首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the mechanism of pancreatic HCO 3 transport, a perfused preparation of isolated intra-and interlobular ducts (i.d. 20–40 m) of rat pancreas was developed. Responses of the epithelium to changes in the bath ionic concentration and to addition of transport inhibitors was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO 3 -free and HCO 3 -containing solution was –0.8 and –2.6 mV, respectively. The equivalent short circuit current (Isc) under similar conditions was 26 and 50 A·cm–2. The specific transepithelial resistance (Rte) was 88 cm2. In control solutions the PD across the basolateral membrane (PDbl) was –63±1 mV (n=314). Ouabain (3 mmol/l) depolarized PDbl by 4.8±1.1 mV (n=6) within less than 10 s. When the bath K+ concentration was increased from 5 to 20 mmol/l, PDbl depolarized by 15.9±0.9 mV (n=50). The same K+ concentration step had no effect on PDbl if the ducts were exposed to Ba2+, a K+ channel blocker. Application of Ba2+ (1 mmol/l) alone depolarized PDbl by 26.4±1.4 mV (n=19), while another K+ channel blocker TEA+ (50 mmol/l) depolarized PDbl only by 7.7±2.0 mV (n=9). Addition of amiloride (1 mmol/l) to the bath caused 3–4 mV depolarization of PDbl. Furosemide (0.1 mmol/l) and SITS (0.1 mmol/l) had no effect on PDbl. An increase in the bath HCO 3 concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5±1.0 mV (n=149). It was investigated whether the effect of HCO 3 was due to a Na++-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively charged, or whether it was due to decreased K+ conductance caused by lowered intracellular pH. Experiments showed that the HCO 3 effect was present even when the bath Na+ concentration was reduced to a nominal value of 0 mmol/l. Similarly, the HCO 3 effect remained unchanged after Ba2+ (5 mmol/l) was added to the bath. The results indicate that on the basolateral membrane of duct cells there is a ouabain sensitive (Na++K+)-ATPase, a Ba2+ sensitive K+ conductance and an amiloride sensitive Na+/H+ antiport. The HCO 3 effect on PDbl is most likely due to rheogenic anion exit across the luminal membrane.  相似文献   

2.
Vascular smooth muscle cells were obtained from rabbit aorta and were studied in primary culture on days 1–7 after seeding with electrophysiological techniques. In impalement experiments a mean membrane potential difference (PD) of –50±0.3 mV (n=387) was obtained with Ringer-type solution in the bath. PD was depolarized by 6±0.3 mV (n=45) and 16±2 mV (n= 5) when the bath K+ concentration was increased from the control value of 3.6 mmol/l to 13.6 and 23.6 mmol/l, respectively. Ba2+ (0.1–1 mmol/l) depolarized PD. Tetraethylammonium (TEA, 10 mmol/l) depolarized PD only slightly but significantly. Verapamil (0.1 mmol/l) and charybdotoxin (10 nmol/l) had no effect on PD. The conductance properties of these cells were further examined with the patch-clamp technique. K+ channels were spontaneously present in cell-attached patches. When the pipette was filled with 145 mmol/l KCl, a mean conductance (g K) of 209.6±4.6 mV (n=17) was read from the current/voltage curves at a clamp voltage (V c) of 0 mV. After excision K+ channels were found in 129 patches with inside-out and in 50 with outside-out configuration. With KCl on one and NaCl on the other side the mean g K at a V c of 0 mV was 134.6±3.9 pS (n=179). The mean permeability was 0.89±0.03×10–12 cm3/s. With symmetrical KCl solution the mean g K was 227±6 pS (n=17). The conductance sequence was g K g Rb= g Cs=g Na=0. TEA blocked dose-dependently only from the outside.(1–10 mmol/l). Lidocaine (5 mmol/l) quinidine (0.01–1 mmol/l) and quinine (0.01–1 mmol/l) blocked from both sides. Charybdotoxin (0.5–5 nmol/l) blocked only from the extracellular side. Ba2+ blocked from the cytosolic side and the inhibition was increased by depolarization and reduced by hyperpolarization. At a V c of 0 mV a half-maximal inhibition (IC50) of 2 mol/l was obtained. Verapamil and diltiazem blocked from both sides, verapamil with an IC50 of 2 mol/l and diltiazem with an IC50 of 10 mol/l. The open probability of this channel was increased by Ca2+ on the cytosolic side at activities > 0.1 mol/l. Half-maximal activation occurred at Ca2+ activities exceeding 1 mol/l. The present data indicate that the vascular smooth muscle cells of rabbit aorta in primary culture possess a K+ conductance. In excised patches only a maxi K+ channel was detected. This channel has properties different from the macroscopic K+ conductance. Hence, it is likely that the K+ conductance of the intact cell is dominated by yet another and thus far not detected K+ channel.Supported by DFG Gr 480/10  相似文献   

3.
The effects of bradykinin (BK) and histamine (Hist) on the membrane voltage (V m), ion conductances and ion channels of cultured human glomerular epithelial cells (hGEC) were examined with the nystatin patch clamp technique. Cells were studied between passage 3 and 20 in a bath rinsed with Ringer-like solution at 37°C. The mean value of V m was –41±0.5 mV (n=189). BK (10–6 mol/l, n=29) and Hist (10–5 mol/l, n= 55) induced a rapid transient hyperpolarization by 15±1 mV and 18±1 mV, respectively. The hyperpolarization was followed by a long lasting depolarization by 6±1 mV (BK 10–6 mol/l) and 7±1 mV (Hist 10–5 mol/l). The ED50 was about 5×10–8 mol/l for BK and 5×10–7 mol/l for Hist. In the presence of both agonists, increases of outward and inward currents were observed. A change in the extracellular K+ concentration from 3.6 to 30 mmol/l depolarized V m by 8±1 mV and completely inhibited the hyperpolarizing effect of both agents (n=11). Reduction of extracellular Cl concentration from 145 to 30 mmol/l led to a depolarization by 2 ±1 mV (n=25). In 30 mmol/l Cl the depolarizations induced by BK (10–7 mol/l) and Hist (10–6 mol/l) were augmented to 9±2 mV (n=14) and to 10±2 mV (n=11), respectively. Ba2+ (5 mmol/l) depolarized V m by 19±5 mV (n=6) and completely inhibited the hyperpolarization induced by BK (10–6 mol/l, n=3) and reduced that of Hist (10–5 mol/l) markedly (n=3). Preincubation with the K+ channel blocker charybdotoxin (1–10 nmol/l) for 3 min had no significant effect on V m, but reduced markedly the BK(10–6 mol/l, n=11) and Hist-(10–5 mol/l, n=6) induced hyperpolarizations. In 10 out of 31 experiments in the cell attached nystatin patch configuration big K+ channels with a conductance of 247±17 pS were found. The open probability of these K+ channels was increased 3- to 5-fold during the hyperpolarization induced by BK (10–7 mol/l) or Hist (10–5 mol/l, both n= 4). In excised inside/out patches this K+ channel had a mean conductance of 136±8.5 pS (n=10, clamp voltage 0 mV). The channel was outwardly rectifying and its open probability was increased when Ca2+ on the cytosolic side was greater than 0.1 mol/l. The data indicate that BK and Hist activate a and a in hGEC. The hyperpolarization is induced by the activation of a Ca2+-dependent maxi K+ channel.  相似文献   

4.
The purpose of this study was to characterize the ion conductances, in particular those for Cl and K+, of human sweat duct cells grown in primary culture. Sweat duct cells from healthy individuals were grown to confluence on a dialysis membrane, which was then mounted in a mini-Ussing chamber and transepithelial and intracellular potentials were measured under open-circuit conditions. Under control conditions the epithelia developed mucosa-negative transepithelial potentials, V te, of about –10mV. The apical membrane potential, V a, was –25 mV to –30 mV (n=97) in most cells, but several cells had a higher potential of about –55 mV (n=29). Mucosal amiloride (10 mol/l) hyperpolarized V a from –31±1 mV to a new sustained level of –46±2 mV (n=36). These changes were accompanied by increase in the fractional resistance of the apical membrane, fR a, and decreases of V te and the equivalent short-circuit current, I sc. In amiloride-treated tissues an increase in mucosal K+ concentration (5 mmol/l to 25 mmol/l) depolarized V a by 5±1 mV (n=8), while the same step on the serosal side depolarized V a by 20±2 mV (n=8). A Cl channel blocker 3,5-dichloro-diphenylamine-2-carboxylate DCl-DPC; 10 mol/l) depolarized V a by 5±1 mV (n=6), an effect that was lost after amiloride application. The blocker had no effect from the serosal side. Reduction of mucosal Cl (from 120 to 30 or 10 mmol/l) depolarized V a by 9–11 mV (n=35), an effect that was often followed by a secondary hyperpolarization of 10–30 mV (n=27). Isoproterenol (5 mol/l) increased the V a responses to low Cl such that the depolarizing response was increased from 10±1 mV to 19±2 mV (n=8); the hyperpolarizing response seemed to be reduced. With changes in Cl concentration on the serosal side, V a remained relatively constant at –25 mV, while V te decreased from –8 mV to–3 mV; hence, V bl depolarized by about 5 mV. Taken together, our results show that the human sweat duct epithelium possesses Na+, K+ and Cl conductances on the luminal membrane and Cl and K+ conductances on the basolateral membrane. The Cl conductances on the luminal membrane is sensitive to DCl-DPC, and can be activated by isoproterenol. The small K+ conductance on the luminal membrane could account for some K+ secretion in sweat glands.  相似文献   

5.
The distal convoluted tubule (DCT) from rabbit kidney were perfused in vitro to study the conductive properties of the cell membranes by using electrophysiological methods. When the lumen and the bath were perfused with a biearbonate free solution buffered with HEPES, the transepithelial voltage (V T) averaged –2.8±0.6 mV (n=20), lumen negative. The basolateral membrane voltage (V B) averaged –77.8±1.1 mV (n=33) obtained by intracellular impalement of microelectrodes. Cable analysis performed by injecting a current from perfusion pipette revealed that the transepithelial resistance was 21.8±1.7 ·cm2 and the fractional resistance of the luminal membrane was 0.78±0.03 (n=8), indicating the existence of ionic conductances in the luminal membrane. Addition of amiloride (10–5 mol/l) to the luminal perfusate or Na+ removal from the lumen abolished the lumen negativeV T and hyperpolarized the apical membrane. An increase in luminal K+ concentration from 5 to 50 mmol/l reduced the apical membrane potential (V A) by 37.5±2.6 mV (n=7), whereas a reduction of Cl in the luminal perfusate did not changeV A significantly (0.5±0.5 mV,n=4). Addition of Ba2+ to the lumen reducedV A by 42.6±1.0 mV (n=4). When the bathing fluid was perfused with 50 mmol/l K+ solution, the basolateral membrane voltage (V B) fell from –76.8±1.5 to –31.0±1.3 mV (n=18), and addition of Ba2+ to the bath reducedV B by 18.3±4.8 mV (n=7). Although a reduction of Cl in the bathing fluid from 143 to 5 mmol/l did not cause any significant fast initial depolarization (1.8±1.7 mV,n=8), a spike like depolarization (14.0±2.5 mV,n=4) was observed, upon Cl reduction in the presence of Ba2+ in the bath. From these results, we conclude that the apical membrane of DCT has both K+ and Na+ conductances and the basolateral membrane has a K+ conductance and a small Cl conductance.  相似文献   

6.
The membrane potential V m the cytosolic pH (pHi), the transference numbers (t) for K+, Cl and Na+/ non-selective cation (NSC) and the pH-sensitivity of V m were investigated in transitional cells from the vestibular labyrinth of the gerbil. V m, pHi, , and the pHi sensitivity of V m were under control conditions were –92±1 mV (n=89 cells), pHi 7.13±0.07 (n=11 epithelia), 0.87±0.02 (n=22), 0.02±0.01 (n=19), 0.01±0.01 (n=24) and –5 mV/pH unit (n=13 cells/n=11 epithelia), respectively. In the presence of 100 mol/l Ba2+ the corresponding values were: –70±1 mV (n=32), pHi 7.16±0.08 (n=6), 0.31±0.05 (n=4), 0.06±0.01 (n=6), 0.20±0.03 (n=10) and -16 mV/pH-unit (n=15/n=6). In the presence of 500 mol/l amiloride the corresponding values were: –72±2mV (n=34), pHi 7.00±0.07 (n=5), 0.50±0.04 (n=6), 0.04±0.01 (n=11), 0.28±0.04 (n=9) and –26 mV/pH-unit (n=20/n=5). In the presence of 20 mmol/l propionate plus amiloride the corresponding values were: –61±2 mV (n=27), pHi 6.72±0.06 (n=5), 0.30±0.02 (n=6), 0.06±0.01 (n=5) and 0.40±0.02 (n=8), respectively. V m was depolarized and and pHi decreased due to (a) addition of 1 mmol/l amiloride in 150 mmol/l Na+ by 38±1 mV (n=8), from 0.82±0.02 to 0.17±0.02 (n=8) and by 0.13±0.01 pH unit (n=6), respectively; (b) reduction of [Na+] from 150 to 1.5 mmol/l by 3.3±0.5 mV (n=30), from 0.83±0.02 to 0.75±0.04 (n=9) and by 0.33±0.07 pH unit (n=4), respectively and (c) addition of 1 mmol/l amiloride in 1.5 mmol/l Na+ by 20±1 mV (n=11) and from 0.83±0.03 to 0.53±0.02 (n=5), respectively. These data suggest that the K+ conductance is directly inhibited by amiloride and Ba2+ and that Ba2+ and amiloride uncover or induce a pH-sensitive and a Na+/NSC conductance which may or may not be the same entity.Some of the data have been presented at various meetings and appear in abstract form in [31, 35, 37]  相似文献   

7.
Rectal gland tubules (RGT) of spiny dogfish were dissected and perfused in vitro. Transepithelial PD (PDte), resistance (Rte), the PD across the basolateral membrane (PDbl) and intracellular chloride and potassium activities (a Cl– cell ,a K+ cell ) were measured. In a first series, 67 RGT segments were perfused with symmetric shark Ringers solution. The bath perfusate contained in addition db-cAMP 10–4, forskolin 10–6, and adenosine 10–4 mol · l–1. PDte was –11±1 (n=67) mV lumen negative, Rte 27±2 (n=47) cm2. PDbl –75±0.4 (n=260) mV.a K+ cell anda Cl– cell were 109±22 (n=4) and 38±4 (n=36) mmol · l–1 respectively. These data indicate that Cl secretion across the RGT must be an uphill transport process, whereas secretion of Na+ could be driven by the lumen negative PDte. Intracellular K+ is 14 mV above equilibrium with respect to the basolateral membrane PD and Cl is 23 mV above equilibrium across the apical membrane. In series 2, the conductivity properties of the apical and basolateral membrane as well as that of the paracellular pathway were examined in concentration step experiments. Decrease of the basolateral K+ concentration led to a rapid hyperpolarization of PDbt with a mean slope of 19 mV per decade of K+ concentration change. Addition of 0.5 mmol · l–1 Ba2+ to the bath solution lead to a marked depolarization and abolished the response to K+ concentration steps. In the lumen a Cl concentration downward step led to a depolarization of the lumen membrane; resulting in a mean slope of 18 mV per decade of Cl concentration change. When dilution potentials were generated across the epithelium, the polarity indicated that the paracellular pathway is cation selective. In series 3 the equivalent short circuit current (Isc=PDte/Rte) was determined as a function of symmetrical changes in Na+ concentration, with Cl held at 276 mmol · l–1, and as a function of symmetrical changes in Cl concentration, with Na+ held at 278 mmol · l–1 Isc was a saturable function of Na+ concentration (Hill coefficient 0.9±0.1,K 1/2 4.4 mmol · l–1,n=7) and also a saturable function of Cl concentration (Hill coefficient 2.0±0.1,K 1/2 75 mmol · l–1,n=11). These data are compatible with the assumption that the carrier responsible for NaCl uptake has a 1 Na+ per 2 Cl stoichiometry. In series 4, the effect of a K+ concentration downward step on PDbl anda Cl– cell transients was followed with high time resolution in the presence and absence of basolateral furosemide (5 · 10–5 to 10–4 mol · l–1) in an attempt to examine whether K+ reduction on the bath side inhibits Na+Cl uptake by the carrier system as does e.g. furosemide. The data indicate that removal of K+ from the bath side exerts an effect comparable to that of furosemide, i.e. it inhibits the carrier. We conclude that NaCl secretion in the RGT cell comprises at the least the following components: In the basolateral membrane, the (Na++K+)-ATPase, probably the Na+ 2 ClK+ carrier, and a K+ conductance. In the apical membrane a Cl conductance; and a Na+ conductive paracellular pathway.Supported by Deutsche Forschungsgemeinschaft DFG-Gr 480/8-1. Parts of this study have been presented at the 3rd International Symposium on Ion Selective Electrodes, Burg Rabenstein 1983, 16th Annual Meeting American Society of Nephrology, Washington DC 1983, 49th Tagung der Deutschen Physiologischen Gesellschaft, Dortmund 1984. A summary of the present study was published in Bulletin Mount Desert Island Biological Laboratory (Vol. 83)  相似文献   

8.
Rat hepatocytes in primary culture were impaled with conventional microelectrodes. Addition of 5–100 mol/l taurocholate led to a slowly developing depolarization that was maximal at 50 mol/l (10.5±1.5 mV, n=15) and not reversible. The effect was Na+ dependent and decreased in cells preincubated with 1 mol/l taurocholate. Increasing external K+ tenfold depolarized the cells by 12.3±2.3 mV under control conditions and by 6.3±1.2 mV with 50 mol/l taurocholate present (n=7). Depolarization by 1 mmol/l Ba2+ was 7.6±0.8 mV and 6.0±0.7 mV (n=9) before and after addition of taurocholate, respectively. Cable analysis and Na+ substitution experiments reveal that this apparent decrease in K+ conductance reflects an actual increase in Na+ conductance: in the presence of taurocholate, specific cell membrane resistance decreased from 2.8 to 2.3 k · cm2 · Na+ substitution by 95% depolarized cell membranes by 8.9±2.9 mV (n=9), probably due to indirect effects on K+ conductance via changes in cell pH. With taurocholate present, the same manoeuvre changed membrane voltages by –0.8±2.6 mV. When Na+ concentration was restored to 100% from solutions containing 5% Na+, cells hyperpolarized by 3.5±3.6 mV (n=7) under control conditions and depolarized by 4.4±2.9 mV in the presence of taurocholate, respectively. In Cl substitution experiments, there was no evidence for changes in Cl conductance by taurocholate. These results show that taurocholate-induced membrane depolarization is due to an increase in Na+ conductance probably via uptake of the bile acid.  相似文献   

9.
The colonic carcinoma cell line HT29 was used to examine the influence of agonists increasing cytosolic cAMP and Ca2+ activity on the conductances and the cell membrane voltage (V m). HT29 cells were grown on glass cover-slips. Cells were impaled by microelectrodes 4–10 days after seeding, when they had formed large plaques. In 181 impalements V m was –51±1 mV. An increase in bath K+ concentration from 3.6 mmol/l to 18.6 mmol/l or 0.5 mmol/l Ba2+ depolarized the cells by 10±1 mV (n=49) or by 9±2 mV (n=3), respectively. A decrease of bath Cl concentration from 145 to 30 mmol/l depolarized the cells by 11±1 mV (n=24). Agents increasing intracellular cAMP such as isobutylmethylxanthine (0.1 mmol/l), forskolin (10 mol/l) or isoprenaline (10 mol/l) depolarized the cells by 6±1 (n=13), 15±3 (n=5) and 6±2 (n=3) mV, respectively. In hypoosmolar solutions (225 mosmol/l) cells depolarized by 9±1 mV (n=6). Purine and pyrimidine nucleotides depolarized the cells dose-dependently with the following potency sequence: UTP > ATP > ITP > GTP > TIP > CTP = 0. The depolarization by ATP was stronger than that by ADP and adenosine. The muscarinic agonist carbachol led to a sustained depolarization by 27±6 mV (n=5) at 0.1 mmol/l, and to a transient depolarization by 12±4 mV (n=5) at 10 mol/l. Neurotensin depolarized with a half-maximal effect at around 5 nmol/l. The depolarization induced by nucleotides and neurotensin was transient and followed by a hyperpolarization. We confirm that HT29 cells possess Cl- and K+-conductive pathways. The Cl conductance is regulated by intracellular cAMP level, cytosolic Ca2+ activity, and cell swelling. The K+ conductance in HT29 cells is regulated by intracellular Ca2+ activity.Supported by DFG Gre 480/10 and GIF Proj. no. I-86-100.10/ 88  相似文献   

10.
The aim of the present study was to study the effect of secretin on the electrophysiological response of pancreatic ducts. Furthermore, we investigated the effects of lipid-soluble buffers and inhibitors of HCO3 /H+ transport. Ducts obtained from fresh rat pancreas were perfused in vitro. Secretin depolarized the basolateral membrane voltage, V bl, by up to 35 mV (n=37); a halfmaximal response was obtained at 3×10–11 mol/l. In unstimulated ducts a decrease in the luminal Cl concentration (120 to 37 mmol/l) had a marginal effect on V bl, but after maximal secretin stimulation it evoked a 14±2 mV depolarization (n=6), showing that a luminal Cl conductance G Cl- was activated. The depolarizing effect of secretin on V bl was often preceded by about a 6 mV hyperpolarization, most likely due to an increase in the basolateral G K+. Perfusion of ducts with DIDS (4,4 — diisothiocyanatostilbene — 2,2 — disulphonic acid, 0.01 mmol/l) or addition of ethoxzolamide (0.1 mmol/l) to the bath medium diminished the effect of secretin. Acetate or pre-treatment of ducts with NH4 +/NH3 (10 mmol/l in the bath) depolarized the resting V bl of –65±2 mV by 16±4 mV (n=7) and 19±3 mV (n=10), respectively. The fractional resistance of the basolateral membrane (FR bl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22±1 to 11±2 mV. The Na+/H+ antiporter blocker EIPA (5-[N-ethyl-N-isopropyl]-amiloride, 0.1 mmol/l) also depolarized V bl by 10±1 mV, FRbl increased and the response to K+ concentration changes decreased (n=7). Effects of EIPA and ethoxzolamide on V bl were greater in ducts deprived of exogenous HCO3 /CO2. Taken together, the present study shows that secretin increased the basolateral G K+ and the luminal G Cl-. The depolarizing effect of secretin was diminished following inhibition of HCO3 transport (DIDS), or HCO3 /H+ generation (ethoxzolamide). Manoeuvres that presumably led to lowered intracellular pH (NH4 +/NH3 removal, acetate, EIPA) decreased the basolateral G K+. The present data support our previously published model for pancreatic HCO3 secretion, and indicate that the basolateral membrane possesses a pH-sensitive G K+.  相似文献   

11.
The study of ion conductances in the intact cortical collecting duct (CCD) with the patch-clamp method is rather difficult. An optimized method to isolate CCD cells from rat kidneys using an in vivo followed by an in vitro enzyme digestion is described. Individual CCD segments were collected after this digestion and incubated in EGTA-buffered medium. This procedure resulted in single cells or cell clusters. These freshly isolated CCD cells were studied with different modifications of the patch-clamp method. Membrane voltages measured in the cell-attached-nystatin configuration were –74 ±1mV (n=13) and –68±3 mV (n=22) in cells isolated from normal and mineralocorticoid-treated rats respectively. These values and those measured with the nystatin-perforated slow-whole-cell configuration (–79 ±1mV, n=23) are comparable to those measured in principal cells of isolated CCD segments. The cells hyperpolarized after the addition of amiloride and depolarized with the addition of adiuretin to the bath. The amiloride effect was enhanced when cells were isolated from deoxycorticosterone-acetate-treated rats. The cells were strongly depolarized upon elevation of the extracellular K+-concentration and did not demonstrate a measurable Cl conductance. A large-conductance K+ channel (174 pS, n=5, cell-attached, 145 mmol/l K+ in the pipette; 140 pS, n=12, cell-free, 3.6 mmol/l K+ in the bath) was seen. It had a very low activity on the cell, but a high open probability when excised into a solution with 1 mmol/l Ca2+ on the cytosolic side. More often a small-conductance K+ channel (36–52 pS, n=19, cell-attached; 30 pS, n=5, cell-free) with a high open probability was found on the cell. These freshly isolated cells seem to be a powerful preparation to study the properties and regulation of ion conductances of rat CCD with several electrophysiological methods. These freshly isolated CCD cells maintain the conductance properties known from principal cells of the intact CCD.  相似文献   

12.
In isolated perfused segments of the mouse proximal tubule, the potential difference across the basolateral cell membrane (PDbl) was determined with conventional microelectrodes. Under control conditions with symmetrical solutions it amounted to –62±1 mV (n=118). The potential difference across the epithelium (PDte) was –1.7±0.1 mV (n=45). Transepithelial resistance amounted to 1.82±0.09 k cm (n=28), corresponding to 11.4±0.6 cm2. Increasing bath potassium concentration from 5 to 20 mmol/l depolarized PDbl by +24±1 mV (n=103), and PDte by +1.6±0.1 mV (n=19). Thus, the basolateral cell membrane is preferably conductive to potassium. Rapid cooling of the bath perfusate from 38°C to 10°C led to a transient hyperpolarization of PDbl from –60±1 to –65±1 mV (n=21) within 40 s followed by gradual depolarization by +18±1% (n=14) within 5 min. The transepithelial resistance increased significantly from 1.78±0.11 k cm to 2.20±0.21 k cm (n=15). Rapid rewarming of the bath to 38°C caused a depolarization from –61±2 mV (n=17) to –43±2 mV (n=16) within 15 s followed by a repolarization to –59±2 mV (n=10) within 40 s. Ouabain invariably depolarized PDbl. During both, sustained cooling or application of ouabain, the sensitivity of PDbl to bath potassium concentration decreased in parallel to PDbl pointing to a gradual decrease of potassium conductance. Phlorizin hyperpolarized the cell membrane from –59±2 to –66±1 mV (n=13), virtually abolished the transient hyperpolarization under cooling, and significantly reduced the depolarization after rewarming from +17±2 mV (n=16) to +9±3 mV (n=9).The present data indicate that the contribution of peritubular potassium conductance to the cell membrane conductance decreases following inhibition of basolateral (Na++K+)-ATPase. Apparently, cooling from 37° to 10°C does not only reduce (Na+K+)-ATPase activity but in addition luminal sodium uptake mechanisms such as the sodium glucose cotransporter. As a result, cooling leads to an initial hyperpolarization of the cell followed by depolarization only after some delay.Parts of this study have been presented at the 60th and 61th Meeting of the Deutsche Physiologische Gesellschaft, Dortmund 1984 and Berlin 1985  相似文献   

13.
The conductance properties of the luminal membrane of cells from the thick ascending limb of Henle's loop of rat kidney (TAL) are dominated by K+. In excised membrane patches the luminal K+ channel is regulated by pH changes on the cytosolic side. To examine this pH regulation in intact cells of freshly isolated TAL segments we measured the membrane voltage (V m) in slow-whole-cell (SWC) recordings and the open probability (P o) of K+ channels in the cell-attached nystatin (CAN) configuration, where channel activity and part of V m can be recorded. The pipette solution contained K+ 125 mmol/l and Cl 32 mmol/l. Intracellular pH was determined by 2,7 bis(2-carboxyethyl)-5,(6)-carboxyfluorescein (BCECF) fluorescence. pH changes were induced by the addition of 10 mmol/l NH4 +/NH3 to the bath. In the presence of NH4 +/NH3 intracellular pH acidified by 0.53±0.11 units (n=7). Inhibition of the Na+2Cl K+ cotransporter by furosemide (0.1 mmol/l) reversed this effect and led to a transient alkalinisation by 0.62±0.14 units (n=7). In SWC experiments V m of TAL cells was -72±1 mV (n=70). NH4 +/NH3 depolarised V m by 22±2 mV (n=25). In 11 SWC experiments furosemide (0.1 mmol/l) attenuated the depolarising effect of NH4 + from 24±3 mV to 7±3 mV. Under control conditions the single-channel conductance of TAL K+ channels in CAN experiments was 66±5 pS and the reversal voltage for K+ currents was 70±2 mV (n=35). The P o of K+ channels in CAN patches was reduced by NH4 +/NH3 from 0.45±0.15 to 0.09±0.07 (n=7). NH4 +/NH3 exposure depolarised the zero current voltage of the permeabilised patches by-9.7±3.6 mV (n=5). The results show that TAL K+ channels are regulated by cytosolic pH in the intact cell. The cytosolic pH is acidified by NH4 +/NH3 exposure at concentrations which are physiologically relevant because Na+2ClK+(NH4 +) cotransporter-mediated import of NH4 + exceeds the rate of NH3 diffusion into the TAL. K+ channels are inhibited by this acidification and the cells depolarise. In the presence of furosemide TAL cells alkalinise proving that NH4 + uptake occurs by the Na+2ClK+ cotransporter. The findings that, in the presence of NH4 +/NH3 and furosemide, V m is not completely repolarised and that K+ channels are not activated suggest that the respective K+ channels may in addition to their pH regulation be inhibited directly by NH4 +/NH3.  相似文献   

14.
Previously we have shown that arylamino-benzoates like 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), which are very potent inhibitors of NaCl absorption in the thick ascending limb of the loop of Henle, are only poor inhibitors of the cAMP-mediated secretion of NaCl in rat colon. This has prompted our search for more potent inhibitors of NaCl secretion in the latter system. The chromanole compound 293 B inhibited the equivalent short-circuit current (I sc) induced by prostaglandin E2 (n=7), vasoactive intestinal polypeptide (VIP,n=5), adenosine (n=3), cholera toxin (n=4) and cAMP (n=6), but not by ionomycin (n=5) in distal rabbit colon half maximally (IC50) at 2 mol/l from the mucosal and at 0.7 mol/l from the serosal side. The inhibition was reversible and paralleled by a significant increase in transepithelial membrane resistance [e.g. in the VIP series from 116±16 ·cm2 to 136±21 ·cm2 (n=5)]. A total of 25 derivatives of 293 B were examined and structure activity relations were obtained. It was shown that the racemate 293 B was the most potent compound with-in this group and that its effect was due to the enantiomer 434 B which acted half maximally at 0.25 mol/l. Further studies in isolated in vitro perfused colonic crypts revealed that 10 mol/l 293 B had no effect on the membrane voltage across the basolateral membrane (V bl) in non-stimulated crypt cells: –69±3 mV versus –67±3 mV (n=10), whilst in the same cells 1 mmol/l Ba2+ depolarised (V bl) significantly. However, 293 B depolarised (V bl) significantly in the presence of 1 mol/l forskolin: –45±4mV versus –39±5 mV (n=7). Similar results were obtained with 0.1 mmol/l adenosine. 293 B depolarised (V bl) from –40±5 mV to –30±4 mV (n=19). This was paralleled by an increase in the fractional resistance of the basolateral membrane. VIP had a comparable effect. The hyperpolarisation induced by 0.1 mmol ATP was not influenced by 10 mol/l 293 B: –75±6 mV versus –75±6 mV (n=6). Also 293 B had no effect on basal K+ conductance (n=4). Hence, we conclude that 293 B inhibits the K+ conductance induced by cAMP. This conductance is apparently relevant for Cl secretion and the basal K+ conductance is insufficient to support secretion.  相似文献   

15.
Cellular heterogeneity was examined in the hamster medullary thick ascending limb (MAL) perfused in vitro by electrophysiological measurements with an intracellular microelectrode. Random measurements of fractional resistance of basolateral membrane (Rf B) revealed two cell populations, high basolateral conductance (HBC) cells havingRf B of 0.05±0.01 (n=24) and low basolateral conductance (LBC) cells havingRf B of 0.80±0.03 (n=32). Basolateral membrane potentials (V B) were not different between HBC cells and LBC cells (–72.6±1.2,n=43 vs. –70.0±1.2,n=35). Addition of 2 mmol/l Ba2+ to the bath depolarized the basolateral membrane in the HBC cells from –70.4±3.2 to –20.9±5.9 mV (n=8) but not in the LBC cells (from –74.4±1.9 to –72.0±2.1 mV). Increasing K+ or decreasing Cl in the bathing solution caused marked positive deflection ofV B in the HBC cells but little or no change inV B in the LBC cells. Elimination of Cl from the lumen or addition of furosemide to the lumen enhanced the potential response of the HBC cells to basolateral application of Ba2+. Accordingly, with Ba2+ present in the bath, the potential response of the HBC cells to a decrease in bath Cl concentration was enhanced. These observations suggest that a K+ conductance exists in the basolateral membrane of HBC cells in paralled with a Cl conductance. The basolateral cell membrane of LBC cells also contains a Cl conductance. In these cells, but not in HBC cells, the potential response to decreasing bath Cl concentration increased when bath pH was decreased from 7.4 to 6.0 Apparent K+ transference numbers of the luminal membrane were higher in LBC cells (0.74±0.05,n=7) than in HBC cells (0.20±0.02,n=5). From these data, we conclude: (1) there are two distinct cell types in the hamster medullary thick ascending limb; (2) there is a low Cl conductance in basolateral membrane of LBC cells which is stimulated by low pH.  相似文献   

16.
The aim of this study was to characterize ion conductances and carrier mechanisms of isolated in vitro perfused rabbit colonic crypts. Crypts were isolated from rabbit colon mucosa and mounted on a pipette system which allowed controlled perfusion of the lumen. In non-stimulated conditions basolateral membrane voltage (V b1) was –65±1 mV (n=240). Bath Ba2+ (1 mmol/ l) and verapamil (0.1 mmol/l) depolarized V b1 by 21±2 mV (n=7) and 31±1 (n=4), respectively. Lowering of bath Cl concentration hyperpolarized V b1 from –69±3 to –75±3 mV (n=9). Lowering of luminal Cl concentration did not change V b1. Basolateral application of loop diuretics (furosemide, piretanide, bumetanide) had no influence on V b1 in non-stimulated crypts. Forskolin (10–6 mol/l) in the bath depolarized V b1 by 29±2 mV (n=54) and decreased luminal membrane resistance. In one-third of the experiments a spontaneous partial repolarization of V b1 was seen in the presence of forskolin. During forskolin-induced depolarization basolateral application of loop diuretics hyperpolarized V b1 significantly and concentration dependently with a potency sequence of bumetanide > piretanide furosemide. Lowering bath Cl concentration hyperpolarized V b1. Lowering of luminal Cl concentration from 120 to 32 mmol/l during forskolin-induced depolarization led to a further depolarization of Vb1 by 7±2 mV (n=10). We conclude that Vb1 of rabbit colonic crypt cells is dominated by a K+ conductance. Stimulation of the cells by forskolin opens a luminal Cl conductance. Basolateral uptake of Cl occurs via a basolateral Na+ : 2Cl : K+ cotransport system.  相似文献   

17.
Vascular smooth muscle cells of rabbit aorta were enzymatically dispersed, kept in primary culture, and studied between days 1 and 7 in a bath rinsed with Ringer-like solution at 37°C. The electrical membrane potential difference (PD) was measured with microelectrodes. The mean value of PD was –50±0.4 mV (n=53). Cromakalim (BRL 34915), 1 mol/l and 10 mol/l, hyperpolarized the membrane potential by 9±1 mV (n=11) and 15±1 mV (n=53) respectively. Glibenclamide (10 mol/l) abolished the hyperpolarizing effect of cromakalim (n=6). Simultaneous addition of cromakalim and glibenclamide (both 10 mol/l, n=11) and glibenclamide itself (10 mol/l, n=7) had no effect on PD. In patch-clamp experiments in outside-out-oriented Ca2+-sensitive K+ channels, cromakalim increased the open probability (P o) only slightly and only with a cytosolic Ca2+ activity of 1 mol/l. In all other series cromakalim had no effect on the P o of these channels. Forskolin (10 mol/l) hyperpolarized PD by 6±1 mV (n=13). The nucleotides UTP, ATP and ITP (10 mol/l) depolarized PD by 12±1 mV (n=7), 8±1 mV (n=65) and 5±1 mV (n=6) respectively. GTP, [,-methylene]ATP and adenosine had no significant effect. Mn2+ (1 mmol/l, n=18), Ni2+ (1 mmol/l, n=13), Co2+ (1 mmol/l, n=11), Zn2+ (1 mmol/l, n=6) and the Ca2+-channel blockers verapamil and nifedipine (both 0.1 mmol/l, n=6) did not attenuate the depolarization induced by 10 mol/l ATP. Fetal calf serum (100 ml/l, n=7) depolarized PD by 11±2 mV. This effect was not abolished by nifedipine or by replacing NaCl by choline chloride. The data indicate that PD of vascular smooth muscle cells is depolarized by P2 agonists and hyperpolarized by the K+-channel opener cromakalim. The effect of cromakalim is antagonized by glibenclamide. The effect of cromakalim is probably not mediated by the K+ channel identified in excised patches.Supported by DFG Gr 480/10  相似文献   

18.
Microelectrodes were used to measure membrane potential and intracellular potassium activity in surface epithelial cells (SEC) of frog (Rana esculenta) fundic gastric mucosa in vitro. Separate measurements were carried out by applying fine-tipped, single barrelled, KCl filled non-selective electrodes and liquid K+-selective electrodes. Membrane potentials with respect to the mucosal and serosal surfaces, measured with non-selective electrodes, were –54.5±1.0 S.E. mV (n=59) and –73.0±1.1 S.E. mV (n=59) respectively. The electrical potential difference referred to the mucosal surface, when measured with K+-sensitive electrodes, was +21.2±0.8 S.E. mV (n=35), and intracellular K+ activity was 98.5 mmol/l. Assuming that intracellular and extracellular K+ activity coefficients are equal (K=K), the K+ concentration is 135.0 mmol/l. The K+ equilibrium potential,E K, was calculated as –90.0 mV i.e. more negative than both membrane potentials. This result indicates active potassium accumulation in the SEC and provides direct evidence of the presence of an active K+ pump in either both or in only one of the cell membranes.  相似文献   

19.
LLC-PK1 cells serve as a widely used model for the renal proximal tubule. Until now, little has been found out about their membrane voltage (V m) and ionic conductances (g). Several studies have shown changes in cell properties during differentiation and ageing. The aim of this study was to examine the relationship between V m or g and the age of these cells. Therefore, we investigated single cells, subconfluent and confluent monolayers of LLC-PK1 cells aged 1–8 days with the slow-whole-cell patch-clamp technique. The V m of all cells was-34±2 mV (n=75) and the membrane conductance (g m) was 2.3±0.3 nS (n=30). V m in cells aged up to 2 days was-24±3 mV (n=22) whereas V m in cells aged 5–8 days was -50±3 mV (n=15). An increase of extracellular K+ from 3.6 to 18.6 mmol/l led to a depolarization in all cells of 4±1 mV (n=31) and an increase of g m by 17±13% (n=15). Complete replacement of extracellular Na+ by N-methyl-D-glucamine (NMDG) led to a hyperpolarization of 19±2 mV (n=38) and gm was lowered by 27±14% (n=17). A reduction in extracellular Cl from 147 to 32 mmol/l showed no significant effect on V m (n=16) or g m (n=11). Amiloride (10 mol/l) had no significant effect on V m (n=13) or g m (n=7). The reduction of the extracellular osmolarity from 290 to 160 mosmol/l led to a hyperpolarization of 11±1 mV (n=18) and an increase in g m by 326±117% (n=12). There was no significant correlation between g m and cell age. LLC-PK1 cells used in this study have a K+ conductance and a non-selective cation conductance in parallel. With increasing age, LLC-PK1 cells became more and more conductive for K+ and lost their nonselective cation conductance. There is no evidence for a significant amiloride-sensitive Na+ or Cl conductance in these cells. The K+ conductance could be activated by osmotically induced cell swelling.  相似文献   

20.
Several secretagogues were used in this study, including those which enhance intracellular cyclic adenosine monophosphate (cAMP) production, as well as others which elevate intracellular Ca2+ activity and are known to increase Cl secretion in the intact colon and in colonic carcinoma cell lines. They were examined with respect to their effects on electrophysiological properties in isolated rabbit distal colonic crypts. Crypts were dissected manually and perfused in vitro. Transepithelial voltage (V te), transepithelial resistance (R te), membrane voltage across the basolateral membrane (V bl), and fractional basolateral membrane resistance (FR bl), were estimated. Basolateral prostaglandin E2 (PGE2, 0.1 mol/l), vasoactive intestinal peptide (VIP, 1 nmol/l) and adenosine (0.1 mmol/l) induced an initial depolarisation and a secondary partial repolarisation of (V bl). In the case of adenosine, the initial depolarization of (V bl) was by 31±2 mV (n=47).R te fell significantly from 16.4±3.6 to 14.2±3.7 ·cm2 (n= 6), andFR blincreased significantly from 0.11±0.02 to 0.51±0.10 (n=6). In the second phase the repolarisation of (V bl) amounted 11±2 mV (n=47) and a steadystate (V bl) of –51±2 mV (n=47) was reached.R te fell further and significantly to a steady-state value of 12.4±3.8 ·cm2 (n=6) andFR bl fell significantly to 0.42±0.13 (n=6). In 30% of the experiments, a transient hyperpolarisation of (V bl) by 8±2 mV (n=14) was seen during wash out of adenosine. In the presence of adenosine, but not under control conditions, lowering of luminal Cl concentration from 120 to 32 mmol/l depolarised (V bl) significantly by 8±1 mV (n=9). Basolateral ATP and ADP (0.1 mmol/l) led to a short initial depolarisation followed by a sustained and significant hyperpolarisation by 6±2 mV (n=27) and 5±4 mV (n=8), respectively. Carbachol (CCH) hyperpolarised (V bl) in a concentration-dependent manner. At 100 mol/l (bath) the hyperpolarisation was by 14±2 mV (n=11) andFR bl fell slightly. Neurotensin (10 nmol/l), isoproterenol (10 mol/l) and uridine 5-triphosphate (UTP, 0.1 mmol/l) had no effect. It is concluded that PGE2, VIP and adenosine upregulate sequentially a luminal Cl conductance and a basolateral K+ conductance by increasing intracellular cAMP concentration. Ca2+ mobilising hormones such as ATP, ADP, and CCH increase the basolateral K+ conductance, while the effect on luminal Cl conductance appears to be very limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号