首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) are an important regulatory innate cell population and have significant inhibitory effect on T cell-mediated responses. In addition to their negative role in cancer development, MDSCs also exert strong regulatory effects on transplantation and autoimmunity. In many transplantation models, such as bone marrow transplant, renal transplant, heart transplant and skin transplant settings, MDSCs accumulate and have inhibitory effect on graft rejection. However, the inducing factors, detailed phenotype and functional molecular mediators of MDSCs are significantly different in various transplant models. With their strong suppressive activity, MDSCs could become a potential clinical therapy during transplantation tolerance induction and the combination of the MDSCs with other immunoregulatory cells or immunosuppressive drugs is an intriguing protocol in the future. In this review, we will summarize MDSC expansion, activation and induction in different transplantation models and discuss the effects of immunoregulatory cells and immunosuppressive drugs on MDSCs in transplant settings.  相似文献   

2.
Myeloid-derived suppressor cells (MDSCs) are powerful immunomodulatory cells that in mice play a role in infectious and inflammatory disorders, including acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation. Their relevance in clinical acute GVHD is poorly known. We analyzed whether granulocyte colony-stimulating factor (G-CSF) administration, used to mobilize hematopoietic stem cells, affected the frequency of MDSCs in the peripheral blood stem cell grafts of 60 unrelated donors. In addition, we evaluated whether the MDSC content in the peripheral blood stem cell grafts affected the occurrence of acute GVHD in patients undergoing unrelated donor allogeneic stem cell transplantation. Systemic treatment with G-CSF induces an expansion of myeloid cells displaying the phenotype of monocytic MDSCs (Linlow/negHLA-DRCD11b+CD33+CD14+) with the ability to suppress alloreactive T cells in vitro, therefore meeting the definition of MDSCs. Monocytic MDSC dose was the only graft parameter to predict acute GVHD. The cumulative incidence of acute GVHD at 180 days after transplantation for recipients receiving monocytic MDSC doses below and above the median was 63% and 22%, respectively (P = .02). The number of monocytic MDSCs infused did not impact the relapse rate or the transplant-related mortality rate (P > .05). Although further prospective studies involving larger sample size are needed to validate the exact monocytic MDSC graft dose that protects from acute GVHD, our results strongly suggest the modulation of G-CSF might be used to affect monocytic MDSCs graft cell doses for prevention of acute GVHD.  相似文献   

3.
Recent evidence indicates the existence of subpopulations of myeloid‐derived suppressor cells (MDSCs) with distinct phenotypes and functions. Here, we characterized the role of MDSC subpopulations in the pathogenesis of autoimmune arthritis in a collagen‐induced arthritis (CIA) mouse model. The splenic CD11b+Gr‐1+ MDSC population expanded in CIA mice, and these cells could be subdivided into polymorphonuclear (PMN) and mononuclear (MO) MDSC subpopulations based on Ly6C and Ly6G expression. During CIA, the proportion of splenic MO‐MDSCs was increased in association with the severity of joint inflammation, while PMN‐MDSCs were decreased. MO‐MDSCs expressed higher levels of surface CD40 and CD86 protein, but lower levels of Il10, Tgfb1, Ccr5, and Cxcr2 mRNA. PMN‐MDSCs exhibited a more potent capacity to suppress polyclonal T‐cell proliferation in vitro, compared with MO‐MDSCs. Moreover, the adoptive transfer of PMN‐MDSCs, but not MO‐MDSCs, decreased joint inflammation, accompanied by reduced levels of serum cytokine secretion and the frequencies of Th1 and Th17 cells in draining lymph nodes. These results suggest that there could be a shift from potently suppressive PMN‐MDSCs to poorly suppressive MO‐MDSCs during the development of experimental arthritis, which might reflect the failure of expanded MDSCs to suppress autoimmune arthritis.  相似文献   

4.
Regulatory CD4+CD25+Foxp3+ T cells (Tregs) can be induced and expanded by dendritic cells (DCs) in the presence of the enzyme indoleamine 2,3-dioxygenase (IDO). Here we report that a possible alternative to DCs are IDO expressing dermal fibroblasts (DFs), which are easier to isolate and sustain in culture compared to DCs. When mouse splenocytes were co-cultured with IDO expressing DFs, a significant increase in frequency and the number of Tregs was found compared to those of control group (13.16% ± 1.8 vs. 5.53% ± 1.2, p < 0.05). Despite observing a higher total number of dead CD4+ cells in the IDO group, there was a more abundant live CD4+CD25+ subpopulation in this group. Further analysis reveales that these CD4+ CD25+ cells have the capacity to expand in the presence of IDO expressing DFs. Greater number of CTLA-4+ cells and high expression of TGF-β and IL-10 were found in CD4+ cells of the IDO group compared to those of the controls. This finding confirmed a suppressive functionality of the expanded Tregs. Furthermore, CD4+ CD25+ cells isolated from the IDO group showed an alloantigen specific suppressive effect in a mixed lymphocyte reaction assay. These results confirm that IDO expressing dermal fibroblasts can expand a population of suppressive antigen specific Tregs. In conclusion, IDO expressing dermal fibroblasts have the capacity to stimulate the expansion of a subset of Tregs which can be used to generate antigen-specific immune tolerance.  相似文献   

5.
Yuehua Wang  WenWei Liu  Wei Gong 《Immunology》2015,146(3):379-391
Gr‐1+ CD11b+ myeloid‐derived suppressor cells (MDSCs) accumulate in tumor‐bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti‐cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin‐6 (IL‐6), IL‐12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr‐1+ CD11b+ monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll‐like receptor 2 (TLR2) signal of Gr‐1+ CD11b+ MDSCs and increased their M1‐type macrophage characteristics, such as producing IL‐12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr‐1+ CD11b+ MDSCs by pAbM treatment had less ability to convert the CD4+ CD25? cells into CD4+ CD25+ phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti‐tumour effect of pAbM was dependent on Gr‐1CD11b+ monocytes, nether CD8+ T cells nor CD4+ T cells. In addition to, pAbM did not inhibit tumour growth in TLR2–/– mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti‐tumour effects through the opposite of the suppressive function of Gr‐1+ CD11b+ MDSCs.  相似文献   

6.
Myeloid‐derived suppressor cells (MDSC) and DC are major controllers of immune responses against tumors or infections. However, it remains unclear how DC development and MDSC suppressor activity both generated from myeloid precursor cells are regulated. Here, we show that the combined treatment of BM‐derived MDSC with LPS plus IFN‐γ inhibited the DC development but enhanced MDSC functions, such as NO release and T‐cell suppression. This was not observed by the single treatments in vitro. In the spleens of healthy mice, we identified two Gr‐1lowCD11bhighLy‐6ChighSSClowMo‐MDSC and Gr‐1highCD11blowPMN‐MDSC populations with suppressive potential, whereas Gr‐1highCD11bhigh neutrophils and Gr‐1lowCD11bhighSSClow eosinophils were not suppressive. Injections of LPS plus IFN‐γ expanded these populations within the spleen but not LN leading to the block of the proliferation of CD8+ T cells. At the same time, their capacity to develop into DC was impaired. Together, our data suggest that spleens of healthy mice contain two subsets of MDSC with suppressive potential. A two‐signal‐program through combined LPS and IFN‐γ treatment expands and fully activates MDSC in vitro and in vivo.  相似文献   

7.
8.
Dysregulation of the host immune responses induced by host hepatitis B virus (HBV) interactions has been observed in acute-on-chronic liver failure (ACLF). Myeloid-derived suppressor cells (MDSCs), well known for their immunomodulatory properties, can suppress T-cell function by regulating the expression of CD3 ζ chain in cancer and autoimmune/infectious diseases while rarely have been studied in ACLF. In this study, MDSCs, CD4+/CD8+ T cells, and CD3 ζ chain were analyzed by flow cytometry in peripheral blood mononuclear cells obtained from HBV-related ACLF patients, chronic hepatitis B (CHB) patients and healthy controls. ACLF patients were followed up for dynamic detection of MDSCs and observation of outcomes after treatment. Interestingly, peripheral CD14+CD33+CD11b+HLA-DR−/low MDSCs from ACLF patients were significantly increased compared to those from CHB patients and healthy controls. CD4+/CD8+ T cell frequency and CD3 ζ chain expression in T cells were decreased in ACLF patients compared to those of healthy controls and were negatively correlated with matched MDSC frequency. Meanwhile, the frequency of MDSCs was closely correlated with biochemical parameters that are relevant for liver injury rather than virological parameters. Moreover, a lower level of MDSCs was correlated with a better short-term prognosis (within 4 weeks but not at 8 weeks), and MDSCs remained high in ACLF patients whose conditions worsened within a 4-week follow-up period after treatment. These results suggest that MDSCs are closely involved in cell-mediated immunity in HBV-related ACLF and that peripheral MDSC expansion is closely associated with disease severity and progression in HBV-related ACLF, which may serve as a predictor of short-term prognosis.  相似文献   

9.
CD11b+/Gr‐1+ myeloid‐derived suppressor cells (MDSC) contribute to tumor immune evasion by restraining the activity of CD8+ T‐cells. Two major MDSC subsets were recently shown to play an equal role in MDSC‐induced immune dysfunctions: monocytic‐ and granulocytic‐like. We isolated three fractions of MDSC, i.e. CD11b+/Gr‐1high, CD11b+/Gr‐1int, and CD11b+/Gr‐1low populations that were characterized morphologically, phenotypically and functionally in different tumor models. In vitro assays showed that CD11b+/Gr‐1int cell subset, mainly comprising monocytes and myeloid precursors, was always capable to suppress CD8+ T‐cell activation, while CD11b+/Gr‐1high cells, mostly granulocytes, exerted appreciable suppression only in some tumor models and when present in high numbers. The CD11b+/Gr‐1int but not CD11b+/Gr‐1high cells were also immunosuppressive in vivo following adoptive transfer. CD11b+/Gr‐1low cells retained the immunosuppressive potential in most tumor models. Gene silencing experiments indicated that GM‐CSF was necessary to induce preferential expansion of both CD11b+/Gr‐1int and CD11b+/Gr‐1low subsets in the spleen of tumor‐bearing mice and mediate tumor‐induced tolerance whereas G‐CSF, which preferentially expanded CD11b+/Gr‐1high cells, did not create such immunosuppressive environment. GM‐CSF also acted on granulocyte–macrophage progenitors in the bone marrow inducing local expansion of CD11b+/Gr‐1low cells. These data unveil a hierarchy of immunoregulatory activity among MDSC subsets that is controlled by tumor‐released GM‐CSF.  相似文献   

10.
Myeloid-derived suppressor cells (MDSC) have been implicated in the regulation of chronic inflammation. Chronic obstructive pulmonary disease (COPD) involves persistent inflammation, but the role of MDSC has not been explored. Here, proportions of MDSC (CD14HLA-DRCD33+CD11b+ cells) were quantified in peripheral blood mononuclear cells (PBMC) isolated from patients with ‘stable’ COPD (n = 12), smokers with no evidence of COPD (n = 11) and healthy non-smokers (n = 11). The proportions of MDSC were similar in all groups. MDSC function was assessed by comparing T-cell and cytokine responses of whole and MDSC-depleted PBMC stimulated with Staphylococcus enterotoxin-B (SEB). Depletion of MDSC did not enhance CD4+ or CD8+ T-cell activation and proliferation, or alter IFNγ and IL-17 production in response to SEB. However production of TGFβ decreased after depletion of MDSC, so MDSC may be a source of this cytokine. In conclusion, COPD was not associated with perturbations in the proportion or function of MDSC in peripheral blood.  相似文献   

11.
12.
Immunosuppressive CD11b+Gr‐1+ myeloid‐derived suppressor cells (MDSCs) accumulate in the livers of tumor‐bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune‐mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α‐galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor‐free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b+Gr‐1+ cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN‐γ‐dependent upregulation of CD40 on hepatic CD11b+Gr‐1+ cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor‐induced CD11b+Gr‐1+ MDSCs as well as enhanced reactive oxygen species (ROS)‐mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40?/? tumor‐induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor‐induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40‐dependent manner.  相似文献   

13.
Ovarian cancer is a prevalent gynecological malignancy with potent immune-suppression capabilities; regulatory T cells (Tregs) are significant contributors to this immune-suppression. As ovarian cancer patients present with high levels of TNF and Tregs expressing TNFR2 are associated with maximal suppressive capacity, we investigated TNFR2 + Tregs within these patients. Indeed, TNFR2 + Tregs from tumor-associated ascites were the most potent suppressor T cell fraction. They were abundantly present within the ascites and more suppressive than peripheral blood TNFR2 + Tregs in patients. The increased suppressive capacity can be explained by a distinct cell surface expression profile, which includes high levels of CD39, CD73, TGF-β and GARP. Additionally, CD73 expression level on TNFR2 + Tregs was inversely correlated with IFN-γ production by effector T cells. This Treg fraction can be selectively recruited into the ascites from the peripheral blood of patients. Targeting TNFR2 + Tregs may offer new approaches to enhance the poor survival rates of ovarian cancer.  相似文献   

14.
Collagen-induced arthritis (CIA) is an established mouse model of disease with hallmarks of clinical rheumatoid arthritis. Histone/protein deacetylase inhibitors (HDACi) are known to inhibit the pathogenesis of CIA and other models of autoimmune disease, although the mechanisms responsible are unclear. Regulatory T cell (Treg) function is defective in rheumatoid arthritis. FOXP3 proteins in Tregs are present in a dynamic protein complex containing histone acetyltransferase and HDAC enzymes, and FOXP3 itself is acetylated on lysine residues. We therefore investigated the effects of HDACi therapy on regulatory T cell function in the CIA model. Administration of an HDACi, valproic acid (VPA), significantly decreased disease incidence (p < 0.005) and severity (p < 0.03) in CIA. In addition, VPA treatment increased both the suppressive function of CD4+CD25+ Tregs (p < 0.04) and the numbers of CD25+FOXP3+ Tregs in vivo. Hence, clinically approved HDACi such as VPA may limit autoimmune disease in vivo through effects on the production and function of FOXP3+ Treg cells.  相似文献   

15.
The major suppressive immune cells in tumor sites are myeloid derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and Treg cells, and the major roles of these suppressive immune cells include hindering T-cell activities and supporting tumor progression and survival. In this study, we analyzed the pattern of circulating MDSC subtypes in patients with non-small cell lung cancer (NSCLC) whether those suppressive immune cells hinder T-cell activities leading to poor clinical outcomes. First, we verified PMN-MDSCs, monocytic-MDSCs (M-MDSCs), and Treg cells increased according to the stages of NSCLC, and MDSCs effectively suppressed T-cell activities and induced T-cell exhaustion. The analysis of NSCLC patients treated with anti-PD-1 immunotherapy demonstrated that low PMN-MDSCs, M-MDSCs, and CD39+CD8+ T cells as an individual and all together were associated with longer progression free survival and overall survival, suggesting PMN-MDSCs, M-MDSCs, and CD39+CD8+ T cells frequencies in peripheral blood might be useful as potential predictive and prognostic biomarkers.  相似文献   

16.
In sepsis, the pathology involves a shift from a proinflammatory state toward an immunosuppressive phase. We previously showed that an agonistic anti‐TLR4 antibody induced long‐term endotoxin tolerance and suppressed antigen‐specific secondary IgG production when primed prior to immunization with antigen. These findings led us to speculate that TLR4‐induced innate tolerance due to primary infection causes an immunosuppressive pathology in sepsis. Therefore, the mechanism underlying impaired antigen‐specific humoral immunity by the TLR4 antibody was investigated. We showed, in a mouse model, that primary antigen‐specific IgG responses were impaired in TLR4 antibody‐induced tolerized mice, which was the result of reduced numbers of antigen‐specific GC B cells and plasma cells. Ovalbumin‐specific CD4 and CD8 T‐cell responses were impaired in TLR4 antibody‐injected OT‐I and ‐II transgenic mice ex vivo. Adoptive transfer studies demonstrated suppression of OVA‐specific CD4 and CD8 T‐cell responses by the TLR4 antibody in vivo. The TLR4 antibody induced Gr1+CD11b+ myeloid‐derived suppressor cell (MDSC) expansion with suppression of T‐cell activation. Monocytic MDSCs were more suppressive and exhibited higher expression of PD‐L1 and inducible nitric oxidase compared with granulocytic MDSCs. In conclusion, immune tolerance conferred by TLR4 activation induces the expansion of monocytic MDSCs, which impairs antigen‐specific T‐cell priming and IgG production.  相似文献   

17.
FOXP3+ regulatory T cells (Tregs) play an important role in the maintenance of tumor immunity tolerance. Compared with conventional myeloid dentritic cells (mDCs), plasmacytoid dendritic cells (pDCs) exhibit poor immunostimulatory ability, and their interaction with T cells often promotes the development of Tregs. The aim of this study was to determine FOXP3+ Tregs and CD123+pDCs infiltration in colorectal cancer and tumor draining lymph node (TDLN), and to evaluate the clinical significance and relationship between pDCs infiltration and Tregs development in the CRC tolerogenic milieu. An immunohistochemical assay was conducted to assess FOXP3+Tregs and CD123+pDCs infiltration in tumor tissue and in metastatic-free TDLN (mfTDLN) and metastatic TDLN (mTDLN). The results showed that FOXP3+ Tregs infiltration was more frequent in tumor tissue than in adjacent normal mucosa (P < 0.001). FOXP3+Tregs infiltration was associated with advanced TNM stage and lymph node metastasis (P < 0.01 and P < 0.01 for TNM stage and lymph node metastasis, respectively). Different from FOXP3+Tregs, CD123+pDCs frequencies were lower in most CRC tumor tissues, whereas the positive rate of CD123 expression in CRC was significantly higher than in adjacent normal mucosa tissue (P < 0.01). Compared to mfTDLN, mTDLN was significantly enriched in FOXP3+ Tregs (P < 0.01) and increased in pDC/mDC ratio (P < 0.01). The statistical analysis demonstrated a significant correlation in both Tregs and pDC/mDC ratio in mTDLN. These results suggest that there are more FOXP3+ Tregs with a stronger prognostic significance which might promote tumor tolerance, and that CD123+pDCs might contribute to Tregs development in the CRC tolerogenic milieu.  相似文献   

18.

Purpose

Myeloid-derived suppressor cells (MDSCs) are known to accumulate under some pathologic conditions and suppress immune system in a variety of ways. This study aims to evaluate the significance of MDSCs in chronic Hepatitis C (CHC) patients.

Methods

14 CHC patients and healthy donors were enrolled and subject to antiviral therapy including Peg-INF-alpha and Ribavirin for 48 weeks. The peripheral blood mononuclear cells (PBMCs) were collected at different weeks post-therapy and MDSC frequency was analyzed by flow cytometry. The correlation between MDSCs level with CHC disease parameters was analyzed by Spearman’s rank test. The suppressive function of MDSCs from CHC patients and the underlying mechanism was further evaluated.

Results

A significant elevation of MDSCs was observed in the peripheral blood of treatment-naive CHC patients compared with healthy donors. The level of MDSCs in CHC patients correlated with plasma HCV-RNA (r?=?0.7164, p?=?0.0039), blood aminotransaminase (r?=?0.6116, p?=?0.021), and activated CD38+ T cells (CD4+: r?=?0.6649, p?=?0.0095; CD8+: r?=?0.6189, p?=?0.0189). Initiation of clinical therapy reduced MDSC levels as early as 4 weeks, while it rebounded at week 12 post-therapy in patients. CHC-derived MDSCs could suppress T cell function in an arginase-1-dependent manner, that was distinct from the HCV core protein-generated MDSCs as previously reported.

Conclusion

Our study reveals a significant correlation between MDSC levels with HCV disease progression, and their response to antiviral therapy. The arginase-1-dependent mechanism of MDSCs from CHC patients indicates that arginase-1 may be promising target for HCV immunotherapy.  相似文献   

19.
Tumor growth coincides with an accumulation of myeloid‐derived suppressor cells (MDSCs), which exert immune suppression and which consist of two main subpopulations, known as monocytic (MO) CD11b+CD115+Ly6G?Ly6Chigh MDSCs and granulocytic CD11b+CD115?Ly6G+Ly6Cint polymorphonuclear (PMN)‐MDSCs. However, whether these distinct MDSC subsets hamper all aspects of early CD8+ T‐cell activation — including cytokine production, surface marker expression, survival, and cytotoxicity — is currently unclear. Here, employing an in vitro coculture system, we demonstrate that splenic MDSC subsets suppress antigen‐driven CD8+ T‐cell proliferation, but differ in their dependency on IFN‐γ, STAT‐1, IRF‐1, and NO to do so. Moreover, MO‐MDSC and PMN‐MDSCs diminish IL‐2 levels, but only MO‐MDSCs affect IL‐2Rα (CD25) expression and STAT‐5 signaling. Unexpectedly, however, both MDSC populations stimulate IFN‐γ production by CD8+ T cells on a per cell basis, illustrating that some T‐cell activation characteristics are actually stimulated by MDSCs. Conversely, MO‐MDSCs counteract the activation‐induced change in CD44, CD62L, CD162, and granzyme B expression, while promoting CD69 and Fas upregulation. Together, these effects result in an altered CD8+ T‐cell adhesiveness to the extracellular matrix and selectins, sensitivity to FasL‐mediated apoptosis, and cytotoxicity. Hence, MDSCs intricately influence different CD8+ T‐cell activation events in vitro, whereby some parameters are suppressed while others are stimulated.  相似文献   

20.
To understand the phenomenon of early alloreactivity (EA) in younger children undergoing post-transplantation cyclophosphamide (PTCy)-based haploidentical transplantation, we studied the graft composition and the immune reconstitution in 32 consecutive patients (aged 2 to 25 years) undergoing PTCy and T cell costimulation blockade based peripheral blood stem cell transplantation with emphasis on CD45RA+ subset of regulatory T cells (Tregs). All but 1 engrafted, and 14 patients experienced EA (acute graft-versus-host disease grades II to IV, n?=?8; and post-transplantation hemophagocytic syndrome, n?=?6) with a cumulative incidence of 43.7%; 42% developed mild chronic graft-versus-host disease. The overall survival was 70.2% with a nonrelapse mortality of 16.8% at a median of 19 months. Age < 10 years, donor age > 45 years, and poor recovery of Tregs correlated with EA. Not Tregs but higher CD45RA+ Tregs in the graft was associated with less EA (11.7% versus 32.5%, P = .0001). Higher donor age correlated with a lower CD45RA+ Tregs in the graft (P = .01). However, only higher CD45RA+ Treg percentage in the graft favorably impacted EA as well as nonrelapse mortality and overall survival. Our study demonstrates a critical role for CD45RA+ Tregs in determining EA and outcome after PTCy-based haploidentical peripheral blood stem cell transplantation, and the age-related physiologic decline in this population might be responsible for adverse impact of donor age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号