首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that release of mitochondrial cytochrome c is a critical step in the apoptosis process. We have reported that cytosolic redistribution of cytochrome c in vivo occurred after transient focal cerebral ischemia (FCI) in rats and preceded the peak of DNA fragmentation. Although the involvement of reactive oxygen species in the cytosolic redistribution of cytochrome c in vitro has been suggested, the detailed mechanism by which cytochrome c release is mediated in vivo has not yet been established. Also, the role of mitochondrial oxidative stress in cytochrome c release is unknown. These issues can be addressed using knock-out mutants that are deficient in the level of the mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD). In this study we examined the subcellular distribution of the cytochrome c protein in both wild-type mice and heterozygous knock-outs of the Mn-SOD gene (Sod2 -/+) after permanent FCI, in which apoptosis is assumed to participate. Cytosolic cytochrome c was detected as early as 1 hr after ischemia, and correspondingly, mitochondrial cytochrome c showed a significant reduction 2 hr after ischemia (p < 0.01). Cytosolic accumulation of cytochrome c was significantly higher in Sod2 -/+ mice compared with wild-type animals (p < 0.05). N-benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone (z-VAD.FMK), a nonselective caspase inhibitor, did not affect cytochrome c release after ischemia. A significant amount of DNA laddering was detected 24 hr after ischemia and increased in Sod2 -/+ mice. These data suggest that Mn-SOD blocks cytosolic release of cytochrome c and could thereby reduce apoptosis after permanent FCI.  相似文献   

2.
3.
BACKGROUND AND PURPOSE: We examined the cytoprotective effect of the lipid peroxidation inhibitor tirilazad mesylate (U74006F) in rodent models of neocortical infarction induced by transient and permanent focal cerebral ischemia. METHODS: Wistar rats (experiment 1) and spontaneously hypertensive rats (experiment 2) were subjected to 2 hours of transient middle cerebral artery occlusion followed by 22 hours of reperfusion and pretreated with 10 mg/kg i.p. tirilazad, vehicle, or saline. Repeat doses were given at 4 and 10 hours after reperfusion. Spontaneously hypertensive rats were also subjected to permanent middle cerebral artery occlusion and either pretreated with tirilazad, vehicle, or saline intraperitoneally (experiment 3) or treated with either tirilazad or vehicle intravenously after ischemia (experiment 4). Cortical infarct volumes were measured 24 hours after the onset of either transient or permanent ischemia, and changes in core regional cerebral blood flow were monitored with laser Doppler flowmetry. RESULTS: Tirilazad reduced infarct volume after transient ischemia by 40% in Wistar rats (p = 0.08) (experiment 1) and 23% in spontaneously hypertensive rats (p less than 0.05) (experiment 2) but did not reduce infarction after permanent ischemia whether it was given intraperitoneally (experiment 3) or intravenously (experiment 4). Ischemic core blood flows were not affected during ischemia, nor were they affected during reperfusion after transient ischemia. CONCLUSIONS: Tirilazad reduces cortical infarction in transient but not permanent ischemia, an effect not related to improvement in regional cerebral blood flow. Tirilazad might prove to be useful as an adjuvant therapy after successful thrombolysis in acute stroke patients.  相似文献   

4.
ATP, the ligand of P2X receptors, is a candidate of neurotransmitter or co-transmitter in the peripheral and the central nervous systems. Anatomical studies have revealed the wide distribution of P2X receptors in the brain. So far, P2X-mediated small synaptic responses have been recorded in some brain regions. To determine the physiological significance of postsynaptic ATP receptors in the brain, we have investigated the P2X responses in rat dissociated hypothalamic arcuate neurons by using the patch-clamp technique. ATP evoked inward currents in a concentration-dependent manner (EC(50)=42 microM) at a holding potential of -70 mV. The current-voltage relationship showed a marked inward rectification starting around -10 mV. Although neither 300 microM alphabeta-methylene-ATP nor 300 microM betagamma-methylene-ATP induced any currents, 100 microM ATPgammaS and 100 microM 2-methylthio-ATP evoked inward currents of which amplitude was about 60% of the control currents evoked by 100 microM ATP. PPADS, one of P2 receptor antagonists, inhibited the ATP-evoked currents in a time- and a concentration-dependent manners (IC(50)=19 microM at 2 min). Permeant Ca(2+) inhibited the ATP-evoked currents in the range of millimolars (IC(50)=7 mM); however, Cd(2+) (1-300 microM), a broad cation channel blocker, facilitated the currents with slow off-response. Zn(2+) in the range of 1-100 microM facilitated the currents whereas Zn(2+) at the concentrations over 100 microM inhibited the currents. These observations suggest that functional P2X receptors are expressed in the hypothalamic arcuate nucleus. The most likely subunit combinations of the P2X receptors are P2X(2)-homomultimer and P2X(2)/P2X(6)-heteromultimer.  相似文献   

5.
6.
7.
Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.  相似文献   

8.
Evolution of brain infarction after transient focal cerebral ischemia in mice.   总被引:21,自引:0,他引:21  
The evolution of brain infarction after transient focal cerebral ischemia was studied in mice using multiparametric imaging techniques. One-hour focal cerebral ischemia was induced by occluding the middle cerebral artery using the intraluminal filament technique. Cerebral protein synthesis (CPS) and the regional tissue content of adenosine triphosphate (ATP) were measured after recirculation times from 0 hours to 3 days. The observed changes were correlated with the expression of the mRNAs of hsp-70, c-fos, and junB, as well as the distribution of DNA double-strand breaks, visualized by TUNEL. At the end of 1 hour of ischemia, protein synthesis was suppressed in a larger tissue volume than ATP in accordance with the biochemical differentiation between core and penumbra. Hsp70 mRNA was selectively expressed in the cortical penumbra, whereas c-fos and junB mRNAs were increased both in the lateral part of the penumbra and in the ipsilateral cingulate cortex with normal metabolism. During reperfusion after withdrawal of the intraluminal filament, suppression of CPS persisted except in the most peripheral parts of the middle cerebral artery territory, in which it recovered between 6 hours and 3 days. ATP, in contrast, returned to normal levels within 1 hour but secondarily deteriorated from 3 hours on until, between 1 and 3 days, the ATP-depleted area merged with that of suppressed protein synthesis leading to delayed brain infarction. Hsp70 mRNA, but not c-fos and junB, was strongly expressed during reperfusion, peaking at 3 hours after reperfusion. TUNEL-positive cells were detected from 3 hours on, mainly in areas with secondary ATP depletion. These results stress the importance of an early recovery of CPS for the prevention of ischemic injury and suggest that TUNEL is an unspecific response of delayed brain infarction.  相似文献   

9.
Although protective effects of heat shock protein 70 (HSP70) overproduction after ischemic injury have been shown both in vitro and in vivo in neurons, the mechanisms are not fully understood. The hypothesis of this study is that transgenic mice overexpressing HSP70 (HSP70 Tg) show reduced mitochondrial cytochrome c release into cytosol and diminished apoptotic cell death after permanent focal ischemia in comparison to wild-type (Wt) mice.Permanent middle cerebral artery occlusion (pMCAO) was produced by intraluminal suture cannulation in HSP70 Tg and Wt mice. DNA fragmentation was evaluated with DNA gel electrophoresis and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) 24 h after pMCAO. Mitochondrial cytochrome c release into cytosol was assessed with Western blotting and immunohistochemistry 4 h after pMCAO. Cytochrome c levels in the cytosolic fraction were significantly reduced and immunoreactivity of cytochrome c in both cortex and striatum was significantly less in HSP70 Tg mice compared with Wt mice after 4-h pMCAO. DNA laddering, which was clearly observed in Wt mice, was markedly attenuated in HSP70 Tg mice 24 h after pMCAO. The number of TUNEL-positive cells was significantly reduced in HSP70 Tg mice compared with Wt mice. Results are consistent with an association between overexpression of HSP70 and reduction of cytochrome c release with subsequent DNA fragmentation. This may contribute to the HSP70-mediated neuroprotective effect observed after cerebral ischemia.  相似文献   

10.
Stroke is the third leading cause of death in the US, with a prevalence of 750,000 patients per year, and a social cost estimated at $50 billion. Current therapeutics are targeted at restoring blood flow rather than on preventing the actual mechanisms associated with neuronal cell death. Here, we show that, following transient (2 h) middle cerebral artery occlusion (tMCAO) in male, Wistar rats, neuronal damage determined using MAP-2 staining increased progressively after the tMCAO. Notably, such neuronal degeneration was first associated with a decrease in p-Akt in both the focus and penumbra of the infarct region and, later with an increase in cytosolic cytochrome C levels in cortical neurons in the infarct area. These findings implicate that Akt alterations and consequent release of cytochrome C are involved in neuronal death. To further address this issue, NXY-059 (disodium 4-[(tert.-butylimino)methyl]benzene-1,3-disulfonate N-oxide) administered i.v. (30 mg/kg bolus, followed by 30 mg/kg/h infusion for up to 24 h), commencing 1 h after reperfusion, not only prevented the increase in infarct area but also attenuated the postreperfusion increase in neuronal cytosolic cytochrome C and the postperfusion decrease in neuronal p-Akt. Thus, NXY-059, by preventing mitochondrial cytochrome C release by maintaining activation of the Akt pathway, appears to protect neurons from damage after ischemia.  相似文献   

11.
12.
13.
Mild hypothermia protects the brain from ischemia, but the underlying mechanisms of this effect are not well known. The authors previously found that hypothermia reduces the density of apoptotic cells, but it is not certain whether temperature alters associated biochemical events. Mitochondrial release of cytochrome c has recently been shown to be a key trigger in caspase activation and apoptosis via the intrinsic pathway. Using a model of transient focal cerebral ischemia, the authors determined whether mild hypothermia altered expression of Bcl-2 family proteins, mitochondrial release of cytochrome c, and caspase activation. Mild hypothermia significantly decreased the amount of cytochrome c release 5 hours after the onset of ischemia, but mitochondrial translocation of Bax was not observed until 24 hours. Mild hypothermia did not alter Bcl-2 and Bax expression, and caspase activation was not observed. The present study provides the first evidence that intraischemic mild hypothermia attenuates the release of cytochrome c in the brain, but does not appear to affect other biochemical aspects of the intrinsic apoptotic pathway. They conclude that necrotic processes may have been interrupted to prevent cytochrome c release, and that the ameliorative effect of mild hypothermia may be a result of maintaining mitochondrial integrity. Furthermore, the authors show it is unlikely that mild hypothermia alters the intrinsic apoptotic pathway.  相似文献   

14.
Zhao Z  Cheng M  Maples KR  Ma JY  Buchan AM 《Brain research》2001,909(1-2):46-50
Free radicals have gained wide acceptance as mediators of cerebral ischemic injury. It has previously been reported that a spin trap nitrone, alpha-phenyl-N-tert-butyl nitrone (PBN), can reduce infarct volumes in rats subjected to either permanent or transient focal cerebral ischemia. A recent study has demonstrated that NXY-059, a novel free radical trapping nitrone compound, has a neuroprotective effect against transient focal cerebral ischemia. This study was designed to determine the effect of NXY-059 in a rodent model of permanent focal cerebral ischemia. Male spontaneously hypertensive rats were subjected to permanent middle cerebral artery occlusion (MCAO) by placement of a microaneurysm clip on the middle cerebral artery (MCA). Animals were divided into three groups: (1) physiological saline given as a 1 ml/kg i.v. bolus administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 0.5 ml/h of physiological saline for 24 h (n=10); (2) 30 mg/kg, 1 ml/kg, i.v. bolus of NXY-059 dissolved in physiological saline administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 30 mg/kg/h, 0.5 ml/h, of NXY-059 for 24 h (n=9); (3) 60 mg/kg, 1 ml/kg, i.v. bolus of NXY-059 dissolved in physiological saline administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 60 mg/kg/h, 0.5 ml/h, of NXY-059 for 24 h (n=12). Infarction was quantified after a survival period of 24 h. Differences in infarct volume were examined with one-way ANOVA following Dunnet's multiple comparison test. The percentage of cortical infarction in the saline control group was 22.6 +/- 6.8% (mean+/-S.D.) of contra-lateral hemisphere, and in the 30 mg/kg/h NXY-059-treated group was 17.4% +/- 6.8% (NS). Plasma concentration (microM/l) of NXY-059 in the 30 mg/kg/h group was 80.2 +/- 52.2 (n=9), while in the 60 mg/kg/h group plasma concentration (microM/l) of NXY-059 was 391.0 +/- 207.0 (n=10). Infarction in the 60 mg/kg/h NXY-059-treated group was significantly reduced (P=0.009) to 14.5 +/- 5%. Our preliminary data demonstrate that administration of NXY-059 (60 mg/kg/h for 24 h) ameliorates cortical infarction in rats subjected to permanent focal cerebral ischemia with 24 h survival.  相似文献   

15.
基质金属蛋白酶抑制剂KB-R7785对鼠局灶脑缺血的保护作用   总被引:8,自引:6,他引:8  
目的 研究表明,脑缺血后基质金属蛋白酶(MMPs)可以破坏血脑屏障、促进脑水肿的形成及炎性细胞的浸润、加快神经细胞的死亡,从而加重缺血性脑损害。本研究观测MMPs抑制剂、KB-R7785对缺血性脑卒中的保护作用。方法 采用线段血管内栓塞大脑中动脉(MCAO)获得小鼠脑缺血模型。观察不同时间、剂量KB-R7785对24h后脑梗塞灶体积的影响,同时应用酶谱印迹技术检测缺血后脑组织中MMPs活性。结果 酶谱印迹显示MMP-9活性在缺血后6h表达增强,24h后达峰值。MCAO前30 min单次注射KB-R7785(100mg·kg-1)可显著抑制 MMP-9的活性;单次注射或缺血后1及4.5h分次注射KB-R7785(100mg·kg-1)均可明显减小脑梗塞体积(P<0.01)。结论MMP-9可促进脑梗塞形成;MMPs抑制剂、KB-R7785具有改善缺血性脑损伤作用。  相似文献   

16.
We investigated the temporal course of microglia activation in different brain regions after permanent middle cerebral artery (MCA) occlusion in mice and compared this microglia response with the appearance of apoptotic cells, Microglia activation and morphological changes of microglial cells were visualized using an immunohistochemical method with a polyclonal antibody recognizing the mouse CR3 complement receptor. Cells showing morphological and biochemical features of apoptosis were identified using the terminal deoxynucleotidyl transferase nick end-labeling (TUNEL) method and light microscopy. As early as 30 min after onset of MCA occlusion activated microglia with hypertrophic cell bodies and stout processes were detected in the periphery of the ischemic lesion as identified by diffusion-weighted magnetic resonance imaging. A wider distribution and a progressive increase in the number of activated microglia was found with increasing time. Only few TUNEL-positive cells with apoptotic features were observed within the lesion area at 6 h after onset of cerebral ischemia. From 12 h after MCA occlusion onward a tremendous increase in the number of TUNEL-positive cells was found. Within the thalamus from 24 h onward microglia cells with few processes, irregular morphology and fragmented appearance were detected. Microglia activation in the thalamus progressed up to 4 weeks after MCA occlusion, but had declined after 90 days. Neuronal degeneration in the thalamus as determined by anti-neuronal nuclei immunohistochemistry progressed from 6 days after MCA occlusion onward. Only a few TUNEL-positive cells were found in the thalamus. In summary, microglia activation both in the primary cortical lesion area and in the secondarily affected thalamus preceded the manifestation of tissue injury. These observations encourage further studies on the role of microglia in focal cerebral ischemia. Received: 31 July 1997 / Revised, accepted: 12 January 1998  相似文献   

17.
18.
BACKGROUND AND PURPOSE: DNA damage and its repair mechanism are thought to be involved in ischemia/reperfusion injury in the brain. We have previously shown that apurinic/apyrimidinic endonuclease (APE/Ref-1), a multifunctional protein in the DNA base excision repair pathway, rapidly decreased after transient focal cerebral ischemia (FCI) before the peak of DNA fragmentation. To further investigate the role of reactive oxygen species in APE/Ref-1 expression in vivo, we examined the expression of APE/Ref-1 and DNA damage after FCI in wild-type and transgenic mice overexpressing copper-zinc superoxide dismutase. METHODS: Transgenic mice overexpressing copper-zinc superoxide dismutase and wild-type littermates were subjected to 60 minutes of transient FCI by intraluminal blockade of the middle cerebral artery. APE/Ref-1 protein expression was analyzed by immunohistochemistry and Western blot analysis. DNA damage was evaluated by gel electrophoresis and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL). RESULTS: A similar level of APE/Ref-1 was detected in the control brains from both groups. APE/Ref-1 was significantly reduced 1 hour after transient FCI in both groups, whereas the transgenic mice had less reduction than that seen in wild-type mice 1 and 4 hours after FCI. DNA laddering was detected 24 hours after FCI and was decreased in transgenic mice. Double staining with APE/Ref-1 and TUNEL showed that the neurons that lost APE/Ref-1 immunoreactivity became TUNEL positive. CONCLUSIONS: These results suggest that reactive oxygen species contribute to the early decrease of APE/Ref-1 and thereby exacerbate DNA fragmentation after transient FCI in mice.  相似文献   

19.
Delayed treatment with nicotinamide (NAm) reduces infarction induced by middle cerebral artery occlusion (MCAO) in rats. This study explored some potential mechanisms by which delayed NAm treatment may confer protection in the brain of Sprague-Dawley rats following permanent MCAO (pMCAO). NAm (500 mg/kg) or vehicle was given 2 h after the onset of pMCAO. Cortical microperfusion, brain and rectal temperature were serially measured. Neurobehavioral examinations were performed at 24 h post-ischemia followed by sacrifice for histologic assessment. Some rats were also sacrificed at 4 h post-ischemia for analyses of ATP, ADP, AMP, and adenosine. Permanent MCAO induced spontaneous hyperthermia and a sharp decrease in cortical microperfusion, ATP concentration, and the sum of adenine nucleotides (p < 0.05). At 4 h post-ischemia, NAm improved ATP recovery, the sum of adenine nucleotides (p < 0.05) and attenuated the ischemia-induced systemic hyperthermia (p < 0.05) without affecting brain temperature or cortical microperfusion. At 24 h, NAm improved cortical microperfusion in the ischemic hemisphere and reduced total infarct volume (p < 0.05), but did not affect behavioral scores. The data suggest that NAm attenuated brain damage following pMCAo initially by improving cerebral bioenergetic metabolism during the sub-acute phase of ischemia, followed by a delayed improvement in microvascular perfusion.  相似文献   

20.
目的 探讨促红细胞生成素 (Erythropoietin ,EPO)的神经保护机制。方法 采用 4 VO法制作大鼠全脑缺血模型。将SD大鼠随机分为假手术组、生理盐水组、EPO组。全脑缺血前 3h ,EPO组大鼠脑室立体定向注射重组人促红细胞生成素 (recombinantHumanErythropoietin ,rHuEPO) ,生理盐水组则给予生理盐水 ,假手术组只进行假手术处理。观察缺血后 2 4h海马CA1区细胞色素C(CytochromeC ,CytC)的变化 ,及缺血后 72h海马CA1区细胞凋亡情况。结果 EPO组海马CA1区呈现点状分布的CytC表达较生理盐水组增强 (P <0 .0 1) ,并且较生理盐水组呈现较少的凋亡细胞 (P <0 .0 1)。结论 EPO预处理可以抑制海马CA1区CytC从线粒体向胞浆释放及减少神经元凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号