首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient receptor potential channels (TRP) have emerged as cellular sensors of various internal and external cues. Generally, the activation of TRP canonical (TRPC) channels is triggered by the stimulation of phospholipase C; however, multiple factors are involved in the regulation of these channels. Among them, Ca2+-mediated feedback channel modulations are often mediated by calmodulin (CaM) and other Ca2+-binding proteins. In vitro binding studies have revealed multiple CaM-binding sites on TRPC proteins. Among them, a common CaM/inositol 1,4,5-trisphosphate receptor-binding site is found at the carboxyl terminus of every TRPC isoform. Additional non-conserved CaM-binding sites are present at the amino and carboxyl termini of several TRPC proteins. Likewise, multiple CaM-binding sites were found in other TRP proteins. These, together with the presence in close vicinity of the interaction sites for the related neuronal Ca2+-binding proteins, such as CaBP1, suggest a multitude of diverse intracellular Ca2+-dependent regulations of TRP channels. Functional studies have begun to reveal the unique roles of CaM and CaBP1 binding to several TRP channels. This review will focus on the CaM- and CaBP1-mediated regulations of TRPC channels. Related studies on TRPM and TRPV channels will also be highlighted.  相似文献   

2.
Summary The distribution of the Ca2+-binding proteins parvalbumin (PV) and calbindin D-28k (CaBP) was investigated in the human cerebellar cortex. Purkinje cells contain both PV and CaBP. PV but not CaBP stains stellate and basket cells in the molecular layer. In the granular layer Golgi neurons can be subdivided into a majority, devoid of both Ca2+-binding proteins, and a scanty population which appears to be PV- and CaBP-immunoreactive. Thus GABAergic neurons in the human cerebellar cortex show selective differences in their Ca2+-binding properties, and these differences might reflect a heterogeneity in the processing of Ca2-mediated events.Abbreviations CaBP calbindin D-28k - CNS central nervous system - GABA -aminobutyric acid - -IR immunoreactivity - LTD long-term depression - PV parvalbumin  相似文献   

3.
We have proposed recently that a pertussistoxin-insensitive Ca2+ influx stimulated by Y2-type receptor activation in CHP-234 human neuroblastoma cells underlies increases in intracellular free Ca2+ concentration ([Ca2+]i) induced by neuropeptide Y (NPY), which were strictly dependent on extracellular Ca2+ and independent of internal Ca2+ stores. We describe here the actions of NPY in these same cells, using the activity of Ca2+-activated K+ channels as an indicator of [Ca2+]i. The elementary slope conductance of these channels was 110±3 pS (with an asymmetrical K+gradient), their activity was greatly increased by application of ionomycin, and they were reversibly blocked by 1 mM tetraethylammonium (TEA) and 100 nM charybdotoxin. Application of 100 nM NPY, in the presence but not in the absence of extracellular Ca2+, increased the channel open probability. ATP applied in the absence of external Ca2+ caused rises both in channel open probability and [Ca2+]i. Inositol trisphosphate production was stimulated by ATP but not by NPY. In outside-out patches, NPY increased channel open probability, indicating that NPY-associated Ca2+ influx does not require all the intracellular machinery present in intact cells. Channel activation by NPY was unaffected by the replacement of guanosine 5-triphosphate (GTP) by (guanosine 5-O-(2-thiodiphosphate) (GDP[S]), a non-hydrolysable GDP analogue, in the pipette internal solution, consistent with the lack of involvement of G-proteins in the coupling of Y2-type receptors to Ca2+ influx in CHP-234 cells.  相似文献   

4.
Exposure of aortic strips from guinea-pigs to hypotonic extracellular fluid is followed by marked vasoconstriction, which is inhibited by D-600 (3 M), a blocker of voltage-sensitive Ca2+ channels. Conventional electrophysiology, patch-clamp studies, pH determination with 2, 7 bis(2-carboxyethyl)-5, 6-carboxyfluorescein (BCECF) and Ca2+ measurements with Fura-2 have been performed on smooth muscle cells cultured either from rat or human aorta to further elucidate the underlying mechanisms. Exposure of the cells to a 25% hypotonic extracellular fluid leads to a rapid and fully reversible depolarization, paralleled by an increase of the selectivity and conductance of the cell membrane to Cl, an acidification of the cytoplasm and an increase of intracellular Ca2+ concentration ([Ca2+]i). The latter is inhibited by the Ca2+ channel blocker D-600 (1–3 M). It is concluded that osmotic cell swelling leads to the activation of an anion channel. The subsequent depolarization of the cell membrane activates voltage-sensitive Ca2+ channels which increases [Ca2+]i, thus stimulating the contraction of vascular smooth muscle cells.  相似文献   

5.
Ca2+ release from the sarcoplasmic reticulum was studied in voltage-clamped guinea-pig atrial myocytes. Cells were dialysed with a pipette solution containing the Ca2+ indicator 1- [2-amino-5-(6-carboxyindol-2-yl) phenoxy]-2-(2-amino-5-methylphenoxy) ethane-N,N,N,N-tetraacetic acid](Indo-1, 100 M) and as main anion either chloride or the low-affinity Ca2+ buffer citrate. Intracellular Ca2+ transients (Cai transients) were elicited by depolarizations from a holding potential of –50 mV. In chloride-dialysed cells, Cai transients showed a bell-shaped dependence on the amplitude of the depolarizing pulse. In citratedialysed cells, membrane depolarizations were associated with a small rise in [Ca2+]i. These small changes in [Ca2+]i were either followed by a large Cai. transient or failed to induce large changes in [Ca2+]i. The peak amplitude of the large Cai transient did not vary with the amplitude of the depolarizing pulse. These results demonstrate that in the presence of intracellular chloride, Ca2+ release in atrial cells is a graded process triggered by Ca2+ influx. Using citrate as the main intracellular anoin, Ca2+ release triggered by Ca2+ entry was no longer graded but occurred in a regenerative manner. The results are discussed in terms of two models in which citrate, affects the spatial distribution of [Ca2+]i or the loading state of the sarcoplasmic reticulum.  相似文献   

6.
Neuropeptide Y(NPY) inhibits Ca2+-activated K+ channels reversibly in vascular smooth muscle cells from the rat tail artery. NPY (200 M) had no effect in the absence of intracellular adenosine 5triphosphate (ATP) and when the metabolic poison cyanide-M-chlorophenyl hydrozone (10 M) was included in the intracellular pipette solution. NPY was also not effective when ATP was substituted by the non-hydrolysable ATP analogue adenosine 5-[, -methylene]-triphosphate (AMP-PCP). NPY inhibited Ca2+-activated K+ channel activity when ATP was replaced by adenosine 5-O-(3-thiotriphosphate) (ATP [-S]) and the inhibition was not readily reversed upon washing. Protein kinase inhibitor (1 M), a specific inhibitor of adenosine 3, 5-cyclic monophosphatedependent protein kinase, had no significant effect on the inhibitory action of NPY. The effect of NPY on single-channel activity was inhibited by the tyrosine kinase inhibitor genistein (10 M) but not by daidzein, an inactive analogue of genistein. These observations suggest that the inhibition by NPY of Ca2+-activated K+ channels is mediated by ATP-dependent phosphorylation. The inhibitory effect of NPY was antagonized by the tyrosine kinase inhibitor genistein.  相似文献   

7.
Ca2+ release from the sarcoplasmic reticulum (SR) of mammalian cardiac myocytes occuring either due to activation by a depolarization or the resulting transmembrane Ca2+ current (I Ca), or spontaneously due to Ca2+ overload has been shown to cause inward current(s) at negative membrane potentials. In this study, the effects of different intracellular Ca2+ chelating compounds on I Ca-evoked or spontaneous Ca2+-release-dependent inward currents were examined in dialysed atrial myocytes from hearts of adult guinea-pigs by means of whole-cell voltage-clamp. As compared to dialysis with solutions containing only a low concentration of a high affinity ethylene glycol-bis(-aminoethylether) N,N,N,N-tetraacetic acid (EGTA) like chelator (50–200 M), inward membrane currents (at –50 mV) due to evoked Ca2+ release, spontaneous Ca2+ release or Ca2+ overload following long-lasting depolarizations to very positive membrane potentials are prolonged if the dialysing fluid contains a high concentration of a low affinity Ca2+ chelating compound such as citrate or free adenosine 5-triphosphate (ATP). Without such a non-saturable Ca2+ chelator in the dialysing fluid, Ca2+-release-dependent inward currents are often oscillatory and show an irregular amplitude. With a low affinity chelator in a non-saturable concentration, discrete inward currents with constant properties can be recorded. We conclude that the variability in Ca2+-release-dependent inward current seen in single cells arises from spatial inhomogeneities of intracellular Ca2+ concentration ([Ca2+]i) due to localized saturation of endogenous and exogenous high affinity Ca2+ buffers (e.g. [2]). This can be avoided experimentally by addition of a non-saturable buffer to the intracellular solution. This condition might be useful, if properties of Ca2+ release from the SR and/ or the resulting membrane current, like for example arrhythmogenic transient inward current, are to be investigated on the single cell level.  相似文献   

8.
The effects of extracellular adenosine 5-triphosphate (ATP) on voltage-dependent Ca2+ currents were examined using the whole-cell voltage-clamp technique in guinea-pig isolated adrenal chromaffin cells. ATP (500 M) reversibly suppressed Ca2+ currents in the presence of 5 mM Ca2+ in the extracellular solution. The inhibitory effect of ATP on Ca2+ currents tended to increase with increases in the peak amplitude of ATP-evoked current when the intracellular solution contained 0.1 or 1 mM ethylenebis(oxonitrilo)tetraacetate(EGTA). Using the intracellular solution containing 10 mM EGTA, on the other hand, the inhibitory efftect did not change regardless of the amplitude of current responses to ATP In the presence of 10 mM Ba2+, ATP (100 mol/l). reduced Ba2+ currents in a manner similar to Ca2+ currents. This reduction was decreased by dialysis of cells with the internal solution containing guanosine 5-O-(2-thiodiphosphate) (GDP [-S]; 1 mM) or guanosine 5-O-(3-thiotriphos-phate) (GTP [-S]; 100 mol/l). A depolarizing prepulse channels. In addition, ATP seems to modulate Ca2+ channels via the pathway related to G-protein. Adenine nucleotides and adenosine may play a role in controlling secretory activity in guinea-pig adrenal chromaffin cells.  相似文献   

9.
Cl secretion in HT29 cells is regulated by agonists such as carbachol, neurotensin and adenosine 5-triphosphate (ATP). These agonists induce Ca2+ store release as well as Ca2+ influx from the extracellular space. The increase in cytosolic Ca2+ enhances the Cl and K+ conductances of these cells. Removal of extracellular Ca2+ strongly attenuates the secretory response to the above-mentioned agonists. The present study utilises patch-clamp methods to characterise the Ca2+ influx pathway. Inhibitors which have been shown previously to inhibit non-selective cation channels, such as flufenamate (0.1 mmol·l–1, n=6) and Gd3+ (10 mol·l–1, n=6) inhibited ATP (0.1 mmol·l–1) induced increases in whole-cell conductance (G m). When Cl and K+ currents were inhibited by the presence of Cs2SO4 in the patch pipette and gluconate in the bath, ATP (0.1 mmol·l–1) still induced a significant increase in G m from 1.2±0.3 nS to 4.7±1 nS (n=24). This suggests that ATP induces a cation influx with a conductance of approximately 3–4 nS. This cation influx was inhibited by flufenamate (0.1 mmol·l–1, n=6) and Gd3+ (10 mol·l–1, n=9). When Ba2+ (5 mmol·l–1) and 4,4-diisothiocyanatostilbene-2-2-disulphonic acid (DIDS, 0.1 mmol·l–1) were added to the KCl/K-gluconate pipette solution to inhibit K+ and Cl currents and the cells were clamped to depolarised voltages, ATP (0.1 mmol·l–1) reduced the membrane current (I m) significantly from 86±14 pA to 54±11 pA (n=13), unmasking a cation inward current. In another series, the cation inward current was activated by dialysing the cell with a KCl/K-gluconate solution containing 5–10 mmol·l–1 1,2-bis-(2-aminoethoxy)ethane-N,N,N,N-tetraacetic acid (EGTA) or 1,2-bis-(2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA). The zero-current membrane voltage (V m) and I m (at a clamp voltage of +10 mV) were monitored as a function of time. A new steady-state was reached 30–120 s after membrane rupture. V m depolarised significantly from –33±2 mV to –12±1 mV, and I m fell significantly from 17±2 pA to 8.9±1.0 pA (n=71). This negative current, representing a cation inward current, was activated when Ca2+ stores were emptied and was reduced significantly (I m) when Ca2+ and/or Na+ were removed from the bathing solution: removal of Ca2+ in the absence of Na+ caused a I m of 5.0±1.2 pA (n=12); removal of Na+ in the absence of Ca2+ caused a I m of 12.8±3.5 pA (n=4). The cation inward current was also reduced significantly by La3+, Gd3+, and flufenamate. We conclude that store depletion induces a Ca2+/Na+ influx current in these cells. With 145 mmol·l–1 Na+ and 1 mmol·l–1 Ca2+, both ions contribute to this cation inward current. This current is an important component in the agonist-regulated secretory response.  相似文献   

10.
The relationship between capacitative Ca2+ influx and activation of Ca2+-dependent Cl channels was monitored in intactXenopus oocytes following stimulation of 5-hydroxytryptamine (5-HT) receptors, through the activity of Ca2+-dependent Cl channels using the double-electrode voltage-clamp technique. Under voltage-clamp conditions, 5-HT evoked a rapid transient inward current followed by a slowly developing secondary inward current. The secondary current reflected depletion-activated Ca2+ entry. Hyperpolarising pulses evoked sustained Ca2+-dependent Cl currents when applied during the transient inward current, but evoked hump-like currents which inactivated rapidly when applied during the secondary inward current. Hump currents arose from Ca2+ entering through the depletion-activated pathway. The hump currents inactivated with hyperpolarising pulses at <5-s intervals, and recovered monoexponentially with a time constant of around 8 s. Currents in response to hyperpolarising pulses during the transient current did not inactivate, suggesting that inactivation was associated with Ca2+ entry. When Ca2+ release evoked by inositol 1,4,5-triphosphate [Ins(1,4,5)P 3] was prevented by heparin injection, hyperpolarising pulses during Ca2+ ionophore application also generated hump currents that were dependent on external Ca2+, inactivated and recovered from inactivation with a similar time course as the humps following 5-HT treatment. Pretreatment with the Ca2+ adenosine 5-triphosphatase (Ca2+ATPase) inhibitor thapsigargin reduced the rate of rise of the hump current, increased the time-to-peak of the current and slowed the rate of decay. Pharmacological interventions to disrupt the cytoskeleton reduced the amplitude of the hump current. It is suggested that, following hyperpolarisation in the presence of Ca2+ entry, the ensuing Ca2+ influx interacts with Cl channels in a way that might reflect both Ca2+ inhibition of Ca2+ entry and clustering of Cl channels in the plasma membrane.  相似文献   

11.
Intracellular Ca2+ and Ca2+-permeable ion channels are important in regulating the firing activity and pattern of midbrain dopamine neurons, but the role of Ca2+-permeable nonselective cation channels (NSCCs) on spontaneous firing activity is unclear. Therefore, we investigated how Ca2+-permeable NSCCs modulate spontaneous firing activity and cytosolic Ca2+ concentration ([Ca2+]c) in acutely isolated midbrain dopamine neurons of the rat. Applications of voltage-dependent Ca2+ channels antagonists failed to abolish spontaneous firing activity completely, but they decreased firing rate and [Ca2+]c. However, a blockade of NSCCs by 2-APB or SKF96365 more potently suppressed spontaneous firings with a depolarization of membrane potential and strong decreases in basal [Ca2+]c levels. The depolarization of membrane potentials was attenuated by intracellular dialysis with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). NSCCs blockers inhibited oscillatory potentials and decreased basal [Ca2+]c in the presence of tetrodotoxin. Apamin, a small-conductance Ca2+-activated K+ channel inhibitor, depolarized membrane potentials and enhanced firing rates. From these data, we conclude that NSCCs not only make up the tonic Ca2+ entry pathways to uphold basal [Ca2+]c levels but also contribute to generation of spontaneous firings, thereby regulating spontaneous firing activities of the midbrain dopamine neurons.  相似文献   

12.
In intracellular electrolyte solutions a Ca2+-selective microelectrode based on the synthetic electrically neutral carrier N,N,N,N-tetracyclohexyl-3-oxapentanediamide (ETH 129) shows an improved detection limit when compared with the so far widely used Ca2+ microelectrodes based on the neutral carrier ETH 1001. Detection limits are found at pCa=9.2 in Ca2+ buffers containing an intracellular background of K+ (125 mM). Selectivity studies in mixed solutions show a preference of Ca2+ over Na+ of 6·105, over K+ of 1.6·106, and over Mg2+ of 5·106. The microelectrode does not suffer from significant interference by inorganic and organic inhibitors and by lipophilic cations and anions. The low detection limit is unchanged at least during the first eight hours of continuous contact with Ca2+ solutions. The EMF drift during the first hour of use is between 5 and 10 mV and is then reduced to about 1 mV/h. The changes in EMF induced between solution of pCa=7 and pCa=8 are reproducible within 24.7±0.4 mV (SD,n=8, about 3 h). These electrode characteristics were found for single-barrelled microelectrodes of one micrometer diameter front-filled with a PVC-containing membrane phase. In the absence of poly(vinyl chloride) in the membrane phase irregular EMF response curves were obtained throughout. Preliminary punctures of ferret ventricular muscle cells indicate that the Ca2+ electrode response is not disturbed by the contact of a cytosolic milieu.  相似文献   

13.
Intracellular free Ca2+ concentrations ([Ca2+]i) were measured in subclones of NL308 neuroblastoma x fibroblast hybrid cells expressing each of the individual muscarinic acetylcholine receptor (mAChR) subtypes m1, m2, m3 and m4. Application of 100 M acetylcholine (ACh) increased [Ca2+]i in all four subclones. The increased [Ca2+]i levels were significantly higher in m1- and m3-transformed cells than those in m2- and m4-transformed cells. In more than 95% of m2- and m4-transformed cells, [Ca2+]i showed sinusoidal oscillations. ACh-induced increases in [Ca2+]i were not observed in cells treated with an intracellular Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N,N'-tetraacetic acid (BAPTA). Removal of extracellular Ca2+ with ethyleneglycol-bis-(-aminoethyl)-N,N,N,N'-tetraacetate (EGTA) did not affect the initial [Ca2+]i increases, but reduced the late phases of [Ca2+]i in m1- and m3-transformed cells by 20–30%. Oscillations in m2- and m4-transformed cells persisted in EGTA solution (though sometimes slowed in frequency), suggesting that they were of intracellular origin. ACh-induced [Ca2+]i and inositol 1,4,5-trisphosphate formation was completely suppressed by pre-treatment with 50–100 ng ml–1 Pertussis toxin (PTX) for 12 h in m2- and m4-transformed cells, but not in m1 and m3-transformed cells. In all cells, extracellular application of caffeine and ryanodine, or intracellular application of cyclic adenosine diphosphate ribose (cADPR) produced a rise in [Ca2+]i. ACh-induced [Ca2+]i oscillations were not observed in ryanodine-treated m2-transformed cells. These results show that, while all four mAChRs utilize Ca2+ as a common second messenger, m2 and m4 receptors use a different signalling pathway to that used by m1 and m3 receptors.  相似文献   

14.
Parathyroid hormone (PTH) controls two proximal tubular brush border membrane transport systems, Na+/phosphate co-transport and Na+/H+ exchange. In OK cells, a cell line with proximal tubular transport characteristics, PTH acts via kinase C and kinase A activation to inhibit Na+/phosphate co-transport [6, 8, 9, 19, 22]. In the present study, we show that PTH inhibits Na+/H+ exchange and that this effect can be mimicked by pharmacological activation of kinase A and kinase C. Ionomycin-dependent increases in cytoplasmic Ca2+ concentration do not induce inhibition of Na+/H+ exchange; PTH-dependent inhibition of Na+/H+ exchange is not prevented by ionomycin or by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (Ca2+ clamping). Detailed dose-response curves for the different agonists, given either alone or in combination, suggest that the two regulatory cascades (kinase A and kinase C) are operating independent of each other and reach a common final target, resulting in 40–50% inhibition of Na+/H+ exchange. An analysis of intracellular pH sensitivity of Na+/H+ exchange suggests that inhibition is not related to a shift in set point, but is rather explained by a reduced V max of Na+/H+ exchange and/or reduced affinity for protons at the internal membrane surface. It is suggested that kinase A as well as kinase C can mediate PTH inhibition of renal proximal tubular Na+/H+ exchange and that the relative importance of a particular regulatory cascade is determined by the PTH-concentration-dependent rates in the liberation of diacylglycerol (phospholipase C/kinase C) and cAMP (adenylate cyclase/kinase A).Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazineethane-sulphonic acid - EDTA ethylenediaminetetraacetic acid - FCS fetal calf serum - PTH parathyroid hormone - Tris 2-amino-2-hydroxyme-thylpropane-1,3-diol - BCECF 2,7-bis(2-carboxyethyl)-5,6-carboxyfluorescein - Pi inorganic phosphate - pHi intracellular pH - Cai cytosolic free Ca2+ - BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - EGTA ethylene glycol-bis(-amino-ethylether)-N,N,N,N-tetraacetic acid - IP3 inositol 1,4,5-trisphos-phate - DAG 1,2-diacylglycerol  相似文献   

15.
In isolated chromaffin cells, the high-voltage-activated Ca2+ current, recorded using 5 mM Ca2+ as the divalent charge carrier, exhibits rundown within 10 min, which is delayed for 1 h at least by the addition of 1 mM adenosine 5-triphosphate (ATP) to the pipette medium. The mechanism of this stabilizing action of ATP has been examined. ATP action is dose dependent; the rundown process, which was delayed at concentrations below 0.4 mM, was totally abolished at higher concentrations. The requirement for ATP was shown to be quite strict: 2 mM inosine 5-triphosphate (ITP) could not replace ATP, whereas guanosine 5-triphosphate (GTP) could, but at higher concentrations. This effect of ATP was shown to require the presence of MgCl2 and the liberation of a phosphate group since the ATP analogue 5-adenylyl-imidodiphosphate (AMP-PNP) could not act as a substitute for ATP, suggesting an action through either adenosine 5-diphosphate (ADP) or a phosphorylation step. ADP, in the presence of Mg2+ only, could replace ATP in the same concentration range. This effect was shown to be specific to ADP; it was maintained after blocking the pathways which convert ADP into ATP, and could not be mimicked by guanosine 5-diphosphate (GDP). Similarly, ATP and ADP effects were abolished at an increased internal Ca2+ concentration (pCa 6 instead of pCa 7.7, where pCa = –log10[Ca2+]). Nevertheless, the presence of 1 mM Mg-ADP in the bathing solution did not prevent the rundown of the Ca2+ channels when going to the inside-out patch recording configuration. In conclusion, the stabilizing effect of ATP may be interpreted by a Mg2+-ADP binding site present on high-voltage-activated Ca2+ channels. A localization of such an ADP regulatory site on the L-type Ca2+ channel itself cannot be excluded, though with an additional requirement since Mg-ADP alone is not able to maintain the corresponding activity on excised patches.  相似文献   

16.
Copper (Cu2+) intoxication has been shown to induce pathological changes in various tissues. The mechanism underlying Cu2+ toxicity is still unclear. It has been suggested that the Na+/K+-ATPase and/or a change of the membrane permeability may be involved. In this study we examined the effects of Cu2+ on the Na+ and Ca2+ homeostasis of cultured human skeletal muscle cells using the ion-selective fluorescent probes Na+-binding benzofuran isophtalate (SBFI) and Fura-2, respectively. In addition, we measured the effect of Cu2+ on the Na+/K+-ATPase activity. Cu2+ and ouabain increase the cytoplasmic free Na+ concentration ([Na+]i). Subsequent addition of Cu2+ after ouabain does not affect the rate of [Na+]i increase. Cu2+ inhibits the Na+/K+-ATPase activity with an IC50 of 51 M. The cytoplasmic free Ca2+ concentration ([Ca2+]i) remains unaffected for more than 10 min after the administration of Cu2+. Thereafter, [Ca2+]i increases as a result of the Na+/Ca2+-exchanger operating in the reversed mode. The effects of Cu2+ on the Na+ homeostasis are reversed by the reducing and chelating agent dithiothreitol and the heavy metal chelator N,N,N,N,-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). In conclusion, SBFI is a good tool to examine Na+ homeostasis in cultured human skeletal muscle cells. Under the experimental conditions used, Cu2+ does not modify the general membrane permeability, but inhibits the Na+/K+-pump leading to an increase of [Na+]i. As a consequence the operation mode of the Na+/Ca2+-exchanger reverses and [Ca2+]i rises.The authors thank staff and coworkers of the Department of Neurology of the University Hospital Nijmegen, Nijmegen for their kind cooperation in obtaining muscle biopsies. Mr. Arie Oosterhof is gratefully acknowledged for culturing of the human muscle cells. The Prinses Beatrix Fonds and the Dutch-Chinese scientific exchange program contributed financial support for this study.  相似文献   

17.
 Although acidosis induces vasodilation, the vascular responses mediated by large-conductance Ca2+-activated K+ (KCa) channels have not been investigated in coronary artery smooth muscle cells. We therefore investigated the response of porcine coronary arteries and smooth muscle cells to acidosis, as well as the role of KCa channels in the regulation of muscular tone. Acidosis (pH 7.3–6.8), produced by adding HCl to the extravascular solution, elicited concentration-dependent relaxation of precontracted, endothelium-denuded arterial rings. Glibenclamide (20 μM) significantly inhibited the vasodilatory response to acidosis (pH 7.3-6.8). Charybdotoxin (100 nM) was effective only at pH 6.9–6.8. When we exposed porcine coronary artery smooth muscle cells to a low-pH solution, KCa channel activity in cell-attached patches increased. However, pretreatment of these cells with 10 or 30 μM O, O′-bis(2-aminophenyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl)ester (BAPTA-AM), a Ca2+ chelator for which the cell membrane is permeable, abolished the H+-mediated activation of KCa channels in cell-attached patches. Under these circumstances H+ actually inhibited KCa channel activity. When inside-out patches were exposed to a [Ca2+] of 10–6 M [adjusted with ethyleneglycolbis(β-aminoethylester)-N,N,N′,N′-tetraacetic acid (EGTA) at pH 7.3], KCa channels were activated by H+ concentration dependently. However, when these patches were exposed to a [Ca2+] of 10–6 M adjusted with BAPTA at pH 7.3, H+ inhibited KCa channel activity. Extracellular acidosis had no significant direct effect on KCa channels, suggesting that extracellular H+ exerts its effects after transport into the cell, and that KCa channels are regulated by intracellular H+ and by cytosolic free Ca2+ modulated by acute acidosis. These results indicate that the modulation of KCa channel kinetics by acidosis plays an important role in the determination of membrane potential and, hence, coronary arterial tone. Received: 20 January 1998 / Received after revision: 9 April 1998 / Accepted: 22 April 1998  相似文献   

18.
Since their identification in the concluding years of the last century, the mammalian transient receptor potential (canonical) (TRPC) channels have remained in the limelight as the primary candidates for the Ca2+ entry pathway activated by the hormones, growth factors, and neurotransmitters that exert their effect through activation of PLC. Although TRPC channels have been shown clearly to mediate, at least in part, receptor-activated Ca2+ entry in literally all cell types, several of their central characteristics, as recorded in expression systems using recombinant channels, differ from those of the native receptor-dependent Ca2+ influx channels. The present review attempts to highlight the interaction of TRPC channels with other proteins, which may explain the variability of TRPC channel activation and regulatory mechanisms observed with the native and recombinant channels. These include the homologous and heterotopous interactions of TRPC channel isoforms, the interaction of TRPC channels with calmodulin, PLC, IP3 receptors, and with scaffolding proteins like InaD, EBP50/NEHRF, caveolin, Janctate and Homers.  相似文献   

19.
Effects of exogenous adenosine 5-triphosphate (ATP) were studied by measurements of intracellular Ca2+ concentration ([Ca2+]i) and membrane currents in myocytes freshly isolated from the human saphenous vein. At a holding potential of –60 mV, ATP (10 M) elicited a transient inward current and increased [Ca2+]i. These effects of ATP were inhibited by ,-methylene adenosine 5-triphosphate (AMPCPP, 10 M). The ATP-gated current corresponded to a non-selective cation conductance allowing Ca2+ entry. The ATP-induced [Ca2+]i rise was abolished in Ca2+-free solution and was reduced to 30.1±5.5% (n=14) of the control response when ATP was applied immediately after caffeine, and to 23.7±3.8% (n=11) in the presence of thapsigargin. The Ca2+-induced Ca2+ release blocker tetracaine inhibited the rise in [Ca2+]i induced by both caffeine and ATP, with apparent inhibitory constants of 70 M and 100 M, respectively. Of the ATP-induced increase in [Ca2+]i 29.3±3.9% (n=8) was tetracaine resistant. It is concluded that the effects of ATP in human saphenous vein myocytes are only mediated by activation of P2x receptor channels. The ATP-induced [Ca2+]i rise is due to both Ca2+ entry and Ca2+ release activated by Ca2+ ions that enter the cell through P2x receptor channels.  相似文献   

20.
In this study we investigated the effects of Ca2+ and cyclic adenosine monophosphate (cAMP) on the kinetic of receptor-mediated (RME) and fluidphase (FPE) endocytosis in opossum kidney (OK) cells, derived from the proximal tubule of the kidney. We used fluorescein isothiocyanate (FITC)-labelled albumin and FITC-labelled dextran as endocytotic substrates for RME and FPE, respectively. Removal of extracellular Ca2+ led to a dramatic decrease of the apparent affinity of RME, but did not influence the maximum endocytotic uptake rate (J max). Reduction of extracellular Ca2+ to 1 mol/l had no effect. Apparent affinity of specific binding of albumin to the plasma membrane was increased to 200% of control in the absence of extracellular Ca2+, whereas maximum binding capacity was slightly decreased. FPE was not affected by removal of extracellular Ca2+. Additional removal of cytoplasmic Ca2+, using ionomycin, had no further effect on RME and did not affect FPE. Increases of cytoplasmic (using ionomycin at extracellular Ca2+ concentrations of 1 mol/l or 1.2 mmol/l) or extracellular Ca2+ did not alter the kinetics of RME or FPE. Dibutyryl-cAMP reduced J max but left the apparent affinity of RME unchanged. FPE and albumin binding to the plasma membrane were not changed in the presence of cAMP. Removal of extracellular Ca2+ and addition of cAMP led to an alkalinization of endocytotic vesicles. Yet the alkalinization induced by removal of Ca2+ was significantly greater as compared to the alkalinization in the presence of cAMP. Endosomal alkalinization with bafilomycin A1 had no further effect in the absence of Ca2+, but reduced RME in the presence of cAMP. From these results we conclude that cAMP and extracellular Ca2+ influence the kinetics of RME in proximal tubular cells. The action of Ca2+ removal seems to be mediated partially by changes of endosomal pH. Ca2+ seems to be a prerequisite for RME but not a regulator, whereas cAMP may act as physiological inhibitor of RME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号