首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Although human postinflammatory dysmotility is known, so far animal studies have primarily investigated changes during inflammation. Here, we focused on postinflammatory changes in rat jejunal myenteric plexus and jejunal motility. Evolution of ethanol/2,4,6-tri-nitrobenzene sulphonic acid (TNBS)-induced inflammation was assessed histologically and by measuring myeloperoxidase activity (MPO). Electromyography and immunohistochemistry were performed 1 week after ethanol/TNBS and also after N(G)-nitro-L-arginine methyl ester (L-NAME) administration. Ethanol/TNBS induced a transient inflammation, with normalization of MPO and histological signs of an early phase of recovery after 1 week. The number of cholinergic neurones was not altered, but myenteric neuronal nitric oxide synthase (nNOS)-immunoreactivity was significantly lower in the early phase of recovery after TNBS compared with water (1.8 +/- 0.2 vs 3.5 +/- 0.2 neurones ganglion(-1), P < 0.001). Interdigestive motility was disrupted with a loss of phase 1 quiescence, an increase of migrating myoelectric complex cycle length, a higher number of non-propagated activity fronts and a decrease of adequately propagated phase 3 s after TNBS. Administration of L-NAME resulted in a similar disruption of interdigestive motility patterns. In the early phase of recovery after ethanol/TNBS-induced jejunal inflammation, a loss of motor inhibition occurs due to a decrease of myenteric nNOS activity. These observations may provide a model for early postinflammatory dysmotility syndromes.  相似文献   

2.
Persistent changes in gastrointestinal motility frequently accompany the resolution of colitis, through mechanisms that remain to be determined. Trinitrobenzene sulfonic acid (TNBS) colitis in the guinea pig decreases the rate of propulsive motility, causes hyperexcitability of AH neurons, and induces synaptic facilitation. The changes in motility and AH neurons are sensitive to cyclooxygenase-2 (COX-2) inhibition. The aim of this investigation was to determine if the motility and neurophysiological changes persist following recovery from colitis. Evaluations of inflammation, colonic motility and intracellular electrophysiology of myenteric neurons 8 weeks after TNBS administration were performed and compared to matched control conditions. Myeloperoxidase levels in the colons were comparable to control levels 56 days after TNBS treatment. At this time point, the rate of colonic motility was decreased relative to controls following treatment with TNBS alone or TNBS plus a COX-2 inhibitor. Furthermore, the electrical properties of AH neurons and fast synaptic potentials in S neurons were significantly different from controls and comparable to those detected during active inflammation. Collectively, these data suggest that altered myenteric neurophysiology initiated during active colitis persists long term, and provide a potential mechanism underlying altered gut function in individuals during remission from inflammatory bowel disease.  相似文献   

3.
Substance P (SP) and its receptors NK1 and NK2 are widely expressed in the intestinal wall by neurones, interstitial cells of Cajal (ICC) and smooth muscle cells. Changes in SP and/or its NK receptors have been documented during experimental inflammation in animals or inflammatory bowel diseases in humans, but the data concern the acute phase of the inflammatory process. We determined immunohistochemically whether NK receptors and SP were altered in the muscle coat during jejunal inflammation induced by the nematode Nippostrongylus brasiliensis and whether these alterations persisted when inflammation had spontaneously resolved 30 days postinfection. An ultrastructural analysis was also conducted on ICC, nerves and muscle. At day 14, when inflammation peaked, there was a reduction in NK1 receptors in myenteric neurones and in SP-immunoreactive nerve endings. There were also ultrastructural anomalies in synaptic vesicles and NK2 receptor loss in the circular muscle layer. The SP decrease persisted at day 30, whereas neurones and circular muscle cells re-expressed NK1 and NK2 receptors, respectively. The ICC at the deep muscular plexus, located near to the inflammatory site, underwent alterations leading to their complete loss at day 30. These morphological changes are probably associated with impairment in tachykinergic control of jejunal functions leading to the alterations of motility and sensitivity to distension already described in these animals.  相似文献   

4.
Previously, we demonstrated that intestinal inflammation leads to a postinflammatory loss of nitric oxide synthase (NOS)-expressing myenteric neurones and motility disturbances. Here, we investigated whether high NO concentrations could be responsible for the decrease in NOS neurones. Myenteric neurone cultures, prepared from guinea-pig small intestine, were incubated with NO donors [sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1)]. After fixation, NOS neurones were identified by NADPH diaphorase staining and neurone-specific enolase (NSE)-positive neuronal content was assessed with an enzyme-linked immunosorbent assay (ELISA)-based method. Twenty-four hours incubation with SIN-1 (10(-3) mol L(-1)) or SNP (10(-4) mol L(-1) or higher) reduced the number of NADPH diaphorase-positive neurones. SNP incubation did not affect the NSE-positive neuronal content. Shorter incubations (SNP: 4 and 12 h) had no significant effect. The SNP-induced reduction was reversed by glutathione (GSH), but not by NO- or O-scavengers, whereas GSH depletion enhanced the decrease. The NO-dependent guanylate cyclase-blocker 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) did not affect the SNP effect. This reduction can be explained by either specific apoptosis of NOS neurones or downregulation of NOS activity. However, TdT-mediated X-dUTP nick end labelling (TUNEL stainings argue in favour of the latter. In conclusion, the NO donor SNP decreases the number of NOS-expressing myenteric neurones time and concentration dependently, without affecting the amount of neuronal material. Glutathione plays an important protective role.  相似文献   

5.
Myenteric plexus controls gastrointestinal motility by means of well organized circuits which are comprised of sensory neurones, interneurones and motor neurones to the muscular layers. Calretinin (CR) is a calcium-binding protein that, in guinea-pig ileum, has only been found in ascending interneurones, which also express neurofilament triplet proteins (NFT), and excitatory longitudinal muscle motor neurones, which do not. In spite of some evidence that age affects both function and structure of the myenteric plexus, little is known about the possible selectivity of the process regarding specific myenteric neuronal phenotypes. The influence of age on both the structure of the myenteric plexus and the presence of CR-immunoreactive (CR-IR) neurones was studied using conventional immunohistochemical procedures applied to ileal whole-mount preparations from guinea-pigs. Both a reduction in ganglionic size and changes in the distribution of neurones inside and outside the ganglia, together with a general neuronal loss were found in preparations from aged guinea-pigs. More interestingly, a relatively more pronounced age-related loss of CR-IR neurones, especially those lacking of NFT expression, was found. Specific myenteric neuronal phenotypes may show differential sensitivity to ageing, and this could, under certain circumstances, alter the functional balance of gastrointestinal motility in aged individuals.  相似文献   

6.
We studied the effects of food supplementation with Saccharomyces boulardii (S. boulardii; synonym S. cerevisiae HANSEN CBS 5926; 1 g per day for 9 days) on the presence and co-localization patterns of neuronal markers in myenteric neurones of the pig jejunum. The pan neuronal marker Hu revealed no change in the number of neuronal cell bodies per ganglion (37 +/- 7 in control vs 34 +/- 9 in the S. boulardii group). Ranked by size the following cell populations were identified: choline acetyltransferase (ChAT), calbindin-28k (CALB), substance P (SP), neurofilament 160 kD (NF-160), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP), calretinin (CALRET). We found a significant decrease in the number of CALB myenteric neurones in animals which received S. boulardii supplemented diet. None of the other neuronal markers revealed any difference between controls and S. boulardii treated animals. The study reports transmitter-localization patterns in the myenteric plexus of the pig jejunum and provides evidence that changes in the neurochemistry of enteric neurones occur with S. boulardii supplemented diet. Although only CALB expression was altered and the functional significance of this finding remains unknown, our study identified a possible new effector level of probiotics in the gut.  相似文献   

7.
Selective loss of NGF-sensitive neurons following experimental colitis   总被引:2,自引:0,他引:2  
Nerve growth factor (NGF) enhances neuronal survival during injury to the mature central and peripheral nervous systems, but its potential as a neuroprotective factor in the enteric nervous system (ENS) has not been examined. We used the trinitrobenzene sulfonic acid (TNBS)-induced model of colitis to examine if NGF-sensitive neurons were selectively spared from inflammation-induced cell loss. Immunocytochemistry of whole mounts of the rat colon showed that total myenteric neuronal number decreased by 32.9% +/- 1.4% by 35 days after inflammation. At this time, the proportion of neurons expressing both the p75 and trkA receptor decreased to 38.4% from a control value of 62.0%. The distribution of expression of neural phenotypes among the NGF receptor-expressing population was differentially affected by inflammation, with selective decrease among cholinergic excitatory neurons and calbindin-expressing neurons, and a trend to increase among inhibitory nitrergic neurons. This is evidence of a novel mechanism whereby intestinal inflammation can give rise to a permanent imbalance between excitatory and inhibitory neural pathways, thus tending to compromise intestinal function.  相似文献   

8.
Background Colitis is associated with increased excitability of afterhyperpolarization neurons (AH neurons) and facilitated synaptic transmission in the myenteric plexus. These changes are accompanied by disrupted propulsive motility, particularly in ulcerated regions. This study examined the relationship between myenteric AH neuronal hyperexcitability and disrupted propulsive motility. Methods The voltage‐activated Na+ channel opener veratridine, the intermediate conductance Ca2+‐activated K+ channel inhibitor TRAM‐34 and the 5‐HT4 receptor agonist tegaserod were used to evaluate the effects of neuronal hyperexcitability and synaptic facilitation on propulsive motility in normal guinea pig distal colon. Because trinitrobenzene sulfonic acid (TNBS)‐colitis‐induced hyperexcitability of myenteric afferent neurons involves increases in hyperpolarization‐activated, cyclic nucleotide‐gated (HCN) channel activity, the HCN channel inhibitors Cs+ and ZD7288 were used to suppress AH neuronal activity in TNBS‐colitis. Key Results In non‐inflamed preparations, veratridine halted propulsive motility (P < 0.001). The rate of propulsive motor activity was significantly reduced following addition of TRAM‐34 and tegaserod (P < 0.001). In TNBS‐inflamed preparations, in which motility was temporarily halted or obstructed at sites of ulceration, both Cs+ and ZD7288 normalized motility through the inflamed regions. Immunohistochemistry studies demonstrated that the proportion of AH neurons in the myenteric plexus was unchanged in ulcerated regions, but there was a 10% reduction in total number of neurons per ganglion. Conclusions and Inferences These findings support the concept that inflammation‐induced neuroplasticity in myenteric neurons, involving changes in ion channel activity that lead to enhanced AH neuronal excitability, can contribute to impaired propulsive colonic motility.  相似文献   

9.
Abstract  After 45 days of complete diversion colostomy in male Wistar rats, morphometry of soma and nuclei of NADPH diaphorase positive cells of the myenteric plexus was evaluated. There was a significant ( P  < 0.0001) diminution in the area, perimeter and volume-weighted mean volume of soma and nuclei of nitrergic myenteric neurones in the defunctionalized colon. In addition, there was a significant reduction in the neuronal density of the myenteric neurones, and increased distance between the ganglia. In addition, there was myenteric glial atrophy. Atrophy of colonic myenteric neurones was accompanied by significant reduction ( P  < 0.001) in the volume fraction of the muscularis externa, the prime targets of these neurones. The disturbances in the microecology of the colon may jeopardize the finely orchestrated functioning of the components of the Enteric nervous system (ENS) leading to colonic dysfunction. Our observations, by extrapolation, may explain the bowel dysmotility in humans after restoration of colonic continuity after colostomy.  相似文献   

10.
Intestinal inflammatory conditions are associated with structural and functional alterations of the enteric nervous system (ENS). While injury to the enteric nervous system is well described, the mechanisms of neuronal injury and neuronal cell loss remain unclear. The aim of the present study was to examine the neural consequences of distal colitis and to assess the role of neutrophil granulocytes in mediating these changes. Colitis was induced in C3H/HEN female mice with dinitrobenzene sulfonic acid. The mice were then sacrificed at 0.5, 1, 1.5, 2, 3, 4, 6, 12, 24, 120 h post instillation of dinitrobenzene sulfonic acid. The inflammatory response was assessed by macroscopic damage score, myeloperoxidase activity and histology. HuC/D and PGP 9.5 immunostaining was used to examine myenteric plexus density and structure, neural cell body numbers and distribution in cross-section and whole mount preparations. Apoptosis was investigated in whole mount preparations double stained with HuC/D and activated caspase-3 or cleaved poly (ADP-ribose) polymerase (PARP). Dinitrobenzene sulfonic acid-induced colitis was associated with a rapid and significant loss of HuC/D immunoreactive myenteric plexus neuronal cell bodies (42% decrease relative to control) that remained unchanged between 6 and 120 h. No change in myenteric plexus density was observed with PGP 9.5 immunostaining. Neuronal apoptosis was evident between 0.5 and 3 h. PARP immunoreactive neurons ranged between 1% and 2.5%. Colitis was associated with significant impairment in colonic propulsive function. Pre-treatment of mice with anti-neutrophil serum attenuated the inflammatory response and partially reduced the extent of myenteric plexus neuronal cell loss. Taken together, these data suggest that acute colitis is associated with loss of myenteric plexus neurons that is partly mediated by neutrophil granulocyte infiltration and is accompanied by impairment of colonic motility.  相似文献   

11.
The ability to simultaneously monitor different myenteric neurones in a multilayer preparation may enhance our understanding of the enteric nervous system. Longitudinal muscle myenteric plexus preparations were mounted in recording chambers with a coverslip base and loaded with Indo-1-AM. cytosolic Ca2+ concentration ([Ca2+]i); changes were recorded at room temperature with a confocal microscope. In addition to mechanical (pressure-ring) and pharmacological (nifedipine) reduction of muscle contractions, purpose-designed software was developed to reposition regions of interest and avoid artefacts. Confocal scanning permitted optical selection of single cell layers. High K+ depolarization, used to distinguish between excitable and nonexcitable cells, caused a synchronous [Ca2+]i rise in 84.3% of the ganglion cells. Acetylcholine, substance P and serotonin (all at 10(-5) mol L(-1)) induced transient [Ca2+]i changes in subpopulations of myenteric neurones (45.1%, 42.9 and 21.9%, respectively). In addition to immediate responses to agonists, delayed [Ca2+]i changes were also recorded, suggesting the presence of both directly activated and synaptically driven neurones. Functionally identified neurones and other cells in close apposition to the ganglia (interstitial cells of Cajal) could also be studied. This study demonstrates the potential of optical Ca2+ recordings to monitor spread of activity in myenteric neurones and to study their interaction with non-neuronal targets.  相似文献   

12.
Adult neurons possess the ability to adapt to a changing environment. Loss of target-derived neurotrophic factors due to axotomy or isolation by culturing is known to induce changes in neuropeptide expression in several types of peripheral neurons. The aim of the present study was to investigate changes in the expression of vasoactive intestinal polypeptide (VIP) and nitric oxide synthase (NOS) in cultured myenteric ganglia and dissociated neurons. Myenteric ganglia and neurons from rat small intestine were dissociated and cultured for up to 21 days. Immunocytochemistry was used to determine the total number of neurons and the proportions of subpopulations containing VIP or NOS or both in preparations of whole mounts (controls used to determine the conditions in vivo), myenteric ganglion culture and dissociated myenteric neuronal culture. In situ hybridization was used to determine changes in the expressions of NOS and VIP mRNA. The relative number of VIP-expressing neurons increased significantly during culturing. The percentage of all neurons expressing VIP was 3.6+/-0.3% in whole mounts, 22-24% in cultured myenteric ganglia, and up to 35% in cultured dissociated neurons. NOS-expressing neurons constituted approximately 30-40% of all neurons in whole mounts as well as in cultured ganglia or dissociated neurons. A dramatic increase in NOS/VIP-containing neurons were detected in cultured neurons irrespective of whether they were arranged in ganglia or dissociated, as compared to whole mount preparations. This suggests that the NOS-containing neurons are the ones that increase their VIP expression. The induced expression of VIP in cultured adult myenteric neurons indicates that VIP is important for neuronal adaptation, maintenance and survival.  相似文献   

13.
Cerebral dysfunctions, including a high incidence of depression, are common findings in human type 1 diabetes mellitus. An association between depression and defective hippocampal neurogenesis has been proposed and, in rodents, antidepressant therapy restores neuronal proliferation in the dentate gyrus. Hippocampal neurogenesis is also deficient in diabetic mice, which led us to study whether the selective serotonin reuptake inhibitor fluoxetine influences cell proliferation in streptozotocin-diabetic animals. Diabetic and control C57BL/6 mice received fluoxetine (10 mg/kg/day, i.p., 10 days) and dentate gyrus cell proliferation was measured after a single injection of 5-bromo-2'-deoxyuridine (BrdU). Diabetic mice showed reduced cell proliferation. Fluoxetine treatment, although having no effect in controls, corrected this parameter in diabetic mice. The phenotype of newly generated cells was analysed by confocal microscopy after seven daily BrdU injections, using Tuj-1/beta-III tubulin as a marker for immature neurones and glial fibrillary acidic protein for astrocytes. In controls, the proportion of Tuj-1-BrdU-positive cells over total BrdU cells was approximately 70%. In vehicle-treated diabetic mice, immature neurones decreased to 56% and fluoxetine brought this proportion back to control values without affecting astrocytes. Therefore, fluoxetine preferentially increased the proliferation of cells with a neuronal phenotype. In addition, neurones were counted in the hilus of the dentate gyrus; a 30% decrease was found in diabetic mice compared with controls, whereas this neuronal loss was prevented by fluoxetine. In conclusion, fluoxetine treatment restored neuroplasticity-related hippocampal alterations of diabetic mice. These findings may be potentially important to counteract diabetes-associated depression in humans.  相似文献   

14.
Background Infection and inflammatory diseases of the gut results in profound changes of intestinal motor function. Acute administration of the pro‐inflammatory cytokine interleukin‐1β (IL‐1β) was shown to have excitatory and neuromodulatory roles in the myenteric plexus. Here we aimed to study the effect of prolonged IL‐1β incubation on the response of myenteric neurones to different stimuli. Methods Longitudinal muscle myenteric plexus preparations (LMMP’s) of the guinea pig jejunum were incubated for 24 h in medium with or without IL‐1β. After loading with Fluo‐4, calcium imaging was used to visualize activation of neurones. The response to application of serotonin (5‐HT), substance P (SP) and ATP or to electrical fibre tract stimulation (eFTS) was tested. Expression of nNOS, HuD, calbindin and calretinin was compared by immunohistochemistry. Key Results IL‐1β concentration‐dependently influenced the neuronal responsiveness and duration of the [Ca2+]i rises to 5‐HT and ATP, while it also affected the Ca2+‐transient amplitudes induced by 5‐HT, ATP and SP. Ca2+‐transients in response to eFTS were observed in significantly more neurones per ganglion after IL‐1β (10?10 and 10?11 mol L?1). Peak [Ca2+]i rise after eFTS was concentration‐dependently decreased by IL‐1β. The duration of the [Ca2+]i rise after eFTS was prolonged after IL‐1β 10?12 mol L?1. IL‐1β (10?9 mol L?1) incubation did not affect the number of nNOS, calretinin and calbindin expressing neurones, nor did it induce neuronal loss (HuD). Conclusions & Inferences In this study, IL‐1β differentially modulates the neuronal response to eFTS and neurotransmitter application in the myenteric plexus of guinea pigs. This cytokine could be implicated in the motility disturbances observed during gastrointestinal inflammation.  相似文献   

15.
The present study investigates, by immunocytochemistry, the behavior of different neuronal subpopulations of the rat hippocampus in neurodegenerative processes induced by the neurotoxicant trimethyltin. The calcium-binding proteins calbindin and parvalbumin are used as selective markers of different neuronal subpopulations. The effects of the neurotoxicant were apparent 21 days after a single i.p. administration with severe neuronal loss, which was significant in CA1 and CA3, as revealed by cell counts after cresyl violet staining. Immunolabeling with calbindin D28-k (CB) and parvalbumin (PV) indicated severe cell loss of CB-containing neurons, essentially reflecting the generalized neuronal loss, while PV-containing neurons appeared to be selectively spared by the neurotoxicant-induced degeneration.  相似文献   

16.
The effects of acute diabetes on the density and size of the myenteric neurons of the proximal colon of adult rats were investigated. The injection of streptozotocin was followed by a period of observation of seven days, during which the diabetic animals showed weight loss, excessive food and water intake, large urinary debt and hyperglicemia. The whole-mounts from the proximal colon were stained with the techniques of Giemsa and of the NADH-diaphorase, and the employment of these techniques made it possible to verify a decrease on the neuronal density and on the cell body size of the myenteric neurons in the colon of the diabetic rats. These observations were discussed in terms of the pathophysiology of the diabetes and the experimental protocol.  相似文献   

17.
The present study identified and characterised myenteric neurones involved in the innervation of the gastric mucosa. We applied retrograde neuronal tracing methods by using the dye DiI (1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorat) in combination with the immunohistochemical demonstration of choline acetyltransferase (ChAT), enkephalin (ENK), neuropeptide Y (NPY), nitric oxide synthase (NOS), substance P (SP), and vasoactive intestinal peptide (VIP). This method showed distinct neurochemical coding of DiI-labelled neurones with projections to the mucosa (mucosa neurones): ChAT/- (indicating the presence of ChAT only, 32%), ChAT/NPY/ +/- VIP (22%), NOS/NPY/ +/- VIP (19%), ChAT/SP/ +/- ENK (12%), NOS/- (indicating the presence of NOS only, 8%), or ChAT/ENK (4.6%). DiI-labelled mucosa neurones did not contain calretinin, serotonin, or somatostatin. All ChAT population had primarily ascending projections, whereas the NOS populations had mainly descending projections. Both were further classified as longitudinally and circumferentially projecting neurones, the latter having projection preferences towards the lesser or greater curvature. All subpopulations exhibited projection preferences. Nitrergic projections primarily arose from cell bodies located at the lesser curvature. ChAT/- projections, which dominated the cholinergic pathway, mainly arose from cell bodies located at the greater curvature. The other major cholinergic pathway with the code ChAT/NPY/ +/- VIP consisted of neurones located mainly at the lesser curvature. The results suggest specific coding of gastric myenteric neurones with projections to the mucosa. Polarised projections consisted of ascending cholinergic and descending nitrergic neurones; the additional presence of NPY/VIP was a prominent feature in both pathways. Chemical coding, polarity, and projection preferences of enteric pathways to the gastric mucosa are remarkably different from those of other regions in the gut.  相似文献   

18.
Summary In a man of 47 with a 2-month history of Creutzfeldt-Jakob-disease verified neuropathologically a morphometric study of the nucleus basalis of Meynert, the major source of cholinergic innervation of the cortex, revealed a neuronal loss of 45%. The degeneration of these neurones may provide the morphological substrate of the cortical cholinergic deficiency which has been reported in this condition. The six subpopulations of the nucleus basalis were affected in different degrees. Neuronal loss was most pronounced in those subpopulations which project to cortical areas most affected by spongiosis and neuronal loss. It is suggested that maintenance of the nucleus basalis complex is a necessary condition for higher cortical function.  相似文献   

19.
Background Intestinal inflammation alters the structure and function of the enteric nervous system (ENS). Glucagon‐like peptide 2 (GLP‐2) reduces intestinal inflammation and has trophic effects on isolated neurons. This study examined the effects of GLP‐2 treatment on the submucosal plexus of rat colon in the trinitrobenzene sulfonic acid (TNBS) model of colitis. Methods After administration of TNBS or saline/ethanol for controls, animals were allocated to treatment with GLP‐2 (50 μg kg?1day?1, s.c.) or sham injection of vehicle, twice daily. Animals were monitored, following clinical parameters, and killed on day 5. The number of neuronal cell bodies per ganglion was quantified using immunohistochemistry on submucosal whole mount preparations, with further characterization of specific subpopulations using antibodies against vasoactive intestinal polypeptide (VIP), neuronal nitric oxide synthase (nNOS), and enteric glial cells with glial fibrillary acid protein and S100. Key Results Glucagon‐like peptide 2 treatment was associated with a significant amelioration of weight loss, and reduced neutrophil infiltration and microscopic colitis scores in the TNBS animals. Inflammation resulted in a loss of enteric neurons in submucosal ganglia; GLP‐2 treatment restored the enteric neuronal populations to normal. In control, non‐inflamed animals, GLP‐2 treatment increased the number of VIP expressing neurons per ganglion; in TNBS‐treated animals, GLP‐2 prevented an inflammation‐induced reduction in the numbers of VIP expressing neurons per ganglion. Glucagon‐like peptide 2 did not change the numbers of nNOS neurons or enteric glial cells in either the control, or inflamed state. Conclusions & Inferences These findings show that GLP‐2 increased the number of VIP expressing neurons in normal animals, and prevents the inflammation‐induced loss of neurons in the colonic submucosal ganglia, with an increase in the proportion of VIP expressing neurons. They suggest that GLP‐2 may have a role in protecting or regulating the circuitry of the ENS under basal and inflamed states.  相似文献   

20.
Developmental and lesion induced cell death in the rat ventrobasal complex.   总被引:1,自引:0,他引:1  
P M Waite  L Li  K W Ashwell 《Neuroreport》1992,3(6):485-488
Naturally occurring and lesion induced neuronal death have been studied in the developing rat thalamus. Natural cell death was present from embryonic day (E)19 until postnatal day (P)8 with a peak occurring at birth. Counts of total neurones indicated a postnatal loss of 27%. Unilateral section of the infraorbital nerve at birth was associated with increased cell death in the contralateral thalamus; this was maximal at P2 and continued until P10. Counts of neurone numbers showed a reduction of about 24% of neurones on the contralateral side. A smaller, more transient decrease was seen ipsilaterally. The lesion induced cell loss was associated with a decrease in volume of the ventrobasal complex, with minimal reduction in cell density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号