首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, only a limited number of promoter sequences have been described to drive transgene expression in the disease vector Aedes aegypti. We sought to increase this repertoire by characterizing the ability of upstream sequences derived from the Ae. aegypti UbL40 and polyubiquitin genes to drive the expression of marker proteins. Both genomic fragments were able to drive robust expression of luciferase in cultured mosquito cells. Following Mos1‐transformation, the UbL40 promoter drove strong expression of a fluorescent marker in early larvae and in ovaries, while the polyubiquitin promoter drove robust EGFP expression in all stages of development, including constitutive expression throughout the midgut. These promoter fragments provide two new expression profiles for future Ae. aegypti genetic experiments.  相似文献   

2.
Gene silencing using RNA interference (RNAi) has become a widely used genetic technique to study gene function in many organisms. In insects, this technique is often applied through the delivery of dsRNA. In the adult female Aedes aegypti, a main vector of human-infecting arboviruses, efficiency of gene silencing following dsRNA injection varies greatly according to targeted genes. Difficult knockdowns using dsRNA can thus hamper gene function analysis. Here, by analysing silencing of three different genes in female Ae. aegypti (p400, ago2 and E75), we show that gene silencing can indeed be dsRNA sequence dependent but different efficiencies do not correlate with dsRNA length. Our findings suggest that silencing is likely also gene dependent, probably due to gene-specific tissue expression and/or feedback mechanisms. We demonstrate that use of high doses of dsRNA can improve knockdown efficiency, and injection of a transfection reagent along with dsRNA reduces the variability in efficiency between replicates. Finally, we show that gene silencing cannot be achieved using siRNA injection in Ae. aegypti adult females. Overall, this work should help future gene function analyses using RNAi in adult females Ae. aegypti, leading toward a better understanding of physiological and infectious processes.  相似文献   

3.
Aedes aegypti is a major vector for arboviruses such as dengue, chikungunya and Zika viruses. During acquisition of a viremic bloodmeal, an arbovirus infects mosquito midgut cells before disseminating to secondary tissues, including the salivary glands. Once virus is released into the salivary ducts it can be transmitted to another vertebrate host. The midgut is surrounded by a basal lamina (BL) in the extracellular matrix, consisting of a proteinaceous mesh composed of collagen IV and laminin. BL pore size exclusion limit prevents virions from passing through. Thus, the BL probably requires remodelling via enzymatic activity to enable efficient virus dissemination. Matrix metalloproteinases (MMPs) are extracellular endopeptidases that are involved in remodelling of the extracellular matrix. Here, we describe and characterize the nine Ae. aegypti encoded MMPs, AeMMPs 1?9, which share common features with other invertebrate and vertebrate MMPs. Expression profiling in Ae. aegypti revealed that Aemmp4 and Aemmp6 were upregulated during metamorphosis, whereas expression of Aemmp1 and Aemmp2 increased during bloodmeal digestion. Aemmp1 expression was also upregulated in the presence of a bloodmeal containing chikungunya virus. Using polyclonal antibodies, AeMMP1 and AeMMP2 were specifically detected in tissues associated with the mosquito midgut.  相似文献   

4.
5.
Green fluorescent protein as a genetic marker in transgenic Aedes aegypti   总被引:4,自引:0,他引:4  
We report here the use of the enhanced green fluorescent protein (EGFP) from the jellyfish, Aequorea victoria, as a genetic marker for the genetic transformation of mosquitoes. The EGFP gene, under the control of the actin5C promoter of Drosophila melanogaster was inserted into the Hermes transposable element. Preblastoderm embryos of a wild-type strain of the yellow fever mosquito, Aedes aegypti, were microinjected with this plasmid, together with a helper plasmid containing the Hermes transposase placed under the control of the D. melanogaster hsp70 promoter. Somatic EGFP expression was observed during early instars in approximately one-half of all G0 individuals. Two G1 individuals arising from a G0 female displayed high levels of EGFP gene expression during all stages of development. EGFP was transmitted in a Mendelian fashion to the G2 and G3 generations and molecular analysis confirmed the presence of the Hermes[actin5C:EGFP] gene in these insects. These results clearly demonstrate that EGFP can be used as an effective genetic marker in wild-type Ae. aegypti and most likely in other mosquito species as well.  相似文献   

6.
Aedes aegypti is the primary vector of a number of human pathogens including dengue virus (DENV) and Zika virus (ZIKV). Ae. aegypti acquires these viruses during the processing of bloodmeals obtained from an infected vertebrate host. Vertebrate blood contains a number of factors that have the potential to modify virus acquisition in the mosquito. Interestingly, low density lipopolyprotein (LDL) levels are decreased during severe DENV infection. Accordingly, we hypothesized that LDL is a modifiable factor that can influence flavivirus acquisition in the mosquito. We found that LDL is endocytosed by Ae. aegypti cells in a dynamin‐dependent manner. LDL is also endocytosed by midgut epithelial cells and accumulates at the luminal midgut epithelium during bloodmeal digestion. Importantly, pretreatment with LDL, but not high density lipopolyprotein (HDL), significantly inhibited both DENV and ZIKV infection in vitro, and LDL inhibited ZIKV infection in vivo. This study identifies human LDL or ‘bad cholesterol’ as a modifiable factor that can inhibit flavivirus acquisition in Ae. aegypti. Identification of modifiable blood factors and critical cellular interactions that mediate pathogen acquisition may lead to novel strategies to disrupt the transmission cycle of vector‐borne diseases.  相似文献   

7.
8.
9.
The real-time, colorimetric detection of analytes via aptamer–gold nanoparticle technology has proven to be an important, emerging technique within the medical field. Of global health importance, the ability to detect vector mosquito species, such as the Aedes (Ae.) aegypti mosquito, and transmitted arboviruses, such as Zika virus, is paramount to mosquito control and surveillance efforts. Herein, we describe the detection of Ae. aegypti salivary protein for vector identification and the detection of Zika virus to assess mosquito infection status by aptamer–gold nanoparticle conjugates. Key to optimization of these diagnostics were gold nanoparticle capping agents and aptamer degree of labelling (i.e., the amount of aptamers per gold nanoparticle). In the present study, detection was achieved for as little as 10 ng Ae. aegypti salivary protein and 1.0 × 105 PFU live Zika virus. These aptamer–gold nanoparticle conjugate diagnostics could one day prove to be useful as deployable nano-based biosensors that provide easy-to-read optical read outs through a straightforward red-to-blue colour change either within a diagnostic solution or atop a card/membrane-based biosensor.

Colorimetric detection of arboviruses and vector mosquito species. (A) Aptamer-gold nanoparticle conjugates, (B) mosquito salivary protein, (C) Zika envelope protein, (D) visible color change, (E) imbibed diagnostic and (F) diagnostic cards.  相似文献   

10.
Re‐emergence of vector‐borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P‐glycoproteins (P‐gps) are ATP‐dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P‐glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P‐gps. The basal ATPase activity of ATP‐binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P‐gp (AaegP‐gp) gene expression was detected in temephos‐treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP‐gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)‐mediated silencing of the AaegP‐gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide‐induced P‐gp expression can be involved in the modulation of insecticide efflux.  相似文献   

11.
RNA interference (RNAi) is the major innate antiviral pathway in Aedes aegypti that responds to replicating arboviruses such as dengue virus (DENV) and Sindbis virus (SINV). On the one hand, the mosquito's RNAi machinery is capable of completely eliminating DENV2 from Ae. aegypti. On the other, transient silencing of key genes of the RNAi pathway increases replication of SINV and DENV2, allowing the viruses to temporally overcome dose‐dependent midgut infection and midgut escape barriers (MEB) more efficiently. Here we expressed Flock house virus B2 (FHV‐B2) from the poly‐ubiquitin (PUb) promoter in Ae. aegypti using the ΦC31 site‐directed recombination system to investigate the impact of transgene‐mediated RNAi pathway suppression on infections with SINV‐TR339eGFP and DENV2‐QR94, the latter of which has been shown to be confronted with a strong MEB in Ae. aegypti. FHV‐B2 was constitutively expressed in midguts of sugar‐ and blood‐fed mosquitoes of transgenic line PUbB2 P61. B2 over‐expression suppressed RNA silencing of carboxypeptidase A‐1 (AeCPA‐1) in midgut tissue of PUbB2 P61 mosquitoes. Following oral challenge with SINV‐TR339eGFP or DENV2‐QR94, mean titres in midguts of PUbB2 P61 females were significantly higher at 7 days post‐bloodmeal (pbm) than in those of nontransgenic control mosquitoes. At 14 days pbm, infection rates of carcasses were significantly increased in PubB2 P61 mosquitoes infected with SINV‐TR339eGFP. Following infection with DENV2‐QR94, midgut infection rates were significantly increased in the B2‐expressing mosquitoes at 14 days pbm. However, B2 expression in PUbB2 P61 did not increase the DENV2‐QR94 dissemination rate, indicating that the infection phenotype was not primarily controlled by RNAi.  相似文献   

12.
Study of the human antibody (Ab) response to Aedes salivary proteins can provide new biomarkers to evaluate human exposure to vector bites. The identification of genus‐ and/or species‐specific proteins is necessary to improve the accuracy of biomarkers. We analysed Aedes albopictus immunogenic salivary proteins by 2D immunoproteomic technology and compared the profiles according to human individual exposure to Ae. albopictus or Ae. aegypti bites. Strong antigenicity to Ae. albopictus salivary proteins was detected in all individuals whatever the nature of Aedes exposure. Amongst these antigenic proteins, 68% are involved in blood feeding, including D7 protein family, adenosine deaminase, serpin and apyrase. This study provides an insight into the repertoire of Ae. albopictus immunogenic salivary proteins for the first time.  相似文献   

13.
FISH landmarks for Aedes aegypti chromosomes   总被引:1,自引:0,他引:1  
Aedes aegypti metaphase chromosome landmarks have been developed so that each chromosome of the haploid genome can be unambiguously identified and oriented by fluorescence In situ hybridization (FISH) and digital imaging microscopy. The FISH tags were derived from three cosmids that contain repetitive Ae. aegypti sequences and their unique FISH tagging characteristics are demonstrated. The sequence of the three chromosomal tags revealed that the chromosome 1 tag is an 18S fragment from the ribosomal cistron, and the other two chromosomal tags are repeats found in Ae, aegypti with no apparent similarity to known sequences. A single plasmid that contains the three chromosome tag sequences has been constructed to simplify future FISH physical mapping.  相似文献   

14.
15.
16.
Aedes aegypti, Anopheles subpictus and Culex quinquefasciatus are the principal vector mosquitoes globally, especially in tropical and subtropical countries. It is very essential to control the mosquito population to prevent mosquito-borne disease transmission. The major goal of the present study was to isolate an alternative for the microbial mosquito control agents like Bacillus thuringiensis and Bacillus sphaericus. The spore forming soil bacteria isolated from Burdwan, West Bengal, India were assessed for mosquitocidal potential. One potent mosquitocidal isolate was characterized by phenotypic, biochemical and 16S rDNA sequence (GU244410) analysis. The isolate was identified as Aneurinibacillus aneurinilyticus. Five ml bacterial suspension of A. aneurinilyticus (22 × 109 colony forming unit/milliliter)/100 ml water resulted in 34, 59.6 and 100 % mortality of Ae. aegypti, Cx. quinquefasciatus and An. subpictus larvae respectively within 72 h, whereas, 10 ml suspension having same concentration showed 95 and 97 % death of Ae. aegypti and Cx. quinquefasciatus larvae respectively within the same time period.  相似文献   

17.
AaegR4_1 and AgamR4_1 are the sole R4 clade non‐long terminal repeat (non‐LTR) retrotransposons in Aedes aegypti and Anopheles gambiae, two species that diverged approximately 145–200 million years ago. Twelve full‐length copies were found in Ae. aegypti and have less than 1% nucleotide (nt) divergence, suggesting recent activity on an evolutionary time scale. Five of these copies have intact open reading frames and the 3.6 kb open reading frame of AaegR4_1.1 has 78% nt identity to AgamR4_1.1. No intact copies were found in An. gambiae. Searches of 25 genomic databases for 22 mosquito species from three genera revealed R4 clade representatives in Aedes and Anopheles genera but not in Culex. Interestingly, these elements are present in all six species of the An. gambiae species complex that were searched but not in 13 other anopheline species. These results combined with divergence vs. age analysis suggest that horizontal transfer is the most likely explanation for the low divergence between R4 clade retrotransposon sequences of the divergent mosquito species from the Aedes and Anopheles genera. This is the first report of the horizontal transfer of an R4 clade non‐LTR retrotransposon and the first report of the horizontal transfer of a non‐LTR retrotransposon in mosquitoes.  相似文献   

18.
Plasmid libraries enriched for microsatellites were generated in the tick, Ixodes scapularis and in the mosquito Aedes aegypti. Libraries were enriched for genomic DNA containing (AC)n, (AG)n, (ATG)n, (CAG)n, (TAG)n, (AAT)n, (CTGY)n or (GATA)n motifs. Clones containing each motif were sequenced in both species for PCR primer design. In I. scapularis, most primers amplified a single locus and alleles varied in the number of microsatellite repeats and segregated as codominant markers. In contrast (AC)n, (TAG)n and (GATA)n microsatellite loci extracted from Ae. aegypti appeared to be members of multigene families. A primer pair designed to amplify a particular TAG locus instead amplified many independently segregating loci, some of which did not contain TAG microsatellites. Alleles at the TAG loci segregated as dominant markers and there was limited evidence for length variation among alleles. These results suggest that microsatellite loci are not universally abundant in arthropod genomes nor do alleles always segregate as codominant markers.  相似文献   

19.
Mosquitoes must feed on vertebrate blood for egg development. As a consequence, some mosquito species are vectors for pathogens that cause devastating diseases in humans. Hence, understanding the mechanisms that control egg developmental cycles is important for developing novel approaches for the control of mosquito‐borne diseases. The unfolded protein response (UPR) is a cellular stress response related to endoplasmic reticulum (ER) stress. The UPR is activated in response to an accumulation of unfolded or misfolded proteins in the ER. Massive proteins have been shown to be produced during egg development, and it is obvious that unfolded or misfolded proteins may arise during vitellogenesis. It has been shown that autophagy in the mosquito fat body plays a central role in the progression of gonadotrophic cycles in the mosquito Aedes aegypti. However, the molecular mechanisms underlying the induction of UPR and the correlation between UPR and autophagy remain unclear. Here, we demonstrate that autophagy is activated during vitellogenesis and that the activation of autophagy is correlated with the UPR. We also show that the expressions of UPR and autophagy can be induced in an in vitro fat body culture system through an amino acid treatment. In addition, the expressions of UPR, autophagy‐specific markers and vitellogenin were also induced during dithiothreitol treatment. Interestingly, the silencing of UPR‐related genes significantly reduced the expression of autophagy‐specific markers and inhibited mosquito fecundity. Taken together, we conclude that autophagy‐mediated egg production in the mosquito A. aegypti is regulated by UPR.  相似文献   

20.
The codon bias of two Aedes mosquito species was examined using a sign test. In general, there appeared to be some preference for C + G at the third base position, although this was not statistically significant. While amino acids such as phenylalanine and tyrosine clearly displayed biases, others such as valine and serine appeared to have little or no bias for any particular codon. Three homologous genes of Aedes aegypti and Drosophila melanogaster were compared using the chi-square test and the codon bias of the two species compared. Drosophila melanogaster was found to have a much stronger bias for C + G at the third base position compared to Aedes. The implications and usefulness of the codon bias are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号