of axons arising from the two VP compartments, as VPl axons frequently collateralized in the caudal lateral hypothalamus and ventral tegmental area, the well-known targets of VPm, while VPm axons, in turn, also collateralized in typical VPl targets such as the subthalamic nucleus, substantia nigra pars compacta and reticulata, and retrorubral field. Nevertheless, VPl and VPm displayed collateralization patterns that paralleled those of dorsal pallidal components, confirming at the single axon level the parallel organization of functionally different basal ganglia loops.  相似文献   

2.
 We applied the perforated-patch-clamp technique to cultured cortical neurons of the rat to characterize the ionic basis of membrane potential changes and membrane currents induced by γ-aminobutyric acid (GABA). Gramicidin was used as the membrane-perforating agent, to allow the recording of whole-cell currents without impairing the intracellular Cl concentration ([Cl]i). In current-clamp experiments in the presence of 26 mM HCO3 the application of 50 μM GABA evoked changes in the membrane potential of neurons including depolarizations (19%), hyperpolarizations (38%) and biphasic changes in membrane potential (31%), characterized by a transient hyperpolarization followed by a sustained depolarization. Accordingly, GABA (50–200 μM) induced inward, outward or biphasic current responses under voltage-clamp. Inward and biphasic currents as well as depolarizations and biphasic membrane potential responses, respectively, occurred more frequently in the presence of 26 mM HCO3 . The second phase of the biphasic membrane potential or current responses was markedly reduced when the preparation was bathed in a HCO3 -free saline, indicating a contribution from HCO3 . The reversal potential of the GABA-induced currents (E GABA) determined with the gramicidin-perforated-patch mode and in the nominal absence of HCO3 was –73 mV, while it was shifted to –59 mV in the presence of HCO3 . Combined patch-clamp and microfluorimetric measurements using the Cl-sensitive dye 6-methoxy-1-(3-sulphonatopropyl)quinolinium (SPQ) showed that GABA evoked an increase of [Cl]i in 54% (n=13) of the neurons. We conclude that this increase of [Cl]i in combination with the efflux of HCO3 results in a shift of E GABA above the resting membrane potential that gives rise to GABA-mediated depolarizations. Received: 2 June 1998 / Received after revision: 4 August 1998 / Accepted: 10 September 1998  相似文献   

3.
Multiple system atrophy (MSA) is a fatal oligodendrogliopathy characterized by prominent α-synuclein inclusions resulting in a neuronal multisystem degeneration. Until recently MSA was widely conceived as a nongenetic disorder. However, during the last years a few postmortem verified Mendelian pedigrees have been reported consistent with monogenic disease in rare cases of MSA. Further, within the last 2 decades several genes have been associated with an increased risk of MSA, first and foremost the SNCA gene coding for α-synuclein. Moreover, genes involved in oxidative stress, mitochondrial dysfunction, inflammatory processes, as well as parkinsonism- and ataxia-related genes have been implicated as susceptibility factors. In this review, we discuss the emerging evidence in favor of genetic players in MSA.  相似文献   

4.
Selective vulnerability of the hippocampus in brain ischemia   总被引:17,自引:0,他引:17  
  相似文献   

5.
 The basal ganglia are currently viewed as components of segregated corticosubcortical reentrant circuits. One of these circuits, the ”motor” circuit, is critically involved in the development of parkinsonian motor signs. Current pathophysiologic models postulate that parkinsonism is associated with increased activity in the basal ganglia output nuclei. The neuronal activity in the motor portion of one of these output nuclei, the internal segment of the globus pallidus (GPi), has been characterized in detail in intact and parkinsonian animals, but the neuronal activity in the second major basal ganglia output nucleus, the substantia nigra pars reticulata (SNr), has received far less attention. This study in primates represents a comparison of the effects of parkinsonism, induced by injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on the neuronal discharge in the GPi and SNr. These electrophysiologic recording experiments were carried out in three African green and two rhesus monkeys. One hundred and twenty-four neurons were recorded in the GPi before treatment with MPTP, and 93 neurons thereafter. In the SNr, 55 cells were recorded before treatment with MPTP, and 41 cells thereafter. MPTP induced a non-significant increase in the average discharge rate and a significant decrease in the median interspike interval length (ISI) in the GPi (by 13%), whereas no changes were detected in either parameter in the SNr. The average ISI distributions were markedly asymmetric in both structures, and could be modeled by a logarithmic normal distribution. With the MPTP treatment, the mode of the ISI distribution fell by 24% in the GPi (P≤0.01), whereas it did not change significantly in the SNr. An algorithm that detects burst discharges in the raw ISI data (based on the method by Legendy and Salcman) detected a significant increase in the proportion of action potentials that participated in bursts of discharge in both structures (increase by 257% in the GPi, and by 67% in the SNr). Power spectral and autocorrelation analysis revealed that treatment with MPTP increased the proportion of cells with oscillatory burst patterns at 3–8 Hz in both structures (from 0.8% to 27% of all neurons in the GPi, and from none to 10% in the SNr). The results show that neuronal discharge in the SNr is affected in parkinsonism, but that the changes in the SNr are less pronounced then those seen in the GPi. Received: 3 March 1998 / Accepted: 15 October 1998  相似文献   

6.
How the motor-related cortical areas modulate the activity of the output nuclei of the basal ganglia is an important issue for understanding the mechanisms of motor control by the basal ganglia. In the present study, by using awake monkeys, the polysynaptic effects of electrical stimulation in the forelimb regions of the primary motor and primary somatosensory cortices on the activity of globus pallidus (GP) neurons, especially mediated by the subthalamic nucleus (STN), have been characterized. Cortical stimulation induced an early, short-latency excitation followed by an inhibition and a late excitation in neurons of both the external and internal segments of the GP. It also induced an early, short-latency excitation followed by a late excitation and an inhibition in STN neurons. The early excitation in STN neurons preceded that in GP neurons. Blockade of STN neuronal activity by muscimol (GABA(A) receptor agonist) injection resulted in abolishment of both the early and late excitations evoked in GP neurons by cortical stimulation. At the same time, the spontaneous discharge rate of GP neurons decreased, pauses between the groups of spikes of GP neurons became prominent, and the firing pattern became regular. Injection of (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) [N-methyl-D-aspartate (NMDA) receptor antagonist], but not 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium [NBQX (non-NMDA receptor antagonist)], into the STN attenuated the early and late excitations in GP neurons, suggesting that cortico-subthalamic transmission is mediated mainly by NMDA receptors. Interference with the pallido-subthalamic transmission by bicuculline (GABA(A) receptor antagonist) injection into the STN made the inhibition distinct without affecting the early excitation. The present results indicate that the cortico-subthalamo-pallidal pathway conveys powerful excitatory effects from the motor-related cortical areas to the GP with shorter conduction time than the effects conveyed through the striatum.  相似文献   

7.
Collateral projections of single small pallidal neurons to the striatum and paraventricular nucleus of the thalamus were observed in the rat using a fluorescent retrograde double labeling technique. This population of pallidal cells was almost separate from the more predominant pallidal cell group projecting to the subthalamic nucleus. We propose that the globus pallidus proper might have the same two functionally distinct populations (limbic and motor), that have been well documented in the striatum and entopeduncular nucleus.  相似文献   

8.
Summary The cortical projection areas of thalamic neurons with basal ganglia and/or cerebellar inputs were studied electrophysiologically in unanesthetized monkeys. Thalamic neurons which receive inhibition from the pallidum were found to project to the motor cortex (area 4) as well as to premotor cortex. The neurons with pallidal input and motor cortical projection were located mainly in VLo. This result indicates that the basal ganglia innervate the motor cortex through the thalamus. Thus the basal ganglia can modify the cortical output for controlling movements directly through this pathway as compared with its influence through the prefrontal and premotor cortices.  相似文献   

9.
10.
Chronic manganese intoxication elicits in the rat an increase in slow wave sleep and a decrease in paradoxical sleep by modification of the length of the phases. The similarities between this observation and the sleep disturbances observed in man in Parkinson's disease and chronic manganese poisoning are discussed.  相似文献   

11.
Substance P is an important neurotransmitter or neuromodulator in central nervous system. Morphological studies have revealed the existence of substance P and its high affinity receptor, neurokinin-1 receptor, in globus pallidus. The expression of neurokinin-1 receptor in external globus pallidus has been reported to be decreased or unchanged in parkinsonian patients. To further investigate the effects of pallidal neurokinin-1 receptor in Parkinson's disease, an in vivo extracellular recording in 6-hydroxydopamine parkinsonian rats was performed. Micro-pressure ejection of selective neurokinin-1 receptor agonist, [Sar9,Met(O2)11] substance P (0.1mM), increased the spontaneous firing rate of pallidal neurons by 9.1% on the lesioned side, which was significantly weaker than that on the unlesioned side (20.7%), and that in normal rats (30.0%). The selective neurokinin-1 receptor antagonist, SR140333B, prevented the excitatory effects induced by [Sar9,Met(O2)11] substance P. Based on the action of substance P in globus pallidus of parkinsonian rats we hypothesize that the activity of neurokinin-1 receptors in globus pallidus may be decreased under parkinsonian state. This finding may provide a rationale for further investigations into the potential of pallidal substance P system in the treatment of Parkinson's disease.  相似文献   

12.
Summary In rat and guinea pig, cochlear efferents to the two ears were labeled simultaneously with different fluorescent tracers. It was found that in both species only few (1–3%) olivo-cochlear neurons were double-labeled and project to both cochleae. In most periolivary regions large olivocochlear neurons (OCN) projecting to the ipsilateral and contralateral side are intermingled and form a continuous cell column between the facial nucleus and lateral lemniscus. In a second series of experiments in rat, cochlear efferents and ascending olivo-collicular neurons were labeled. Olivo-cochlear and olivo-collicular neurons are intermingled in the lateral superior olive (LSO) and in the ventromedial periolivary region. No double-labeled neurons were found that project to the cochlea and the inferior colliculus.  相似文献   

13.
The total number of neurons in the superior cervical ganglion (SCG) of adult capybaras is known from a previous study, where a marked occurrence of binucleate neurons (13%) was also noted. Here, distribution, number and fate of binucleate neurons were examined in younger, developing capybaras, aged 3 months. The mean neuronal cross-sectional area was 575.2 μm2 for mononucleate neurons and 806.8 μm2 in binucleate neurons. Frequency of binucleate neurons was about 36%. The mean ganglion volume was about 190 mm3 in young capybaras and the mean neuronal density was about 9,517 neurons/mm3. The total number of neurons per ganglion was about 1.81 mill. Neuronal cell bodies constituted 22.5% of the ganglion volume and the average neuronal volume was 23,600 μm3. By comparing the present data with those previously published the conclusion is drawn that the maturation period was characterized by the following points: a 26% remarkable decrease in neuronal density which was significant (P < 0.05) and a significant 16% (P < 0.05) decrease in the total number of SCG neurons accompanied by a 23% decrease in the total number of SCG binucleate neurons.  相似文献   

14.
1. The activity of globus pallidus (GP) neurons (n = 1,117) was studied in two monkeys to reexamine the relation of neuronal activity to movement type (slow vs. fast) while they performed both a visually guided step and ramp wrist tracking task. To select neurons specifically related to wrist movements, we employed both a somatosensory examination of individual body parts and a statistical analysis of the strength of temporal coupling of neuronal discharges to active wrist movement. 2. Neuronal responses to somatosensory stimulation were studied in 1,000 high-frequency GP neurons, of which 686 exhibited clear responses to manipulation of body parts. Of the latter, 336 responded to passive manipulation of forelimb joints and 58 selectively to passive flexion or extension of the wrist. 3. In the external segment of GP (GPe), most neurons responding to passive wrist movement were found to be clustered in four to five adjacent, closely positioned (separated by 200 microns) tracks in single coronal planes. The clusters were irregular in shape with a maximal width of 800-1,000 microns. Separate clusters of neurons responsive to passive wrist movement were identified in planes 3 mm apart in one monkey and in planes 500 microns apart in the other. Multiple clusters of neurons were also found for neurons responsive to joints other than the wrist. These findings suggest a more discrete and complex representation of individual joints in the primate GP than previously conceived. 4. During the performance of the wrist flexion and extension task, 92 neurons showed clear and consistent changes in activity. For these neurons we measured, with a statistical method on a trial-by-trial basis, the strength of temporal coupling between the onset of active wrist movement and the onset of change in neuronal discharge rate. Fifteen neurons showed changes in activity time-locked to the onset of active wrist movement. 5. Twelve pallidal neurons were classified as "wrist-related" based on their movement-locked changes in discharge during task performance and their clear responses to passive wrist joint rotation on examination. All of these neurons exhibited statistically significant modulation of their discharge rate during both fast (peak velocity 97-205 degrees/s) and slow (peak velocity 20-62 degrees/s) wrist movements in the task. The amplitudes of modulation were larger during fast wrist movement than slow movement. These results suggest that the basal ganglia motor circuit plays a similar, rather than an exclusive, role in the control of slow and fast limb movements.  相似文献   

15.
Mink advanced the hypothesis in 1996 that the role of the basal ganglia (BG) is primarily one of focused selection; the encouragement of motor mechanisms inducing a desired movement and the inhibition of competing mechanisms. This would imply, in normal subjects, a ratio of inhibited-to-activated (I/A) movement-related globus pallidus pars internalis (GPi) neurons <1 and a drastic decrease of this ratio in the parkinsonian state. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication should therefore decrease the specificity of the response of this neuronal population. To test this working hypothesis we studied the activity of GPi neurons in response to passive limb movement in the normal and the parkinsonian monkey. Extracellular unit recordings monitored any correlation between passive limb movements and eventual modifications of the neuronal activity of the GPi in two calm, awake, and drug naive monkeys (Macaca fascicularis) before and after MPTP intoxication. In the normal animal, arm- and leg-related neurons were located in clusters in the medial part of the GPi. The I/A ratio was 0.22. Most GPi cells were linked to a single joint. In the MPTP-treated monkey, the number of movement-related neurons increased, the I/A ratio dropped significantly to 0.03, and most responding cells were linked to several joints. These data, which cannot be explained by the classic "box" model, endorse Mink's hypothesis.  相似文献   

16.
The superior (cranial) cervical ganglion was investigated by light microscopy in adult rats, capybaras (Hydrochaeris hydrochaeris) and horses. The ganglia were vascularly perfused, embedded in resin and cut into semi-thin sections. An unbiased stereological procedure (disector method) was used to estimate ganglion neuron size, total number of ganglion neurons, neuronal density. The volume of the ganglion was 0.5 mm3 in rats, 226 mm3 in capybaras and 412 mm3 in horses. The total number of neurons per ganglion was 18,800, 1,520,000 and 3,390,000 and the number of neurons per cubic millimetre was 36,700, 7,000 and 8,250 in rats, capybaras and horses, respectively. The average neuronal size (area of the largest sectional profile of a neuron) was 358, 982 and 800 µm2, and the percentage of volume occupied by neurons was 33, 21 and 17% in rats, capybaras and horses, respectively. When comparing the three species (average body weight: 200 g, 40 kg and 200 kg), most of the neuronal quantitative parameters change in line with the variation of body weight. However, the average neuronal size in the capybara deviates from this pattern in being larger than that of in the horse. The rat presented great interindividual variability in all the neuronal parameters. From the data in the literature and our new findings in the capybara and horse, we conclude that some correlations exist between average size of neurons and body size and between total number of neurons and body size. However, these correlations are only approximate and are based on averaged parameters for large populations of neurons: they are less likely to be valid if one considers a single quantitative parameter. Several quantitative features of the nervous tissue have to be taken into account together, rather than individually, when evolutionary trends related to size are considered.  相似文献   

17.
The evolution of cellular damage over time and the selective vulnerability of different neuronal subtypes was characterized in the striatum following 30-minute middle cerebral artery occlusion and reperfusion in the mouse. Using autoradiography we found an increase in the density of [3H]PK11195 binding sites--likely reflecting microglial activation--in the lesion border at 3 days and in the whole striatum from 10 days to 6 weeks. This was accompanied by a distinct loss of [3H]flumazenil and [3H]CGP39653 binding sites from 10 days up to 6 weeks reflecting neuronal loss. Brain ischemia resulted in a substantial loss of medium spiny projection neurons as seen at three days by Nissl staining, TUNEL and immunocytochemistry using antibodies against microtubule-associated protein (MAP2), NeuN, mu-opioid receptors, substance P, L-enkephalin, neurokinin B, choline acetyltransferase, parvalbumin, calretinin and somatostatin. Both patch and matrix compartments were involved in ischemic damage. In contrast, the numbers of cholinergic, GABAergic, and somatostatin-containing interneurons in the ischemic striatum were not different from those in the contralateral hemisphere at 3 and 14 days. A low density of glutamate receptors, the ability to sequester calcium by calcium-binding proteins and other hitherto unidentified factors may explain this relative resistance of interneurons to acute ischemia.  相似文献   

18.
Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn-/-;SMN2 and Smn-/-;SMN2;Delta7 mouse models of SMA. We show that neuromuscular junctions in the transversus abdominis (TVA), levator auris longus (LAL) and lumbrical muscles were disrupted in both mouse models. Pre-synaptic inputs were lost and abnormal accumulations of neurofilament were present, even in early/mid-symptomatic animals in the most severely affected muscle groups. Neuromuscular pathology was more extensive in the postural TVA muscle compared with the fast-twitch LAL and lumbrical muscles. Pre-synaptic pathology in Smn-/-;SMN2;Delta7 mice was reduced compared with Smn-/-;SMN2 mice at late-symptomatic time-points, although post-synaptic pathology was equally severe. We demonstrate that shrinkage of motor endplates does not correlate with loss of motor nerve terminals, signifying that one can occur in the absence of the other. We also demonstrate selective vulnerability of a subpopulation of motor neurons in the caudal muscle band of the LAL. Paralysis with botulinum toxin resulted in less terminal sprouting and ectopic synapse formation in the caudal band compared with the rostral band, suggesting that motor units conforming to a Fast Synapsing (FaSyn) phenotype are likely to be more vulnerable than those with a Delayed Synapsing (DeSyn) phenotype.  相似文献   

19.
Current models of basal ganglia function suggest that some manifestations of Parkinson disease (PD) arise from abnormal activity and decreased selectivity of neurons in the subthalamic nucleus (STN) and globus pallidus internus (Gpi). Our goal was to examine the timing and direction selectivity of neuronal activity relative to visually guided movements in the STN and Gpi of patients with PD. Recordings were made from 152 neurons in the STN and 33 neurons in the Gpi of awake subjects undergoing surgery for PD. Corresponding EMG data were obtained for half the cells. We employed a structured behavioral task in which the subjects used a joystick to guide a cursor to one of four targets displayed on a monitor. Each direction was tested over multiple trials. Movement-related modulation of STN activity began on average 264±10 ms before movement initiation and 92±13 ms before initial EMG activity, while modulation of Gpi activity began 204±21 ms before overt movement initiation. In the STN, 40% of cells demonstrated perimovement activity, and of these 64% were directionally selective. In Gpi, 45% of cells showed perimovement activity of which 80% were selective. In both nuclei, directionally selective cells had significantly lower baseline firing rates than nonselective cells (41±5 vs 59±4 spikes/s in STN, and 50±9 vs 74±15 spikes/s in Gpi). These results suggest that STN activity occurs earlier than previously reported, and that higher neuronal firing rates maybe associated with decreased direction selectivity in PD patients.  相似文献   

20.
The response patterns of pallidal neurons to electrical stimulation of the median and tibial nerves were examined in awake monkeys. Around 30% of the recorded neurons responded to the stimulation of either the median or tibial nerve, while only 6% responded to the stimulation of both nerves. The vast majority of these pallidal neurons displayed monophasic excitation or monophasic inhibition. The latency of the excitation was shorter than that of the inhibition. In each pallidal segment, the neurons responding to the median nerve stimulation (representing the forelimb) tended to be located ventral to those responding to the tibial nerve stimulation (representing the hindlimb). The present results indicate that the somatotopical arrangement in the globus pallidus can be outlined based on the neuronal responses to peripheral nerve stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号