首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a wide variety of infections in immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex, which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF) and may lead to allergic bronchopulmonary mycoses, sensitization, or respiratory infections. Upon microbial infection, host phagocytic cells release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by detoxification of the hydrogen peroxide. Here, we investigated the catalase equipment of Scedosporium boydii, one of the major pathogenic species in the S. apiospermum species complex. Three catalases were identified, and the mycelial catalase A1 was purified to homogeneity by a three-step chromatographic process. This enzyme is a monofunctional tetrameric protein of 460 kDa, consisting of four 82-kDa glycosylated subunits. The potential usefulness of this enzyme in serodiagnosis of S. apiospermum infections was then investigated by an enzyme-linked immunosorbent assay (ELISA), using 64 serum samples from CF patients. Whatever the species involved in the S. apiospermum complex, sera from infected patients were clearly differentiated from sera from patients with an Aspergillus fumigatus infection or those from CF patients without clinical and biological signs of a fungal infection and without any fungus recovered from sputum samples. These results suggest that catalase A1 is a good candidate for the development of an immunoassay for serodiagnosis of infections caused by the S. apiospermum complex in patients with CF.  相似文献   

2.
Nonsporulating molds (NSMs), especially basidiomycetes, have predominantly been reported as human pathogens responsible for allergic and invasive disease. Their conventional identification is problematic, as many isolates remain sterile in culture. Thus, inconclusive culture reports might adversely affect treatment decisions. The clinical significance of NSMs in pulmonary mycoses is poorly understood. We sequenced the internal transcribed spacer (ITS) region and D1/D2 domain of the larger subunit (LSU) of 52 NSMs isolated from respiratory specimens. The basidiomycetes were the predominant NSMs, of which Schizophyllum commune was the most common agent in allergic bronchopulmonary mycosis (ABPM), followed by Ceriporia lacerata in invasive fungal disease. Porostereum spadiceum, Phanaerochaete stereoides, Neosartorya fischeri, and Marasmiellus palmivorus were the other molds observed. Application of ITS and LSU region sequencing identified 92% of the isolates. The antifungal susceptibility data revealed that all basidiomycetes tested were susceptible to amphotericin B and resistant to caspofungin, fluconazole, and flucytosine. Except for 3 isolates of S. commune and a solitary isolate of M. palmivorus, all basidiomycetes had low MICs for itraconazole, posaconazole, and voriconazole. Basidiomycetes were isolated from patients with ABPM, invasive pulmonary mycosis/pneumonia, or fungal balls. In addition, the majority of the basidiomycetes were isolated from patients with chronic respiratory disorders who were sensitized to one of the basidiomycetous fungi and demonstrated precipitating antibodies against the incriminating fungi, indicating an indolent tissue reaction. Thus, isolation of basidiomycetes from the lower respiratory tract could be significant, and it is important to monitor these patients in order to prevent subsequent lung damage.  相似文献   

3.
We report eight cases of airway colonization by Geosmithia argillacea in patients with cystic fibrosis. This filamentous fungus, resembling members of the genera Penicillium and Paecilomyces, was identified by molecular analysis. All patients carried a mutation on each CFTR (cystic fibrosis transmembrane conductance regulator) allele, with at least one copy of the F508del mutation. The first isolation of this fungus occurred from F508del-homozygous patients at a younger age than in F508del-heterozygous patients. Before recovery of G. argillacea, all patients were treated with itraconazole; two of them had also received voriconazole for an Aspergillus fumigatus infection. However, antifungal susceptibility patterns showed high MICs of voriconazole for all isolates, and high MICs of amphotericin B and itraconazole for the majority of them, but mostly low minimum effective concentrations (MECs) of caspofungin. The appearance and persistence of G. argillacea in the airways were not associated with exacerbation of the disease. However, the clinical implications of G. argillacea, particularly in immunocompromised patients, remain a concern, particularly given recent observations suggesting that this fungus may also cause disseminated infections.With a frequency of about 1/2,500 births in France, cystic fibrosis (CF) is the most common genetic inherited disease in the European Caucasian population (3). The disease is caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, which encodes a chloride channel in the plasma membranes of various epithelial cell types. Several organs are affected, but the prognosis of CF essentially depends on the severity of lesions in the lungs (4). The defect in the chloride channel leads to thickening of the bronchial mucus, facilitating the entrapment of the inhaled bacteria and fungal conidia and providing a suitable environment for the growth of microorganisms. Nevertheless, airway colonization by filamentous fungi in CF is rarely found in young children and usually follows episodes of bacterial infection (mainly due to Staphylococcus aureus or Pseudomonas aeruginosa). Thus, previous bronchoalveolar epithelial lesions related to these infections may be required for the establishment of fungi in the respiratory tract. The clinical significance of isolating filamentous fungi from respiratory secretions remains a matter of debate. Recent studies, however, clearly show that they cause increased morbidity and an increased number of hospital admissions (1).Aspergillus fumigatus, Scedosporium apiospermum, and Exophiala dermatitidis are the most common clinically relevant fungi and are usually responsible for chronic airway colonization (13). Other filamentous fungi that are frequently, but only transiently, present in respiratory secretions include Paecilomyces variotii and some species belonging to the genus Alternaria, Cladosporium, or Penicillium. Some thermophilic filamentous fungi have also been described in humans, almost exclusively in CF patients. Indeed, we have previously described cases of chronic colonization by Penicillium emersonii (the anamorph state of Talaromyces emersonii) (6) and Acrophialophora fusispora (7) in CF patients.Here we report colonization by Geosmithia argillacea in eight CF patients attending three different French hospitals (Angers, Giens, and Rouen) between 1999 and 2009. All the isolates were identified by sequencing the ribosomal DNA (rDNA) genes. Additionally, the in vitro antifungal susceptibilities of the isolates were compared to the evolution of airway colonization during antifungal treatment.  相似文献   

4.
PurposeNontuberculous mycobacteria (NTM) is ubiquitous in the environment, but NTM lung disease (NTM-LD) is uncommon. Since exposure to NTM is inevitable, patients who develop NTM-LD are likely to have specific susceptibility factors, such as primary ciliary dyskinesia (PCD). PCD is a genetically heterogeneous disorder of motile cilia and is characterized by chronic respiratory tract infection, organ laterality defect, and infertility. In this study, we performed whole exome sequencing (WES) and investigated the genetic characteristics of adult NTM patients with suspected PCD.Materials and MethodsWES was performed in 13 NTM-LD patients who were suspected of having PCD by clinical symptoms and/or ultrastructural ciliary defect observed by transmission electron microscopy. A total of 45 PCD-causing genes, 23 PCD-candidate genes, and 990 ciliome genes were analyzed.ResultsFour patients were found to have biallelic loss-of-function (LoF) variants in the following PCD-causing genes: CCDC114, DNAH5, HYDIN, and NME5. In four other patients, only one LoF variant was identified, while the remaining five patients did not have any LoF variants.ConclusionAt least 30.8% of NTM-LD patients who were suspected of having PCD had biallelic LoF variants, and an additional 30.8% of patients had one LoF variant. Therefore, PCD should be considered in patients with NTM-LD with symptoms or signs suspicious of PCD.  相似文献   

5.
Walker–Warburg syndrome (WWS) is a severe muscular dystrophy with eye and brain malformations. On a molecular level, WWS is a disorder of the O-linked glycosylation of α-dystroglycan and therefore referred to as one of the dystroglycanopathies. The disease family of muscular dystrophy–dystroglycanopathy (MDDG) contains a spectrum of severe to mild disorders, designated as MDDG type A to C. WWS, as the most severe manifestation, corresponds to MDDG type A. Defects in the genes POMT1, POMT2, POMGNT1, FKTN, FKRP, LARGE, GTDC2, G3GALNT2, GMPPB, B3GNT1, TMEM5 and COL4A1 and ISPD have been described as causal for several types of MDDG including WWS, but can only be confirmed in about 60–70% of the clinically diagnosed individuals. The proteins encoded by these genes are involved in the posttranslational modification of α-dystroglycan. Mutations in POMT1, POMT2, POMGNT1, FKTN, FKRP, LARGE, GMPPB, TMEM5 and COL4A1 and ISPD lead to a wide spectrum of phenotypes of congenital muscular dystrophies with or without eye and brain abnormalities. Patients with WWS frequently demonstrate a complete lack of psychomotor development, severe eye malformations, cobblestone lissencephaly and a hypoplastic cerebellum and brainstem, seizures, hydrocephalus and poor prognosis. Here, we present a boy with WWS who showed compound heterozygous changes in ISPD and discuss the clinical and radiological phenotype and the molecular genetic findings, including a novel pathogenic mutation in ISPD.  相似文献   

6.
7.
Germline alterations of the tumour suppressor TP53 gene are detected approximately in 25% of the families suggestive of Li-Fraumeni syndrome (LFS), characterised by a genetic predisposition to a wide tumour spectrum, including soft-tissue sarcomas, osteosarcomas, premenopausal breast cancers, brain tumours, adrenocortical tumours, plexus choroid tumours, leukaemia and lung cancer. The aim of this study was to determine the contribution of germline copy number variations (CNVs) to LFS in families without detectable TP53 mutation. Using a custom-designed high-resolution array CGH, we evaluated the presence of rare germline CNVs in 64 patients fulfilling the Chompret criteria for LFS, but without any detectable TP53 alteration. In 15 unrelated patients, we detected 20 new CNVs absent in 600 controls. Remarkably, in four patients who had developed each brain tumour, the detected CNV overlap the KDM1A, MTA3, TRRAP or SIRT3 genes encoding p53 partners involved in histone methylation or acetylation. Focused analysis of SIRT3 showed that the CNV encompassing SIRT3 leads to SIRT3 overexpression, and that in vitro SIRT3 overexpression prevents apoptosis, increases G2/M and results in a hypermethylation of numerous genes. This study supports the causal role of germline alterations of genes involved in chromatin remodelling in genetic predisposition to cancer and, in particular, to brain tumours.  相似文献   

8.
BackgroundAlpha-dystroglycanopathies are a group of congenital muscular dystrophies (CMDs) with autosomal recessive inheritance characterized by abnormal glycosylation of alpha-dystroglycan. Although six genetic causes have been identified (FKTN, POMGNT1, POMT1, POMT2, FKRP, and LARGE) many alpha-dystroglycanopathy patients remain without a genetic diagnosis after standard exon sequencing. To date POMT2 mutations have been identified in CMD cases with a wide range of clinical severities from Walker–Warburg syndrome to limb girdle muscular dystrophy without structural brain or ocular involvement.MethodsWe analyzed POMT2 in six CMD patients, who had severe diffuse muscle weakness, generalized joint contractures, microcephaly, severe mental retardation and elevated CK levels. Eye involvement was absent or limited to myopia or strabismus. We sequenced the coding regions of POMT2 using genomic DNA and cDNA generated from blood lymphocytes or B lymphoblastoid cell lines. Quantitative PCR analysis of genomic DNA was used to identify and determine the breakpoints of large deletions.ResultsWe report five novel mutations in POMT2, four of which were outside of coding exons, two large genomic deletions and two intronic single base substitutions that induced aberrant mRNA splicing.ConclusionsLarge scale DNA rearrangements (such as large deletions) and cryptic splice mutations, that can be missed on standard sequencing of genomic DNA, may be relatively common in POMT2. Additional techniques, such as sequencing of cDNA are needed to identify all mutations. These results also confirm that POMT2 mutations are an important cause of the less severe alpha-dystroglycanopathy phenotypes.  相似文献   

9.
《Genetics in medicine》2021,23(5):888-899
PurposePostsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.MethodsThe clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.ResultsThe clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit–hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.ConclusionThe present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.  相似文献   

10.
Patients with terminal deletions of chromosome 6q present with structural brain abnormalities including agenesis of corpus callosum, hydrocephalus, periventricular nodular heterotopia, and cerebellar malformations. The 6q27 region harbors genes that are important for the normal development of brain and delineation of a critical deletion region for structural brain abnormalities may lead to a better genotype–phenotype correlation. We conducted a detailed clinical and molecular characterization of seven unrelated patients with deletions involving chromosome 6q27. All patients had structural brain abnormalities. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. The smallest region of overlap spans 1.7 Mb and contains DLL1, THBS2, PHF10, and C6orf70 (ERMARD) that are plausible candidates for the causation of structural brain abnormalities. Our study reiterates the importance of 6q27 region in normal development of brain and helps identify putative genes in causation of structural brain anomalies.  相似文献   

11.
《Seminars in immunology》2014,26(6):454-470
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare condition characterized by predisposition to clinical disease caused by weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria, in otherwise healthy individuals with no overt abnormalities in routine hematological and immunological tests. MSMD designation does not recapitulate all the clinical features, as patients are also prone to salmonellosis, candidiasis and tuberculosis, and more rarely to infections with other intramacrophagic bacteria, fungi, or parasites, and even, perhaps, a few viruses. Since 1996, nine MSMD-causing genes, including seven autosomal (IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, ISG15, and IRF8) and two X-linked (NEMO, and CYBB) genes have been discovered. The high level of allelic heterogeneity has already led to the definition of 18 different disorders. The nine gene products are physiologically related, as all are involved in IFN-γ-dependent immunity. These disorders impair the production of (IL12B, IL12RB1, IRF8, ISG15, NEMO) or the response to (IFNGR1, IFNGR2, STAT1, IRF8, CYBB) IFN-γ. These defects account for only about half the known MSMD cases. Patients with MSMD-causing genetic defects may display other infectious diseases, or even remain asymptomatic. Most of these inborn errors do not show complete clinical penetrance for the case-definition phenotype of MSMD. We review here the genetic, immunological, and clinical features of patients with inborn errors of IFN-γ-dependent immunity.  相似文献   

12.
Melanins are one of the great natural pigments produced by a wide variety of fungal species that promote fitness and cell survival in diverse hostile environments, including during mammalian infection. In this study, we sought to demonstrate the production of melanin in the conidia and hyphae of saprophytic fungi, including dematiaceous and hyaline fungi. We showed that a melanin‐specific monoclonal antibody (MAb) avidly labeled the cell walls of hyphae and conidia, consistent with the presence of melanin in these structures, in 14 diverse fungal species. The conidia of saprophytic fungi were treated with proteolytic enzymes, denaturant, and concentrated hot acid to yield dark particles, which were shown to be stable free radicals, consistent with their identification as melanins. Samples obtained from patients with fungal keratitis due to Fusarium falciforme, Aspergillus fumigatus, Aspergillus flavus, Curvularia lunata, Exserohilum rostratum, or Fonsecaea pedrosoi were found to be intensely labeled by the melanin‐specific MAb at the fungal hyphal cell walls. These results support the hypothesis that melanin is a common component that promotes survival under harsh conditions and facilitates fungal virulence. Increased understanding of the processes of melanization and the development of methods to interfere with pigment formation may lead to novel approaches to combat these complex pathogens that are associated with high rates of morbidity and mortality.  相似文献   

13.
The clinical use of array comparative genomic hybridization in the evaluation of patients with multiple congenital anomalies and/or mental retardation has recently led to the discovery of a number of novel microdeletion and microduplication syndromes. We present four male patients with overlapping molecularly defined de novo microdeletions of 16q24.3. The clinical features observed in these patients include facial dysmorphisms comprising prominent forehead, large ears, smooth philtrum, pointed chin and wide mouth, variable cognitive impairment, autism spectrum disorder, structural anomalies of the brain, seizures and neonatal thrombocytopenia. Although deletions vary in size, the common region of overlap is only 90 kb and comprises two known genes, Ankyrin Repeat Domain 11 (ANKRD11) (MIM 611192) and Zinc Finger 778 (ZNF778), and is located approximately 10 kb distally to Cadherin 15 (CDH15) (MIM 114019). This region is not found as a copy number variation in controls. We propose that these patients represent a novel and distinctive microdeletion syndrome, characterized by autism spectrum disorder, variable cognitive impairment, facial dysmorphisms and brain abnormalities. We suggest that haploinsufficiency of ANKRD11 and/or ZNF778 contribute to this phenotype and speculate that further investigation of non-deletion patients who have features suggestive of this 16q24.3 microdeletion syndrome might uncover other mutations in one or both of these genes.  相似文献   

14.
Fungal infections are being increasingly reported from immuno-compromised as well as immuno-competent patients. Transplant patients are on long term immunosuppressive therapy which makes them highly vulnerable to opportunistic fungal infections .These infections can be cutaneous or systemic. Several fungi have been reported to be the culprits such as Candida spp., Aspergillus spp., C. neoformans, P. carinii, and zygomycetes group of fungi. Cutaneous infections are most commonly caused by Pityriasis (tinea) versicolor, dermatophytes, and candida sp but these days the demtiaceous fungi are becoming more frequently reported .Here we report a case of post renal transplant cutaneous infection caused by dematiaceous fungus belonging to the order Pleosporales  相似文献   

15.
We aimed to establish that a bronchoscopic view can be as reliable as microbiology, and support an empirical tracheobronchial fungal infection (TBFI) treatment decision. We retrospectively studied 95 respiratory failure patients with suspected TBFI admitted to the intensive-care unit (ICU) in 2008 with sticky secretions, hyperaemic mucosa, and whitish plaques on bronchoscopic view. Patients not suspected of having TBFI were chosen as a control group (n = 151). Broncheoalveolar lavage (BAL) fluid was cultured, and biopsy samples were taken from the lesions. Biopsy samples positive for fungi were defined as ‘proven', only BAL-positive (+ fungi) cases were ‘probable TBFI', and BAL-negative (– fungi) cases were ‘possible TBFI'. BAL (+ fungi) and BAL (– fungi) in the control group were defined as ‘colonization' and ‘no TBFI', respectively. The sensitivity, specificity and positive and negative predictive values of BAL (+ fungi) were 85.1% (63/74), 81.4% (140/172), 66.3% (63/95), and 92.7% (140/151), respectively. Biopsies were performed in 78 of 95 patients, and 28 were proven TBFI with fungal elements, and 100% were BAL (+ fungi). Probable TBFI was seen in 30 of 95 patients with BAL (+ fungi), and possible TBFI (BAL(– fungi)) in 25 of 95. Among the 95 patients, microbiology revealed fungi (90.5% Candida species; 9.5% Aspergillus) in 63 (66.3%). In the controls, the colonization and no TBFI rates were 11 of 151 and 140 of 151, respectively. Observing sticky secretions, hyperaemic mucosa and whitish plaques by bronchoscopy is faster than and may be as reliable as microbiology for diagnosing TBFI. These findings are relevant for empirical antifungal therapy in suspected TBFI patients in the ICU.  相似文献   

16.
We aimed to establish that a bronchoscopic view can be as reliable as microbiology, and support an empirical tracheobronchial fungal infection (TBFI) treatment decision. We retrospectively studied 95 respiratory failure patients with suspected TBFI admitted to the intensive-care unit (ICU) in 2008 with sticky secretions, hyperaemic mucosa, and whitish plaques on bronchoscopic view. Patients not suspected of having TBFI were chosen as a control group (n = 151). Broncheoalveolar lavage (BAL) fluid was cultured, and biopsy samples were taken from the lesions. Biopsy samples positive for fungi were defined as ‘proven', only BAL-positive (+ fungi) cases were ‘probable TBFI', and BAL-negative (– fungi) cases were ‘possible TBFI'. BAL (+ fungi) and BAL (– fungi) in the control group were defined as ‘colonization' and ‘no TBFI', respectively. The sensitivity, specificity and positive and negative predictive values of BAL (+ fungi) were 85.1% (63/74), 81.4% (140/172), 66.3% (63/95), and 92.7% (140/151), respectively. Biopsies were performed in 78 of 95 patients, and 28 were proven TBFI with fungal elements, and 100% were BAL (+ fungi). Probable TBFI was seen in 30 of 95 patients with BAL (+ fungi), and possible TBFI (BAL(– fungi)) in 25 of 95. Among the 95 patients, microbiology revealed fungi (90.5% Candida species; 9.5% Aspergillus) in 63 (66.3%). In the controls, the colonization and no TBFI rates were 11 of 151 and 140 of 151, respectively. Observing sticky secretions, hyperaemic mucosa and whitish plaques by bronchoscopy is faster than and may be as reliable as microbiology for diagnosing TBFI. These findings are relevant for empirical antifungal therapy in suspected TBFI patients in the ICU.  相似文献   

17.
PurposeMicrobial contamination of orthodox ophthalmic preparations poses a serious threat to the user by causing ocular infections. There is no such information about unorthodox ophthalmic preparations in a medical pluralistic system such as Ghana. The aim of this study was to assess unorthodox ophthalmic medications on the Ghanaian market for possible microbial contaminations.MethodsUnorthodox ophthalmic preparations were collected across different herbal and homeopathic outlets in Ghana. A total of 27 samples were collected from the ten (10) regions in Ghana. The samples were inoculated in different culture media (Plate count Agar, Blood Agar, MacConkey Agar, Saboraud Dextrose Agar). The microorganisms isolated were identified using standard microbiological procedures and antimicrobial susceptibility was done to determine whether they were resistant or susceptible strains.ResultsAll the samples were contaminated with bacteria and the majority were contaminated with fungus. A total of forty-eight bacteria spp. was isolated thus seven different types namely: Staphylococcus aureus, Bacilli spp., Serrati spp., Escherichia coli, Pseudomonas spp., Klebsiella spp. and Shigella spp. with Staphylococcus aureus being the predominant bacteria. For fungi, a total of eleven fungi species thus four different types namely: Cephalosporium spp., Penicillium spp., Cercosporium spp. and Clasdosporium spp. with the predominant fungi being Penicillium spp. Per the class of preparations, 15 contaminants were isolated from ten (10) anti-inflammatory preparations. The fungi were all susceptible to both Ketoconazole and Fluconazole but the bacteria were resistant to all the conventional antibiotics except Ciprofloxacin and Gentamycin.ConclusionUnorthodox ophthalmic preparations found on the Ghanaian market are contaminated with bacteria and fungi of clinical importance.  相似文献   

18.
Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors (PBT) that may lead to novel therapeutic strategies. Participants of the cohort Pediatric Brain Tumor Atlas: CBTTC (CBTTC cohort), were randomly divided into training and validation cohorts. In the training cohort, Kaplan-Meier analysis and univariate Cox regression model were applied to preliminary screening of prognostic genes. The LASSO Cox regression model was implemented to build a multi-gene signature, which was then validated in the validation and CBTTC cohorts through Kaplan-Meier, Cox, and receiver operating characteristic curve (ROC) analyses. Also, gene set enrichment analysis (GSEA) and immune infiltrating analyses were conducted to understand function annotation and the role of the signature in the tumor microenvironment. An eight-gene signature was built, which was examined by Kaplan-Meier analysis, revealing that a significant overall survival difference was seen, either in the training or validation cohorts. The eight-gene signature was further proven to be independent of other clinic-pathologic parameters via the Cox regression analyses. Moreover, ROC analysis demonstrated that this signature owned a better predictive power of PBT prognosis. Furthermore, GSEA and immune infiltrating analyses showed that the signature had close interactions with immune-related pathways and was closely related to CD8 T cells and monocytes in the tumor environment. Identifying the eight-gene signature (CBX7, JADE2, IGF2BP3, OR2W6P, PRAME, TICRR, KIF4A, and PIMREG) could accurately identify patients'' prognosis and the signature had close interactions with the immunodominant tumor environment, which may provide insight into personalized prognosis prediction and new therapies for PBT patients.  相似文献   

19.
Caspofungine belongs to the echinocandin family. It is a large lipopeptide molecule that inihibits the β-(1,3)-glucan synthesis, a cell wall component. No drug target is present in mammalian cells. In vitro data and experimental studies have demonstrated that caspofungin displays antifungal activity against most Candida spp. (including isolates resistant to azoles and amphotericin B), several species of filamentous fungi, including Aspergillus and certain dimorphic fungi, such as Histoplasma, Blastomyces and Coccidioïdes. However, the molecule displays no activity in vitro against Fusarium spp., Zygomycetes (Mucor circinelloides, Absidia corymbifera, Rhizomucor pusillus, Cunninghamella bertholletiae, etc.), Rhizopus spp. and Pseudoallescheria spp. Caspofungin generated low Minimum Inhibitory Concentrations (MICs) and Minimum Effective Concentrations (MECs) against Aspergillus but not against Fusarium. Studies were conducted using several experimental models of fungal infection. They were not active at clinically relevant concentrations against Zygomycetes, Cryptococcus neoformans or Fusarium spp. Absence of antagonism in combination with other antifungal drugs suggests that combination antifungal therapy could become a general feature of echinocandins, particularly in the case of invasive aspergillosis. The results of these first clinical trials are promising but further studies are required to define the exact role of caspofungin in the arsenal of antifungal agents. New trials using caspofungin alone or in combination are necessary to demonstrate its efficacy in the treatment of mycoses due to uncommon fungi.  相似文献   

20.
Brain metastases can occur in nearly half of patients with early and locally advanced (stage I–III) non-small cell lung cancer (NSCLC). There are no reliable histopathologic or molecular means to identify those who are likely to develop brain metastases. We sought to determine if deep learning (DL) could be applied to routine H&E-stained primary tumor tissue sections from stage I–III NSCLC patients to predict the development of brain metastasis. Diagnostic slides from 158 patients with stage I–III NSCLC followed for at least 5 years for the development of brain metastases (Met+, 65 patients) versus no progression (Met, 93 patients) were subjected to whole-slide imaging. Three separate iterations were performed by first selecting 118 cases (45 Met+, 73 Met) to train and validate the DL algorithm, while 40 separate cases (20 Met+, 20 Met) were used as the test set. The DL algorithm results were compared to a blinded review by four expert pathologists. The DL-based algorithm was able to distinguish the eventual development of brain metastases with an accuracy of 87% (p < 0.0001) compared with an average of 57.3% by the four pathologists and appears to be particularly useful in predicting brain metastases in stage I patients. The DL algorithm appears to focus on a complex set of histologic features. DL-based algorithms using routine H&E-stained slides may identify patients who are likely to develop brain metastases from those who will remain disease free over extended (>5 year) follow-up and may thus be spared systemic therapy. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号