首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bahi A  Dreyer JL 《Psychopharmacology》2012,222(1):141-153

Rationale

Dopamine D1 receptor (D1R) signaling has been associated to ethanol consumption and reward in laboratory animals.

Objectives

Here, we hypothesize that this receptor, which is located within the nucleus accumbens (NAc) neurons, modulates alcohol reward mechanisms.

Methods

To test this hypothesis, we measured alcohol consumption and ethanol-induced psychomotor sensitization and conditioned place preference (CPP) in mice that received bilateral microinjections of small interference RNA (siRNA)-expressing lentiviral vectors (LV-siD1R) producing D1R knock-down. The other group received control (LV-Mock) viral vectors into the NAc.

Results

There were no differences in the total fluid consumed and also no differences in the amount of ethanol consumed between groups prior to surgery. However, after surgery, the LV-siD1R group consumed less ethanol than the control group. This difference was not associated to taste neophobia. In addition, results have shown that down-regulation of endogenous D1R using viral-mediated siRNA in the NAc significantly decreased ethanol-induced behavioral sensitization as well as acquisition, but not expression, of ethanol-induced place preference.

Conclusions

We conclude that decreased D1R expression into the NAc led to reduced ethanol rewarding properties, thereby leading to lower voluntary ethanol consumption. Together, these findings demonstrate that the D1 receptor pathway within the NAc controls ethanol reward and intake.  相似文献   

2.

Rationale

Studies support differential roles of dopamine receptor subfamilies in the rewarding and reinforcing properties of drugs of abuse, including ethanol. However, the roles these receptor subfamilies play in ethanol reward are not fully delineated.

Objective

To examine the roles of dopamine receptor subfamilies in the acquisition of ethanol-induced conditioned place preference (CPP), we pretreated animals systemically with antagonist drugs selective for dopamine D1-like (SCH-23390) and D2-like (raclopride) receptors prior to ethanol conditioning trials.

Methods

Effects of raclopride (0–1.2 mg/kg) and SCH-23390 (0–0.3 mg/kg) on the acquisition of ethanol-induced CPP were examined in DBA/2J mice (experiments 1 and 2). Based on significant effects of SCH-23390, we then determined if SCH-23390 (0.3 mg/kg) produced a place preference on its own (experiment 3). To evaluate whether SCH-23390 impaired learning, we used a conditioned place aversion (CPA) paradigm and pretreated animals with SCH-23390 (0–0.3 mg/kg) before conditioning sessions with LiCl (experiment 4).

Results

Whereas raclopride (0–1.2 mg/kg) did not affect acquisition, SCH-23390 (0.1–0.3 mg/kg) impaired the development of ethanol-induced CPP. SCH-23390 (0.3 mg/kg) did not produce place preference when tested alone and SCH-23390 (0.1–0.3 mg/kg) did not perturb the acquisition of LiCl-induced CPA.

Conclusions

Our results support a role for dopamine D1-like but not D2-like receptors in ethanol’s unconditioned rewarding effect as indexed by CPP. Blockade of D1-like receptors did not affect aversive learning in this procedure.  相似文献   

3.

Background and Purpose

Conflicting data have been published on whether histamine is inhibitory to the rewarding effects of abused drugs. The purpose of this study was to clarify the role of neuronal histamine and, in particular, H3 receptors in alcohol dependence-related behaviours, which represent the addictive effects of alcohol.

Experimental Approach

Alcohol-induced conditioned place preference (alcohol-CPP) was used to measure alcohol reward. Alcohol-induced locomotor stimulation, alcohol consumption and kinetics were also assessed. mRNA levels were quantified using radioactive in situ hybridization.

Key Results

Low doses of H3 receptor antagonists, JNJ-10181457 and JNJ-39220675, inhibited alcohol reward in wild-type (WT) mice. However, these H3 receptor antagonists did not inhibit alcohol reward in histidine decarboxylase knock-out (HDC KO) mice and a lack of histamine did not alter alcohol consumption. Thus H3 receptor antagonists inhibited alcohol reward in a histamine-dependent manner. Furthermore, WT and HDC KO mice were similarly stimulated by alcohol. The expression levels of dopamine D1 and D2 receptors, STEP61 and DARPP-32 mRNA in striatal subregions were unaltered in HDC KO mice. No differences were seen in alcohol kinetics in HDC KO compared to WT control animals. In addition, JNJ-39220675 had no effect on alcohol kinetics in WT mice.

Conclusions and Implications

These data suggest that histamine is required for the H3 receptor-mediated inhibition of alcohol-CPP and support the hypothesis that the brain histaminergic system has an inhibitory role in alcohol reward. Increasing neuronal histamine release via H3 receptor blockade could therefore be a novel way of treating alcohol dependence.

Linked Articles

This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1  相似文献   

4.

Rationale

The role of histamine neurons in stress evoked cognitive impairments remains unclear. Previous research has indicated that the blockade of H(3)-type histamine receptors may improve attention and memory in naïve rodents.

Objectives

The purpose of this study was to determine if ciproxifan, (cyclopropyl-(4-(3-1H-imidazol-4-yl) propyloxy) phenyl) ketone, an H(3) receptor antagonist, could alleviate cognitive deficits observed in chronically stressed rats.

Methods

Specifically, we attempted to characterize the preventive action of single dose of ciproxifan (3 mg/kg, i.p.) against an impairment caused by chronic restraint stress (2 h daily for 21 days) on recognition memory tested in an object recognition task and on the long-term memory tested in a passive avoidance test.

Results

We found that administration of ciproxifan potently prevented deleterious effects of chronic restraint stress, when administered prior to learning, or immediately after learning, or before retrieval on both the recognition (p<0.001) and the passive avoidance behavior (p<0.001).

Conclusions

These data support the idea that modulation of H(3) receptors represents a novel and viable therapeutic strategy in the treatment of stress evoked cognitive impairments.  相似文献   

5.

Rationale

Orexin-1 receptor antagonists have been shown to block the reinforcing effects of drugs of abuse and food. However, whether blockade of orexin-2 receptor has similar effects has not been determined. We have recently described the in vitro and in vivo effects of JNJ-10397049, a selective and brain penetrant orexin-2 receptor antagonist.

Objective

The goal of these studies was to evaluate whether systemic administration of JNJ-10397049 blocks the rewarding effects of ethanol and reverses ethanol withdrawal in rodents. As a comparison, SB-408124, a selective orexin-1 receptor antagonist, was also evaluated.

Methods

Rats were trained to orally self-administer ethanol (8% v/v) or saccharin (0.1% v/v) under a fixed-ratio 3 schedule of reinforcement. A separate group of rats received a liquid diet of ethanol (8% v/v) and withdrawal signs were evaluated 4?h after ethanol discontinuation. In addition, ethanol-induced increases in extracellular dopamine levels in the nucleus accumbens were tested. In separate experiments, the acquisition, expression, and reinstatement of conditioned place preference (CPP) were evaluated in mice.

Results

Our results indicate that JNJ-10397049 (1, 3, and 10?mg/kg, sc) dose-dependently reduced ethanol self-administration without changing saccharin self-administration, dopamine levels, or withdrawal signs in rats. Treatment with JNJ-10397049 (10?mg/kg, sc) attenuated the acquisition, expression, and reinstatement of ethanol CPP and ethanol-induced hyperactivity in mice. Surprisingly, SB-408124 (3, 10 and 30?mg/kg, sc) did not have any effect in these procedures.

Conclusions

Collectively, these results indicate, for the first time, that blockade of orexin-2 receptors is effective in reducing the reinforcing effects of ethanol.  相似文献   

6.

Rationale

Reexposure to ethanol during acute withdrawal might facilitate the transition to alcoholism by enhancing the rewarding effect of ethanol.

Objective

The conditioned place preference (CPP) procedure was used to test whether ethanol reward is enhanced during acute withdrawal.

Methods

DBA/2J mice were exposed to an unbiased one-compartment CPP procedure. Ethanol (0.75, 1.0, or 1.5 g/kg IP) was paired with a distinctive floor cue (CS+), whereas saline was paired with a different floor cue (CS?). The withdrawal (W) group received CS+ trials during acute withdrawal produced by a large dose of ethanol (4 g/kg) given 8 h before each trial. The no-withdrawal (NW) group did not experience acute withdrawal during conditioning trials but was matched for acute withdrawal experience. Floor preference was tested in the absence of ethanol or acute withdrawal.

Results

All groups eventually showed a dose-dependent preference for the ethanol-paired cue, but development of CPP was generally more rapid and stable in the W groups than in the NW groups. Acute withdrawal suppressed the normal activating effect of ethanol during CS+ trials, but there were no group differences in test activity.

Conclusions

Acute withdrawal enhanced ethanol’s rewarding effect as indexed by CPP. Since this effect depended on ethanol exposure during acute withdrawal, the enhancement of ethanol reward was likely mediated by the alleviation of acute withdrawal, i.e., negative reinforcement. Enhancement of ethanol reward during acute withdrawal may be a key component in the shift from episodic to chronic ethanol consumption that characterizes alcoholism.  相似文献   

7.

Rationale

Growing evidence supports a role for the central histaminergic system to have a modulatory influence on drug addiction in general and alcohol-use disorders in particular through histamine H3 receptors (H3R).

Objective

In the present study, the effects of systemic injection of the newly synthesized H3R antagonist ST1283 on ethanol (EtOH) voluntary intake and EtOH-conditioned reward in mice have been investigated.

Methods

Oral EtOH, saccharin, and quinine intake was assessed in a two-bottle choice paradigm using escalating concentrations of alcohol or tastant solutions. EtOH-induced place preference (CPP), EtOH-induced locomotor activity, and blood ethanol concentration (BEC) were also measured.

Results

Following administration of the H3R antagonist (2.5, 5, and 10 mg/kg, i.p.), there was a significant dose-dependent decrease in alcohol consumption and preference. Importantly, vehicle- and ST1283 (5 mg/kg)-treated mice showed similar consumption and preference to increasing concentration of both sweet and bitter tastes. More interestingly, systemic administration of ST1283 inhibited EtOH-CPP and EtOH-enhanced locomotion. This inhibition was blocked when mice were pretreated with the selective H3R agonist R-(alpha)-methyl-histamine (10 mg/kg). Finally, vehicle- and ST1283-treated mice had similar BECs.

Conclusion

Our results show that ST1283 may decrease voluntary EtOH consumption and EtOH-CPP by altering its reinforcing effects, suggesting a novel role for histamine signaling in regulation of alcoholism. Lastly, the results add to the growing literature on H3R modulation in the pharmacotherapy of EtOH addiction.  相似文献   

8.

Rationale

We have shown previously, using an animal model of voluntary ethanol intake and ethanol-conditioned place preference (EtOH-CPP), that exposure to chronic psychosocial stress induces increased ethanol intake and EtOH-CPP acquisition in mice.

Objective

Here, we examined the impact of chronic subordinate colony (CSC) exposure on EtOH-CPP extinction, as well as ethanol-induced reinstatement of CPP.

Methods

Mice were conditioned with saline or 1.5 g/kg ethanol and were tested in the EtOH-CPP model. In the first experiment, the mice were subjected to 19 days of chronic stress, and EtOH-CPP extinction was assessed during seven daily trials without ethanol injection. In the second experiment and after the EtOH-CPP test, the mice were subjected to 7 days of extinction trials before the 19 days of chronic stress. Drug-induced EtOH-CPP reinstatement was induced by a priming injection of 0.5 g/kg ethanol.

Results

Compared to the single-housed colony mice, CSC mice exhibited increased anxiety-like behavior in the elevated plus maze (EPM) and the open field tests. Interestingly, the CSC mice showed delayed EtOH-CPP extinction. More importantly, CSC mice showed increased alcohol-induced reinstatement of the EtOH-CPP behavior.

Conclusion

Taken together, this study indicates that chronic psychosocial stress can have long-term effects on EtOH-CPP extinction as well as drug-induced reinstatement behavior and may provide a suitable model to study the latent effects of chronic psychosocial stress on extinction and relapse to drug abuse.  相似文献   

9.

Rationale

The exact role of delta opioid receptors in drug-induced conditioned place preference (CPP) remains debated. Under classical experimental conditions, morphine-induced CPP is decreased in mice lacking delta opioid receptors (Oprd1 ?/?). Morphine self-administration, however, is maintained, suggesting that drug-context association rather than drug reward is deficient in these animals.

Objectives

This study further examined the role of delta opioid receptors in mediating drug-cue associations, which are necessary for the expression of morphine-induced CPP.

Methods

We first identified experimental conditions under which Oprd1 ?/? mice are able to express CPP to morphine (5, 10 or 20 mg/kg) in a drug-free state and observed that, in this paradigm, CPP was dependent on circadian time conditions. We then took advantage of this particularity to assess the ability of various cues (internal or discrete), predicting either drug or food reward, to restore CPP induced by morphine (10 mg/kg) in Oprd1 ?/? mice in conditions under which they normally fail to express CPP.

Results

We found that presentation of circadian, drug or auditory cues, predicting morphine or food reward, restored morphine CPP in Oprd1 ?/? mice, which then performed as well as control mice.

Conclusions

This study reveals that, in contrast to spatial cues, internal or discrete morphine-predicting stimuli permit full expression of morphine CPP in Oprd1 ?/? mice. Delta receptors, therefore, appear to play a crucial role in modulating spatial contextual cue-related responses. This activity may be critical when context gains control over behavior, as is the case for context-induced relapse in drug abuse.  相似文献   

10.

Rationale

The medial prefrontal cortex (mPFC) is a key neural region involved in opiate-related reward memory processing. AMPA receptor transmission in the mPFC modulates opiate-related reward memory processing, and chronic opiate exposure is associated with alterations in intra-mPFC AMPA receptor function.

Objective

The objectives of this study were to examine how pharmacological blockade of AMPA receptor transmission in the prelimbic (PLC) division of the mPFC may modulate opiate reward memory acquisition and whether opiate exposure state may modulate the functional role of intra-PLC AMPA receptor transmission during opiate reward learning.

Methods

Using an unbiased conditioned place preference (CPP) procedure in rats, we performed discrete, bilateral intra-PLC microinfusions of the AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione, prior to behavioral morphine CPP conditioning, using sub-reward threshold conditioning doses of either systemic (0.05 mg/kg; i.p.) or intra-ventral tegmental area (VTA) morphine (250 ng/0.5 μl).

Results

We show that, in both opiate-naïve and opiate-dependent states, intra-PLC blockade of AMPA receptor transmission, but not the infralimbic cortex, increases the behavioral reward magnitude of systemic or intra-VTA morphine. This effect is dependent on dopamine (DA)ergic signaling because pre-administration of cis-(Z)-flupenthixol-dihydrochloride (α-flu), a broad-spectrum dopamine receptor antagonist, blocked the morphine-reward potentiating effects of AMPA receptor blockade.

Conclusions

These findings suggest a critical role for intra-PLC AMPA receptor transmission in the processing of opiate reward signaling. Furthermore, blockade of AMPA transmission specifically within the PLC is capable of switching opiate reward processing to a DA-dependent reward system, independently of previous opiate exposure history.  相似文献   

11.

Rationale

Accumulated evidence suggests a role for histamine in cognition and the use of H3 receptor antagonists in the treatment of learning and memory disorders.

Objectives

The aim of the current study was to investigate the cognition enhancing properties of ciproxifan, an H3 receptor antagonist, after natural forgetting in normal adult rats.

Materials and methods

The novel object discrimination task, a recognition memory test based on spontaneous exploratory behaviour, was used. Briefly, rats exposed to two identical objects during an acquisition trial can discriminate between a novel object and a familiar one during a subsequent choice trial after a short delay but not after a 24-h inter-trial interval.

Results

The scopolamine (0.5 mg/kg, i.p.)-induced impairment after a short delay was abolished by ciproxifan (p?p?p?1 antagonist, or zolantidine (10 mg/kg), an H2 antagonist, prevented the retrieval enhancement effect of ciproxifan (p?p?Conclusions Histamine H3 receptor antagonists restore the performance of rats impaired by scopolamine and enhance recognition memory after acute administration before the retrieval phase via a mechanism dependent on H1 and H2 receptor activation.  相似文献   

12.

Rationale

It is important to study age-related differences that may put adolescents at risk for alcohol-related problems. Adolescents seem less sensitive to the aversive effects of ethanol than adults. Less is known of appetitive effects of ethanol and stress modulation of these effects.

Objectives

This study aims to describe the effects of acute social or restraint stress on ethanol-precipitated locomotor activity (LMA), in adolescent and adult rats. Effects of activation of the kappa system on ethanol-induced LMA were also evaluated.

Methods

Adolescent or adult rats were restrained for 90 min, exposed to social deprivation stress for 90 or 180 min or administered with the kappa agonist U62,066E before being given ethanol, and assessed for LMA.

Results

Adolescents were significantly more sensitive to the stimulating, and less sensitive to the sedative, effects of ethanol than adults. Basal locomotion was significantly increased by social deprivation stress in adult, but not in adolescent, rats. U62,066E significantly reduced basal and ethanol-induced locomotion in the adolescents. Corticosterone and progesterone levels were significantly higher in adolescents than in adults.

Conclusions

Adolescents exhibit greater sensitivity to ethanol-induced LMA and reduced sensitivity to ethanol-induced motor sedation than adult rats. Ethanol’s effects on motor activity were not affected by acute stress. Unlike adults, adolescents were insensitive to acute restraint and social deprivation stress but exhibited motor depression after activation of the endogenous kappa opioid receptor system.  相似文献   

13.

Rationale

GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.

Objective

We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.

Methods

α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).

Results

No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.

Conclusions

Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking.  相似文献   

14.

Rationale

Vulnerability to drug abuse disorders is determined not only by environmental but also by genetic factors. A body of evidence suggests that endogenous opioid peptide systems may influence rewarding effects of addictive substances, and thus, their individual expression levels may contribute to drug abuse liability.

Objectives

The aim of our study was to assess whether basal genotype-dependent brain expression of opioid propeptides genes can influence sensitivity to morphine reward.

Methods

Experiments were performed on inbred mouse strains C57BL/6J, DBA/2J, and SWR/J, which differ markedly in responses to morphine administration: DBA/2J and SWR/J show low and C57BL/6J high sensitivity to opioid reward. Proenkephalin (PENK) and prodynorphin (PDYN) gene expression was measured by in situ hybridization in brain regions implicated in addiction. The influence of the κ opioid receptor antagonist nor-binaltorphimine (nor-BNI), which attenuates effects of endogenous PDYN-derived peptides, on rewarding actions of morphine was studied using the conditioned place preference (CPP) paradigm.

Results

DBA/2J and SWR/J mice showed higher levels of PDYN and lower levels of PENK messenger RNA in the nucleus accumbens than the C57BL/6J strain. Pretreatment with nor-BNI enhanced morphine-induced CPP in the opioid-insensitive DBA/2J and SWR/J strains.

Conclusions

Our results demonstrate that inter-strain differences in PENK and PDYN genes expression in the nucleus accumbens parallel sensitivity of the selected mouse strains to rewarding effects of morphine. They suggest that high expression of PDYN may protect against drug abuse by limiting drug-produced reward, which may be due to dynorphin-mediated modulation of dopamine release in the nucleus accumbens.  相似文献   

15.

Rationale

Several studies implicate stress as a risk factor for the development and maintenance of drug addictive behaviors and drug relapse. Kappa opioid receptor (KOR) antagonists have been shown to attenuate behavioral responses to stress and stress-induced reinstatement of cocaine and ethanol seeking and preference.

Objectives

In the current study, we determined whether the selective KOR antagonist, norbinaltorphimine (nor-BNI), would block stress-induced reinstatement of nicotine preference.

Methods

Adult Institute of Cancer Research mice were conditioned with 0.5 mg/kg nicotine, injected subcutaneously (s.c.) for 3 days and tested in the nicotine-conditioned place preference (CPP) model. After 3 days extinction, nor-BNI (10 mg/kg, s.c.) was administered 16 h prior to a priming dose of nicotine (0.1 mg/kg, s.c.), and mice were tested in the CPP model for nicotine-induced reinstatement of CPP. A separate group of mice was subjected to a 2-day modified forced swim test (FST) paradigm to induce stress after 3 days extinction from CPP. Mice were given vehicle or nor-BNI (10 mg/kg, s.c.) 16 h prior to each FST session.

Results

Nor-BNI pretreatment significantly attenuated stress-induced reinstatement of nicotine-CPP, but had no effect on nicotine-primed reinstatement.

Conclusions

Blockade of KORs by selective antagonists attenuates stress-induced reinstatement of nicotine-CPP. Overall, the kappa opioid system may serve as a therapeutic target for suppressing multiple signaling processes which contribute to maintenance of smoking, smoking relapse, and drug abuse in general.  相似文献   

16.

Rationale and Objective

A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABAB receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice.

Methods

Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test.

Results

Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP.

Conclusions

Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABAB receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.  相似文献   

17.

Rationale

Melatonin modifies physiological and behavioral responses to psychostimulants, with the MT1 and MT2 melatonin receptors specifically implicated in facilitating methamphetamine (METH)-induced sensitization in melatonin-proficient mice.

Objective

The objective of the study is to assess differences in locomotor sensitization after a single dose of methamphetamine in low-melatonin-expressing C57BL/6 wild-type and MT1 receptor knockout (MT1KO) mice, comparing with melatonin-expressing C3H/HeN mice.

Methods

Mice received a vehicle or methamphetamine (1.2 mg/kg, i.p.) pretreatment (day 1) during the light (ZT5-9) or dark (ZT 19–21) periods in novel test arenas. Locomotor sensitization was assessed by methamphetamine challenge after an eight-day abstinence (day 9). TH protein expression was evaluated by immunofluorescence and Western blot analysis.

Results

Methamphetamine pretreatment induced statistically significant locomotor sensitization upon challenge after eight-day abstinence in C3H and C57 wild-type mice during the light period. The magnitude of sensitization in C57 mice was diminished in the dark period and completely abrogated in MT1KO mice. No differences were observed in tyrosine hydroxylase immunoreactivity in the mesolimbic dopamine system. Additional exposures to the test arenas after methamphetamine pretreatment (nights 2–6) enhanced sensitization.

Conclusions

Deletion of the MT1 melatonin receptor abolishes sensitization induced by a single METH pretreatment. The magnitude of sensitization is also altered by time of day and contextual cues. We conclude that the MT1 melatonin receptor is emerging as a novel target of therapeutic intervention for drug abuse disorders.  相似文献   

18.

Rationale

Several studies suggest that repeated nicotine administration causes alterations in glutaminergic transmission that may play an important role in developing and maintaining nicotine addiction. Chronic nicotine administration in rats decreases the expression of the glutamate transporter-1 (GLT-1) and cysteine–glutamate exchanger (system xC?) in the nucleus accumbens. We hypothesized that ceftriaxone, a GLT-1 and system xC? activator, would decrease murine behavioral aspects of nicotine dependence.

Objective

This study aimed to investigate the effect of repeated ceftriaxone administration on the behavioral effects of nicotine using mouse models of conditioned reward and withdrawal.

Method

Using male ICR mice, the ability of repeated ceftriaxone injections to modulate the development and reinstatement of a nicotine-conditioned place preference (CPP) was evaluated. Additionally, nicotine withdrawal-associated signs were assessed. These included both physical (somatic signs and hyperalgesia) and affective (anxiety-related behaviors) withdrawal signs in mice. Finally, the effects of ceftriaxone on nicotine-induced antinociception and hypothermia after acute nicotine injection were measured.

Result

Ceftriaxone had no effect on the development of nicotine preference but significantly attenuated nicotine-induced reinstatement of CPP. Furthermore, ceftriaxone reversed all nicotine withdrawal signs measured in mice.

Conclusion

Altogether, these findings show that a β-lactam antibiotic reduces nicotine withdrawal and nicotine-seeking behavior. Our results suggest that the documented efficacy of ceftriaxone against cocaine and morphine dependence-related behaviors effects extends to nicotine.  相似文献   

19.

Rationale

Heroin users report reward deficits as well as reward enhancements (to drug stimuli). To better understand the causal relation between chronic heroin and alterations in natural reward processing, we used experimental techniques in animal models.

Methods

Separate groups of rats were trained in several food reward paradigms: conditioned place preference (CPP), food-reinforced lever pressing under a progressive ratio schedule of reinforcement, free feeding, and lever pressing with conditioned reinforcement. After training, the rats were subjected to 10 daily heroin (2 mg/kg) or saline vehicle injections and tested at 3, 15, and 30 days post-treatment.

Results

Repeated heroin treatment abolished the CPP and significantly reduced break points for food reward at 3, 15, and 30 days post-treatment. Repeated heroin did not affect free feeding. Finally, repeated heroin significantly enhanced responding for a food-based conditioned reinforcer.

Conclusions

Repeated heroin decreases the attractiveness of food-associated cues and reduces motivation to work for natural reward. However, it appears to enhance natural conditioned reward processes that involve the acquisition of novel responding. Thus, repeated heroin appears to produce differential effects on natural reward processing depending on the nature of the reward-directed behavior.  相似文献   

20.

Rationale

Whereas cannabinoid CB1 receptors have long been known to contribute to the rewarding effects and dependence liability of many drugs of abuse, recent studies have implicated the involvement of cannabinoid CB2 receptors.

Objective

Here, we evaluated the role of CB2 receptors in the rewarding properties of nicotine, as assessed in the conditioned place preference (CPP) paradigm and mecamylamine-precipitated withdrawal in nicotine dependent mice.

Methods

Using complementary pharmacological and genetic approaches, we investigated the involvement of CB2 receptors in nicotine- and cocaine-induced CPP in mice and mecamylamine-precipitated withdrawal in nicotine-dependent mice. We also determined whether deletion of CB2 receptors affects nicotine-induced hypothermia and hypoalgesia.

Results

Nicotine-induced (0.5 mg/kg) CPP was completely blocked by selective CB2 antagonist, SR144528 (3 mg/kg) in wild-type mice, and was absent in CB2 (?/?) mice. Conversely, the CB2 receptor agonist, O-1966 (1, 3, 5, 10, 20 mg/kg) given in combination with a subthreshold dose of nicotine (0.1 mg/kg) elicited a place preference. In contrast, O-1966 (20 mg/kg) blocked cocaine (10 mg/kg)-induced CPP in wild type mice, while CB2 (?/?) mice showed unaltered cocaine CPP. CB2 (+/+) and (?/?) nicotine-dependent mice showed almost identical precipitated withdrawal responses and deletion of CB2 receptor did not alter acute somatic effects of nicotine.

Conclusions

Collectively, these results indicate that CB2 receptors are required for nicotine-induced CPP in the mouse, while it is not involved in nicotine withdrawal or acute effects of nicotine. Moreover, these results suggest that CB2 receptors play opposing roles in nicotine- and cocaine-induced CPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号