首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ketamine–xylazine is a commonly used anesthetic for laboratory rats. Previous results showed that rats anesthetized with ketamine–xylazine can have a much lower cerebral partial pressure of oxygen (PtO2), compared to unanesthetized and isoflurane anesthetized rats. The underlying mechanisms for the PtO2 reduction need to be elucidated. In this study, we measured regional cerebral blood flow (CBF) using nuclear magnetic resonance (NMR) perfusion imaging and cortical PtO2 using electron paramagnetic resonance (EPR) oximetry in the forebrain of rats under isoflurane, ketamine, ketamine–xylazine and isoflurane–xylazine anesthesia. The results show that in ventilated rats ketamine at a dose of 50 mg/kg does not induce significant changes in CBF, compared to isoflurane. Ketamine–xylazine in combination causes 25–65% reductions in forebrain CBF in a region-dependent manner. Adding xylazine to isoflurane anesthesia results in similar regional reductions in CBF. EPR oximetry measurements show ketamine increases cortical PtO2 while xylazine decreases cortical PtO2. The xylazine induced reduction in CBF could explain the reduced brain oxygenation observed in ketamine–xylazine anesthetized rats.  相似文献   

2.
Measuring cerebral blood flow using magnetic resonance imaging techniques.   总被引:24,自引:0,他引:24  
Magnetic resonance imaging techniques measuring CBF have developed rapidly in the last decade, resulting in a wide range of available methods. The most successful approaches are based either on dynamic tracking of a bolus of a paramagnetic contrast agent (dynamic susceptibility contrast) or on arterial spin labeling. This review discusses their principles, possible pitfalls, and potential for absolute quantification and outlines clinical and neuroscientific applications.  相似文献   

3.
BACKGROUND: Methods for determining cerebral blood flow (CBF) using bolus-tracking magnetic resonance imaging (MRI) have recently become available. Reduced apparent diffusion coefficient (ADC) values of brain tissue are associated with reductions in regional CBF in animal stroke models. OBJECTIVES: To determine the clinical and radiological features of patients with severe reductions in CBF on MRI and to analyze the relationship between reduced CBF and ADCs in acute ischemic stroke. DESIGN: Case series. SETTING: Referral center. METHODS: We studied 17 patients with nonlacunar acute ischemic stroke in whom perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) were performed within 7 hours of symptom onset. A PWI-DWI mismatch of more than 20% was required. We compared patients with ischemic lesions that had CBF of less than 50% relative to the contralateral hemisphere with patients with lesions that had relative CBF greater than 50%. Characteristics analyzed included age, time to MRI, baseline National Institutes of Health Stroke Scale score, mean ADC, DWI and PWI lesion volumes, and 1-month Barthel Index score. RESULTS: Patients with low CBF (n = 5) had lower ADC values (median, 430 x 10 (-6) mm(2)/s vs. 506 x 10 (-6) mm(2)/s; P =.04), larger DWI volumes (median, 41.8 cm(3) vs. 14.5 cm(3); P =.001) and larger PWI lesions as defined by the mean transit time volume (median, 194.6 cm(3) vs. 69.3 cm(3); P =.01), and more severe baseline National Institutes of Health Stroke Scale scores (median, 15 vs. 9; P =.02). CONCLUSION: Ischemic lesions with severe CBF reductions, measured using bolus-tracking MRI, are associated with lower mean ADCs, larger DWI and PWI volumes, and higher National Institutes of Health Stroke Scale scores.  相似文献   

4.
The blood oxygenation level-dependent (BOLD) contrast mechanism can be modeled as a complex interplay between CBF, cerebral blood volume (CBV), and CMRO2. Positive BOLD signal changes are presumably caused by CBF changes in excess of increases in CMRO2. Because this uncoupling between CBF and CMRO2 may not always be present, the magnitude of BOLD changes may not be a good index of CBF changes. In this study, the relation between BOLD and CBF was investigated further. Continuous arterial spin labeling was combined with a single-shot, multislice echo-planar imaging to enable simultaneous measurements of BOLD and CBF changes in a well-established model of functional brain activation, the electrical forepaw stimulation of alpha-chloralose-anesthetized rats. The paradigm consisted of two 18- to 30-second stimulation periods separated by a 1-minute resting interval. Stimulation parameters were optimized by laser Doppler flowmetry. For the same cross-correlation threshold, the BOLD and CBF active maps were centered within the size of one pixel (470 microm). However, the BOLD map was significantly larger than the CBF map. Measurements taken from 15 rats at 9.4 T using a 10-millisecond echo-time showed 3.7 +/- 1.7% BOLD and 125.67 +/- 81.7% CBF increases in the contralateral somatosensory cortex during the first stimulation, and 2.6 +/- 1.2% BOLD and 79.3 +/- 43.6% CBF increases during the second stimulation. The correlation coefficient between BOLD and CBF changes was 0.89. The overall temporal correlation coefficient between BOLD and CBF time-courses was 0.97. These results show that under the experimental conditions of the current study, the BOLD signal changes follow the changes in CBF.  相似文献   

5.
6.
Cerebral blood flow can be measured with magnetic resonance imaging (MRI) by arterial spin labeling techniques, where magnetic labeling of flowing spins in arterial blood water functions as the endogenous tracer upon mixing with the unlabeled stationary spins of tissue water. The consequence is that the apparent longitudinal relaxation time (T1) of tissue water is attenuated. A modified functional MRI scheme for dynamic CBF measurement is proposed that depends on extraction of T1 weighting from the blood oxygenation level-dependent (BOLD) image contrast, because the functional MRI signal also has an intrinsic T1 weighting that can be altered by variations of the excitation flip angle. In the alpha-chloralose-anesthetized rat model at 7T, the authors show that the stimulation-induced BOLD signal change measured with two different flip angles can be combined to obtain a T1-weighted MRI signal, reflecting the magnitude of the CBF change, which can be deconvolved to obtain dynamic changes in CBF. The deconvolution of the T1-weighted MRI signal, which is a necessary step for accurate reflection of the dynamic changes in CBF, was made possible by a transfer function obtained from parallel laser-Doppler flowmetry experiments. For all stimulus durations (ranging from 4 to 32 seconds), the peak CBF response measured by MRI after the deconvolution was reached at 4.5 +/- 1.0 seconds, which is in good agreement with (present and prior) laser-Doppler measurements. Because the low flip angle data can also provide dynamic changes of the conventional BOLD image contrast, this method can be used for simultaneous imaging of CBF and BOLD dynamics.  相似文献   

7.
We employed fluorocarbon-23 (trifluoromethane) as a nuclear magnetic resonance gaseous indicator of cerebral blood flow in seven cats. Pulsed inhalation of this indicator and switching between two coils allowed the acquisition of both an arterial input and a cerebral response function, making possible multicompartmental curve fits to cerebral uptake and clearance data. The brain:blood partition coefficient for trifluoromethane was 0.9 for both gray and white matter. Fast-compartment blood flows were normal and showed appropriate CO2 reactivity. Slow-compartment blood flows did not demonstrate CO2 reactivity, probably because cranial as well as white-matter blood flows were lumped together in the slow compartment. Although cerebral blood flow was stable during administration of 60% trifluoromethane, the compound did prove to be a mild cardiac sensitizer to epinephrine in five cats.  相似文献   

8.
Magnetic resonance imaging (MRI) of the brain could be a powerful tool for discovering early biomarkers in clinically presymptomatic carriers of the Huntington''s disease gene mutation (preHD). The aim of this study was to investigate the sensitivity of resting-state perfusion MRI in preHD and to identify neural changes, which could serve as biomarkers for future clinical trials. Differences in regional cerebral blood flow (rCBF) in 18 preHD and 18 controls were assessed with a novel MRI method based on perfusion images obtained with continuous arterial spin labeling. High-resolution structural data were collected to test for changes of brain volume. Compared with controls, preHD individuals showed decreased rCBF in medial and lateral prefrontal regions and increased rCBF in the precuneus. PreHD near to symptom onset additionally showed decreased rCBF in the putamen and increased rCBF in the hippocampus. Network analyses revealed an abnormal lateral prefrontal pattern in preHD far and near to motor onset. These data suggest early changes of frontostriatal baseline perfusion in preHD independent of substantial reductions of gray matter volume. This study also shows the feasibility of detecting neural changes in preHD with a robust MRI technique that would be suitable for longitudinal multisite application.  相似文献   

9.
We studied trifluoromethane as a potential gaseous indicator in nuclear magnetic resonance measurements of cerebral blood flow. We considered the effects of trifluoromethane on cerebral blood flow in 17 cats and on the electroencephalogram and electrocardiogram in nine cats and compared these with the effects of the more toxic compound chlorodifluoromethane in five cats. Inhaled at 60%, trifluoromethane had no effect on cerebral blood flow, the cerebral metabolic rate for oxygen, or oxyhemoglobin content. At 70%, trifluoromethane sensitized the cats' hearts to epinephrine, but to a much lesser degree than 40% chlorodifluoromethane, and produced only moderate changes in cerebral electrical activity as measured by the electroencephalogram. We found trifluoromethane to be suitable for use in animals, but its toxicity needs to be studied further before it can be used in humans for the measurement of cerebral blood flow.  相似文献   

10.
This report demonstrates the feasibility of using deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) spectroscopy to make multiple simultaneous determinations of changes in cerebral blood flow, brain intracellular pH, and phosphorylated metabolites for individual animals. In vivo spectra were obtained from the brains of newborn piglets immediately following an intracarotid bolus injection of deuterium oxide. Experiments were performed at magnetic field strengths of 1.9 T (2H NMR only) or 4.7 T (interleaved 2H and 31P NMR). The rate of clearance of deuterium signal was used to calculate cerebral perfusion rates (CBFdeuterium) during a stable control physiologic state and conditions known to alter blood flow. CBFdeuterium values measured at 1.9 T under conditions of control (normocarbia, normotension), hypercarbia, hypocarbia, and varying degrees of ischemia induced by hypotension showed a significant positive correlation with values measured simultaneously using radiolabeled microspheres (CBFdeuterium = 0.4 x CBFmicrospheres + 8; r = 0.8). Simultaneous interleaved 2H and 31P NMR measurements under control conditions indicate that brain energy metabolites and intracellular pH remained at constant levels during the time course of the administration and clearance of deuterium oxide. Also, brain phosphorylated metabolites and intracellular pH did not differ significantly from their preinjection levels. Under control physiologic conditions, CBFdeuterium varied by +/- 6% and phosphorylated metabolite levels did not show a significant change with time, as measured from 15 blood flow determinations collected over 4 h. The results indicate that CBFdeuterium determinations have excellent reproducibility and do not affect brain energy metabolite levels. The procedures described here have the potential to bring a novel methodology to bear on investigating the relationship between cerebral perfusion and energy status during conditions such as ischemia or asphyxia.  相似文献   

11.
To evaluate the utility of arterial spin-labeled blood flow magnetic resonance imaging for the detection of cerebral blood flow abnormalities in Alzheimer's disease, arterial spin-labeled blood flow images in 16 contiguous 5-mm axial sections were acquired in 18 patients diagnosed with probable Alzheimer's disease and 11 age-matched controls. Blood flow images from all subjects were transformed to a standard anatomical space for voxel-by-voxel statistical analysis. High quality blood flow images were obtained from all but 1 subject. Statistical analysis demonstrated significant flow decreases relative to control subjects in temporal, parietal, frontal, and posterior cingulate cortices. Increased severity of disease, as measured by Mini-Mental State Examination, correlated with posterior parietal and posterior cingulate decreases but not temporal decreases. Arterial spin-labeled magnetic resonance imaging was found to be an effective tool for characterizing flow decreases accompanying Alzheimer's disease. The absence of ionizing radiation or injection and the ability to obtain high quality anatomical images within the same scanning session make arterial spin labeling an attractive technique for the study of Alzheimer's disease, for the evaluation of pharmacological therapies, and, possibly, for early diagnosis.  相似文献   

12.
A quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease because of the fact that it could potentially provide information on tissue viability in vivo. In the current study, a multi-echo gradient and spin echo magnetic resonance imaging sequence was used to acquire images from eight normal volunteer subjects. All images were acquired on a Siemens 1.5T Symphony whole-body scanner (Siemens, Erlangen, Germany). A theoretical signal model, which describes the signal dephasing phenomena in the presence of deoxyhemoglobin, was used for postprocessing of the acquired images and obtaining a quantitative measurement of cerebral blood oxygen saturation in vivo. With a region-of-interest analysis, a mean cerebral blood oxygen saturation of 58.4%+/-1.8% was obtained in the brain parenchyma from all volunteers. It is in excellent agreement with the known cerebral blood oxygen saturation under normal physiologic conditions in humans. Although further studies are needed to overcome some of the confounding factors affecting the estimates of cerebral blood oxygen saturation, these preliminary results are encouraging and should open a new avenue for the noninvasive investigation of cerebral oxygen metabolism under different pathophysiologic conditions using a magnetic resonance imaging approach.  相似文献   

13.
14.
The spatial correlation of nuclear magnetic resonance imaging (NMRI) and cerebral blood flow (CBF) may improve our ability to identify ischemic brain lesions and may provide further insight into the pathophysiology of early cerebral ischemia. Eleven pentobarbital-anesthetized adult cats underwent exposure of the common carotid arteries bilaterally and the right middle cerebral artery through a transorbital approach. Baseline NMRI images were obtained with a single spin-echo, multislice technique using a 0.6-T field, 0.4-cm slice thickness, and a surface coil. Focal ischemia was produced with right middle cerebral artery occlusion and potentiated with bilateral common carotid artery ligation. Sequential NMRI studies were then performed at 1, 2, 4, 6, and 12 hours or until CBF was determined in the same cats using [14C]iodoantipyrine at either 2 (n = 2), 4 (n = 2), 6 (n = 2), or 12 (n = 1) hours after the time of occlusion. This protocol allowed temporal and spatial correlation of NMRI and CBF. Alternate 5-mm brain slices were incubated with 1% 2,3,5-triphenyltetrazolium chloride (TTC) for 45 minutes at 37-41 degrees C and frozen in liquid Freon for later autoradiographic CBF determination. Four cats were studied only with NMRI and TTC (not CBF). The correlation between areas of increased NMRI signal intensity observed in T2-weighted images (repetition time 2,000 msec, echo time 120 msec), vital staining with TTC, low CBF, and routine histology was evaluated. During the early phase (less than 6 hours), T2-weighted NMRI changes were localized to the central ischemic gray matter areas, as defined in the later CBF images, with no involvement of the white matter. By the twelfth hour the NMRI changes involved the entire ischemic area including gray and white matter. The initial visible changes seen on T2-weighted NMRI are suggestive of cellular edema, and the later changes are characteristic of vasogenic edema. The spread of NMRI changes compared with the ischemic area determined from autoradiographic CBF is consistent with the previously described biphasic evolution of ischemic injury. These data suggest that T2-weighted NMRI could be used clinically to delineate areas of acute ischemic stroke.  相似文献   

15.
Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion.  相似文献   

16.
OBJECTIVE: Up to 25% of patients experience subtle declines in post-operative neurocognitive function following, otherwise uncomplicated, carotid endarterectomy (CEA). We sought to determine if post-CEA neurocognitive deficits are associated with cerebral blood flow (CBF) abnormalities on post-operative MR perfusion brain scans. METHODS: We enrolled 22 CEA patients to undergo a battery of neuropsychometric tests pre-operatively and on post-operative day 1 (POD 1). Neurocognitive dysfunction was defined as a two standard deviation decline in performance in comparison to a similarly aged control group of lumbar laminectomy patients. All patients received MR perfusion brain scans on POD 1 that were analysed for asymmetries in CBF distribution. One patient experienced a transient ischemic attack within 24 hours before the procedure and was excluded from our analysis. RESULTS: Twenty-nine percent of CEA patients demonstrated neurocognitive dysfunction on POD 1. One hundred percent of those patients with cognitive deficits demonstrated CBF asymmetry, in contrast to only 27% of those patients without cognitive impairment. Post-CEA cognitive dysfunction was significantly associated with CBF abnormalities (RR=3.75, 95% CI: 1.62-8.67, p=0.004). CONCLUSION: Post-CEA neurocognitive dysfunction is significantly associated with post-operative CBF asymmetry. These results support the hypothesis that post-CEA cognitive impairment is caused by cerebral hemodynamic changes. Further work exploring the relationship between CBF and post-CEA cognitive dysfunction is needed.  相似文献   

17.
18.
Existing model-free approaches to determine cerebral blood flow by external residue detection show a marked dependence of flow estimates on tracer arrival delays and dispersion. In theory, this dependence can be circumvented by applying a specific model of vascular transport and tissue flow heterogeneity. The authors present a method to determine flow heterogeneity by magnetic resonance residue detection of a plasma marker. Probability density functions of relative flows measured in six healthy volunteers were similar among tissue types and volunteers, and were in qualitative agreement with literature measurements of capillary red blood cell and plasma velocities. Combining the measured flow distribution with a model of vascular transport yielded excellent model fits to experimental residue data. Fitted gray-to-white flow-rate ratios were in good agreement with PET literature values, as well as a model-free singular value decomposition (SVD) method in the same subjects. The vascular model was found somewhat sensitive to data noise, but showed far less dependence on vascular delay and dispersion than the model-free SVD approach.  相似文献   

19.
Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis.  相似文献   

20.
实验运用1.5-T磁共振的2D cine PC序列对10位健康志愿者C2水平感兴趣区血管进行速度编码为30~90cm/s,间隔10cm/s的7次同层扫描,探讨速度编码在磁共振相位对比血管成像中对测量脑血流量及入脑/出脑血流的影响。发现不同的速度编码对颈内动脉血流量、最大血流速度和平均血流速度影响较大,对椎动脉及颈内静脉影响不明显。当速度编码为60~80cm/s时,入脑血流量为(655±118)mL/min,出脑血流量(506±186)mL/min,入脑血流量/出脑血流量稳定在0.78~0.83,且所有血管中无混淆现象。提示在应用磁共振相位增强血管成像测量脑血流量时,应选择60~80cm/s的速度编码。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号