首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Begomoviruses (family Geminiviridae) cause severe damage to tomato crops worldwide. Among them, tomato leaf curl disease (ToLCD)-associated begomoviruses are a major concern for tomato production in Sudan. Here, we report the detection of unexpectedly large cotton leaf curl Gezira alphasatellite molecules (up to 1467 nt) associated with an isolate of a novel strain of tomato leaf curl Sudan virus (ToLCSDV) in tomato plants affected by ToLCD. A recombinant nature is suggested for this ToLCSDV isolate.  相似文献   

2.
Amaranthus, collectively known as amaranth, is an annual or short-lived perennial plant used as leafy vegetables, cereals and for ornamental purposes in many countries including India. During 2011, leaf samples of Amaranthus plants displaying leaf curling, leaf distortion, leaf crinkling and yellow leaf margins were collected from Banswara district, Rajasthan in India. Full-length clones of a monopartite begomovirus, a betasatellite and an alphasatellite were characterized. The complete nucleotide sequence of the isolated begomovirus features as a typical ‘Old World’ begomovirus with the highest nucleotide per cent identity with Chilli leaf curl virus and hence, considered as an isolate of Chilli leaf curl virus. The complete nucleotide sequences of betasatellite and alphasatellite possess maximum nucleotide identity with Tomato yellow leaf curl Thailand betasatellite and Chilli leaf curl alphasatellite, respectively. This is the first report of the association of chilli-infecting begomovirus and satellite molecules infecting a new host, Amaranthus, causing leaf curl disease.  相似文献   

3.
Singh MK  Singh K  Haq QM  Mandal B  Varma A 《Virus genes》2011,43(2):296-306
Leaf curl disease of tobacco (TbLCD) is endemic in India. A monopartite Begomovirus, a betasatellite and an alphasatellite were found associated with the disease in Pusa, Bihar. The DNA-A of the Begomovirus associated with TbLCD in Pusa, Bihar was found to comprise of 2707 nt with a typical Old World begomovirus-like genome organization. The full-length sequence of DNA-A [HQ180391] showed that the Pusa isolate is a newly described member of the genus Begomovirus, as it had <89% sequence homology with DNA-A of all the known begomoviruses. The isolate is tentatively named as Tobacco leaf curl Pusa virus [India:Pusa:2010]. The betasatellite (HQ180395) associated with TbLCD in Pusa was identified as a variant of Tomato leaf curl Bangladesh betasatellite [IN:Raj:03], with which it shared 90.4% sequence identity. The alphasatellite (HQ180392) associated with the disease had highest 87% nucleotide sequence identity with Tomato leaf curl alphasatellite. The Begomovirus, betasatellite, and alphasatellite associated with TbLCD in Pusa, Bihar, India were found to be recombinants of extant begomoviruses, betasatellites and alphasatellites spreading in the Indian sub-continent and South-East Asia.  相似文献   

4.
Cotton leaf curl virus disease   总被引:4,自引:0,他引:4  
Briddon RW  Markham PG 《Virus research》2000,71(1-2):151-159
Cotton is one of the most important crops of Pakistan, accounting for over 60% of foreign exchange earnings. The present epidemic of cotton leaf curl disease (CLCuD) originated in the Punjab region near the city of Multan and was first reported in 1985, although it was noted in this region as early as 1967. By the early 1990s, CLCuD had become the major limitation to cotton production in Pakistan and it has now spread into India and, more recently, south and west into other provinces of Pakistan. The very characteristic symptoms include leaf curling, darkened veins, vein swelling and enations that frequently develop into cup-shaped, leaf-like structures on the undersides of leaves. Identification of the vector of CLCuD as the whitefly Bemisia tabaci (Genn.) quickly led to the suggestion that the causative agent of the disease is a geminivirus. Researchers soon confirmed the presence of such a virus that is currently ascribed to the genus Begomovirus of the family Geminiviridae, However, in 1999, the aetiology of the disease was shown to be more complex than was originally assumed. Despite the identification of both a begomovirus and a so-called nanovirus-like component, the precise causal agent of CLCuD remains uncertain.  相似文献   

5.
To investigate the infectivity of Euphorbia leaf curl virus (EuLCV), an infectious clone was constructed and tested by agroinoculation and whitefly inoculation. EuLCV infected Nicotiana benthamiana, N. glutinosa, Solanum lycopersicum, Petunia hybrida efficiently upon agroinoculation and induced leaf curling, vein swelling and stunting in these plants but no symptoms in N. tabacum. Co-inoculation of EuLCV with a betasatellite DNA from an unrelated begomovirus enhanced symptoms in N. benthamiana, N. glutinosa, N. tabacum, S. lycopersicum and P. hybrida plants but had no effect on the accumulation of EuLCV DNA. Euphorbia pulcherrima plants were only infectable by insect transmission from agro-infected P. hybrida as a source. This is the first report about a monopartite begomovirus that has been reintroduced into a plant of the genus Euphorbia.  相似文献   

6.
Qian Y  Zhou X 《Virus research》2005,109(2):159-163
DNAbeta molecules are single-stranded satellite DNA associated with monopartite begomoviruses (family Geminiviridae). DNAbeta possesses a C1 gene on the complementary strand, which has a conserved position and size. To better understand the function of C1 gene in virus infection, a C1 deletion DNAbeta associated with a Tomato yellow leaf curl China virus (TYLCCNV) isolate was constructed. Co-agroinoculation with TYLCCNV showed the truncated DNAbeta was infectious in Nicotiana benthamiana and N. glutinosa plants but not in N. tabacum Samsun, N. tabacum and Lycopersicon esculentum plants. The wild-type TYLCCNV DNAbeta co-agroinoculated with TYLCCNV caused systemic infection in all the above hosts. Results of Southern blot analysis indicate that C1 gene is not required for TYLCCNV and DNAbeta replication. However, the presence of C1 gene in DNAbeta can increase both TYLCCNV and DNAbeta accumulation in infected plants. The truncated TYLCCNV DNAbeta was stable in N. benthamiana and N. glutinosa plants.  相似文献   

7.
Blawid R  Van DT  Maiss E 《Virus research》2008,136(1-2):107-117
The genomes of two tomato-infecting begomoviruses from Vietnam were cloned and sequenced. A new variant of Tomato leaf curl Vietnam virus (ToLCVV) consisting of a DNA-A component and associated with a DNAbeta molecule as well as an additional begomovirus tentatively named Tomato yellow leaf curl Vietnam virus (TYLCVV) consisting also of a DNA-A component were identified. To verify if monopartite viruses occurring in Vietnam and Thailand are able to transreplicate the DNA-B component of Tomato yellow leaf curl Thailand virus-[Asian Institute of Technology] (TYLCTHV-[AIT]) infectivity assays were performed via agroinoculation and mechanically. As result, the DNA-B component of TYLCTHV-[AIT] was transreplicated by different DNA-A components of viruses from Vietnam and Thailand in Nicotiana benthamiana and Solanum lycopersicum. Moreover, the TYLCTHV-[AIT] DNA-B component facilitated the mechanical transmission of monopartite viruses by rub-inoculation as well as by particle bombardment in N. benthamiana and tomato plants. Finally, defective DNAs ranging from 735 to 1457 nucleotides were generated in N. benthamiana from those combinations containing TYLCTHV-[AIT] DNA-B component.  相似文献   

8.
Tomato yellow leaf curl (TYLC) is one of the most devastating viral diseases of cultivated tomato (Lycopersicon esculentum) in tropical and subtropical regions worldwide, and losses of up to 100% are frequent. In many regions, TYLC is the main limiting factor in tomato production. The causal agents are a group of geminivirus species belonging to the genus Begomovirus of the family Geminiviridae, all of them named Tomato yellow leaf curl virus (TYLCV) (sensu lato). There has been almost 40 years of research on TYLCV epidemics and intensive research programmes have been conducted to find solutions to the severe problem caused by these viruses. This paper provides an overview of the most outstanding achievements in the research on the TYLCV complex that could lead to more effective control strategies.  相似文献   

9.
10.
Tomato leaf curl is a serious malady in the state of Maharashtra, India, causing nearly 100 % yield loss. An extensive survey was done in the affected fields of tomato in the year 2008, and members of three species of begomoviruses were identified as causing the disease. More than 60 % of the samples from diseased plants were infected with tomato leaf curl Gujarat virus (ToLCGuV). Isolates collected from these fields differed from the Varanasi isolate of ToLCGuV in not having a DNA B component. Instead, they were like typical Old World monopartite begomoviruses in that they were associated with only one betasatellite, tomato yellow leaf curl Thailand betasatellite (TYLCTHB). ToLCGuV alone is readily infectious, expressing systemic symptoms in Nicotiana benthamiana and tomato. Co-inoculation of ToLCGuV with TYLCTHB, increased symptom severity and reduced the incubation time required for symptom expression. ToLCGuV successfully interacted with heterologous DNA B component of ToLCNDV [IN:Pun:JID:08], and co-inoculation of these two resulted in yellow mottling symptoms that were typical of DNA B.  相似文献   

11.
Biolistic inoculation of plants with tomato yellow leaf curl virus DNA   总被引:1,自引:0,他引:1  
Tomato yellow leaf curl virus (TYLCV) full-length DNA was amplified by PCR and cloned into a bacterial plasmid. The cloned TYLCV DNA was excised from the plasmid, ligated and the resulting monomeric circular double-stranded TYLCV DNA was used to inoculate tomato (Solanum lycopersicom) and datura (Datura stramonium) plants by particle bombardment. The bombarded plants produced typical disease symptoms, similar to those produced following whitefly-mediated inoculation, albeit 5-7 days later than whitefly-inoculated plants. The success rate of inoculating tomato plants by particle bombardment averaged 37%, whereas with datura plants, it averaged 85%. With whitefly-mediated inoculation of TYLCV, the success rate of inoculation was also higher in datura plants than in tomato plants. Bombardment of datura plants with a linear form of TYLCV DNA also resulted in viral infection, with an inoculation success rate similar to that with the closed-circular TYLCV DNA. Bombarding datura plants with the bacterial plasmid containing the cloned TYLCV DNA did not result in viral infection, but bombardment with a bacterial plasmid containing a cloned dimer of TYLCV DNA yielded an infection rate of 50-100%. This is the first report of TYLCV inoculation of plants using particle bombardment of a cloned monomeric linear or closed-circular form of TYLCV double-stranded DNA.  相似文献   

12.
The complete genome sequence of a distinct variant of tomato yellow leaf curl virus-Israel (TYLCV-IL) and the DNA-A sequence of a new strain of tomato severe leaf curl virus (ToSLCV) isolated in San Luis Potosi, Mexico, are described and analyzed. The TYLCV-IL[MX:SLP:11] variant differs from all TYLCV-IL isolates described so far by a unique 42-nt duplicated sequence comprising a part of the conserved stem-loop element of the virion-strand replication origin and adjacent regulatory sequences. TYLCV-IL[MX:SLP:11] was associated with tomato chino La Paz virus (ToChLPV-B[MX:SLP:11]) in a Solanum pimpinellifolium plant, and with pepper huasteco yellow vein virus (PHYVV-[MX:SLP:11]) and ToSLCV-GT[MX:SLP:11] in a Solanum lycopersicum plant. In addition, a distinct ToSLCV exhibiting low sequence identity (<89?%) to other ToSLCV isolates from Mexico was found in a tomato plant collected in the same field. Sequence analysis of this new ToSLCV strain indicates that it is a recombinant of close relatives of ToSLCV-GT[MX:SLP:11] and ToChLPV-B[MX:SLP:11] found in mixed infections with TYLCV-IL[MX:SLP:11].  相似文献   

13.
Three new begomovirus isolates and one betasatellite were obtained from a tomato plant exhibiting leaf curl symptom in Laguna, the Philippines. Typical begomovirus DNA components representing the three isolates (PH01, PH02 and PH03) were cloned, and their full-length sequences were determined to be 2754 to 2746 nucleotides. The genome organizations of these isolates were similar to those of other Old World monopartite begomoviruses. The sequence data indicated that PH01 and PH02 were variants of strain B of the species Tomato leaf curl Philippines virus, while PH03 was a variant of strain A of the species Tomato leaf curl Philippines virus. These isolates were designated ToLCPV-B[PH:Lag1:06], ToLCPV-B[PH:Lag2:06], and ToLCPV-A[PH:Lag3:06], respectively. Phylogenetic analysis revealed that the present isolates form a separate monophyletic cluster with indigenous begomoviruses reported earlier in the Philippines. A betasatellite isolated from same sample belongs to the betasatellite species Tomato leaf curl Philippines betasatellite and designated Tomato leaf curl Philippines betasatellite-[Philippines:Laguna1:2006], ToLCPHB-[PH:Lag1:06]. When co-inoculated with this betasatellite, tomato leaf curl Philippines virus induced severe symptoms in N. benthamiana and Solanum lycopersicum plants. Using a PVX-mediated transient assay, we found that the C4 and C2 proteins of tomato leaf curl Philippines virus and the βC1 protein of ToLCPHB-[PH:Lag1:06] function as a suppressor of RNA silencing.  相似文献   

14.
The genome of a new bipartite begomovirus Melon chlorotic leaf curl virus from Guatemala (MCLCuV-GT) was cloned and the genome sequence was determined. The virus causes distinct symptoms on melons that were not previously observed in melon crops in Guatemala or elsewhere. Phylogenetic analysis of MCLCuV-GT and begomoviruses infecting cucurbits and other host plant species indicated that its closest relative was MCLCuV from Costa Rica (MCLCuV-CR). The DNA-A components of two isolates shared 88.8% nucleotide identity, making them strains of the same species. Further, both MCLCuV-GT and MCLCuV-CR grouped with other Western Hemisphere cucurbit-infecting species in the SLCV-clade making them the most southerly cucurbit-infecting members of the clade to date. Although the common region of the cognate components of MCLCuV-GT and MCLCuV-CR, shared ~96.3% nucleotide identity. While DNA-A and DNA-B components of MCLCuV-GT were less than 86% nucleotide identity with the respective DNA-A and DNA-B common regions of MCLCuV-CR. The late viral genes of the two strains shared the least nt identity (<88%) while their early genes shared the highest nt identity (>90%). The collective evidence suggests that these two strains of MCLCuV are evolutionarily divergent owing in part to recombination, but also due to the accumulation of a substantial number of mutations. In addition they are differentially host-adapted, as has been documented for other cucurbit-infecting, bean-adapted, species in the SLCV clade.  相似文献   

15.
16.
Natural occurrence of yellow vein disease on Amaranthus cruentus was observed at Lucknow, India in the year 2008. The causal virus was successfully transmitted through whiteflies (Bemisia tabaci) from diseased A. cruentus to healthy seedlings of A. cruentus and other test species which indicated begomovirus infection. The begomovirus DNA-A, betasatellite, and alphasatellite components associated with yellow vein disease were amplified by rolling circle amplification using Ø-29 DNA polymerase from diseased A. cruentus and characterized by their sequence analyses. The begomovirus DNA-A genome contained six ORFs: AV2 and AV1 in virion sense and AC3, AC2, AC1, and AC4 in complementary sense strand; and a non-translated intergenic region having the conserved geminiviral nonanucleotide sequence. The virus isolate showed 97–99 % sequence identities and close phylogenetic relationships with various isolates of Ageratum enation virus (AgEV); therefore, the isolate under study was identified as AgEV. The beta- and alphasatellite molecules were also identified to be associated with the disease based on their high sequence identities and close phylogenetic relationships with the respective molecules reported worldwide. Co-infiltration of agro-infectious clones of AgEV DNA-A and its betasatellite DNA induced leaf curl and enation symptoms after 25–35 days on A. cruentus, Nicotiana benthamiana, and N. glutinosa plants. We report the association of AgEV, betasatellite and alphasatellite components with yellow vein disease of A. cruentus from India.  相似文献   

17.
18.
A begomovirus was isolated from tomato plants showing leaf curl and stunting symptoms in farmers’ fields near the district of Kalyani, West Bengal, India. Viral genomic components amplified by rolling-circle amplification were cloned and sequenced. The genome organization of this virus was found to be similar to those of Old World monopartite begomovirus, with DNA A and a betasatellite component. Neither alphasatellite nor DNA B component was detected. The begomovirus showed highest sequence identity of 93.6% to tomato leaf curl Joydebpur virus (ToLCJoV-[IN:Kal:Chi:06]) and was thus identified to be an isolate of ToLCJoV. The betasatellite isolated from these samples was identified as tomato leaf curl Joydebpur betasatellite. ToLCJoV-[IN:Kal:Tom:08] alone induced severe symptoms in Solanum lycopersicum, N. benthamiana and N. glutinosa plants, and its severity was enhanced when co-inoculated with the cognate betasatellite. ToLCJoV-[IN:Kal:Tom:08] trans-replicated four more non-cognate betasatellites and induced severe symptoms in N. benthamiana and tomato. Since DNA A replicated efficiently and caused systemic symptom expression, it is hypothesized that ToLCJoV is essentially a monopartite virus, which could have acquired a betasatellite from an unknown source.  相似文献   

19.
The complete nucleotide sequence was determined for a begomovirus isolated from tomato exhibiting leaf curling and yellowing symptoms in Tochigi Prefecture in Japan. The genome organization of this virus was similar to those of other Old World monopartite begomoviruses. Neither a DNA betasatellite nor a DNA-B component was detected. It had the highest total nucleotide sequence identity (99%) with tomato yellow leaf curl virus-Israel[Japan:Tosa:2005] (TYLCV-IL[JR:Tos:05]) and TYLCV-Israel[Japan:Haruno:2005] (TYLCV-IL[JR:Han:05]). Its coat protein V1 also showed an identical amino acid sequence with those of TYLCV-IL[JR:Tos:05] and TYLCV-IL[JR:Han:05]. Thus, the begomovirus was determined to be an isolate of TYLCV-IL designated as TYLCV-Israel[Japan:Tochigi:2007] (TYLCV-IL[JR:Toc:07]). We investigated the interaction of TYLCV-IL[JR:Toc:07] with two known satellites associated with tomato yellow dwarf disease in Japan, tobacco leaf curl Japan betasatellite [Japan:Ibaraki:2006] and honeysuckle yellow vein mosaic betasatellite [Japan:Nara:2006], as well as with tomato leaf curl Philippines betasatellite [Philippines:Laguna1:2008], in tomato and Nicotiana benthamiana plants. TYLCV-IL[JR:Toc:07] trans-replicated these betasatellites, inducing more severe tomato yellow leaf curl disease-related symptoms than TYLCV-IL[JR:Toc:07] alone.  相似文献   

20.
In the 2000s, tobacco plantations on the Comoros Islands were afflicted with a previously unobserved tobacco leaf curl disease characterised by symptoms of severe leaf curling and deformation. Previous molecular characterization of potential viral pathogens revealed a complex of African monopartite tobacco leaf curl begomovirus (TbLCVs). Our molecular investigation allowed the characterization of a new monopartite virus involved in the disease: tomato leaf curl Namakely virus (ToLCNamV). Agroinoculation experiments indicated that TbLCVs and tomato leaf curl viruses (ToLCVs) can infect both tomato and tobacco but that infectivity and symptom expression fluctuate depending on the virus and the plant cultivar combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号