首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Previous studies demonstrate that Nrf2, a master regulator of antioxidative responses, is essential in mediating induction of many antioxidative enzymes by acute activation of the AhR. However, the role of Nrf2 in protecting against oxidative stress and DNA damage induced by sustained activation of the AhR remains unknown and was investigated herein. Tissue and blood samples were collected from wild-type (WT) and Nrf2-null mice 21 days after administration of a low-toxic dose (10 μg/kg ip) of TCDD. Only Nrf2-null mice lost body weight after TCDD treatment; however, blood levels of ALT were not markedly changed in either genotype, indicating a lack of extensive necrosis. Compared to livers of TCDD-treated WT mice, livers of TCDD-treated Nrf2-null mice had: 1) degenerated hepatocytes, lobular inflammation, marked fat accumulation, and higher mRNA expression of inflammatory and fibrotic genes; 2) depletion of glutathione, elevation in lipid peroxidation and marker of DNA damage; 3) attenuated induction of phase-II enzymes Nqo1, Gsta1/2, and Ugt2b35 mRNAs, but higher induction of cytoprotective Ho-1, Prdx1, Trxr1, Gclc, and Epxh1 mRNAs; 4) higher mRNA expression of Fgf21 and triglyceride-synthesis genes, but down-regulation of bile-acid-synthesis genes and cholesterol-efflux transporters; and 5) trend of induction/activation of c-jun and NF-kB. Additionally, TCDD-treated Nrf2-null mice had impaired adipogenesis in white adipose tissue. In conclusion, Nrf2 protects livers of mice against oxidative stress, DNA damage, and steatohepatitis induced by TCDD-mediated sustained activation of the AhR. The aggravated hepatosteatosis in TCDD-treated Nrf2-null mice is due to increased lipogenesis in liver and impaired lipogenesis in white adipose tissue.  相似文献   

4.
Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstα1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.  相似文献   

5.
Retinoid X receptor-α (RXRα) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRα deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRα-null (H-RXRα-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid β-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRα-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRα-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRα-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRα-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRα-null mice. In conclusion, these data suggest a critical role for RXRα in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.  相似文献   

6.
7.
Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling.  相似文献   

8.
The Keap1-Nrf2-ARE signalling pathway has emerged as an important regulator of the mammalian defence system to enable detoxification and clearance of foreign chemicals. Recent studies by our group using paracetamol (APAP), diethylmaleate and buthionine sulphoximine have shown that for a given xenobiotic molecule, Nrf2 induction in the murine liver is associated with protein reactivity and glutathione depletion. Here, we have investigated, in vivo, whether the ability of four murine hepatotoxins, paracetamol, bromobenzene (BB), carbon tetrachloride (CCl4) and furosemide (FS) to deplete hepatic glutathione (GSH) is related to induction of hepatic Nrf2 nuclear translocation and Nrf2-dependent gene expression. Additionally, we studied whether hepatic Nrf2 nuclear translocation is a general response during the early stages of acute hepatic chemical stress in vivo. Male CD-1 mice were administered APAP (3.5 mmol/kg), FS (1.21 mmol/kg), BB (4.8 mmol/kg) and CCl4 (1 mmol/kg) for 1, 5 and 24h. Each compound elicited significant serum ALT increases after 24h (ALT U/L: APAP, 3036+/-1462; BB, 5308+/-2210; CCl4, 5089+/-1665; FS, 2301+/-1053), accompanied by centrilobular damage as assessed by histopathology. Treatment with APAP also elicited toxicity at a much earlier time point (5h) than the other hepatotoxins (ALT U/L: APAP, 1780+/-661; BB, 161+/-15; CCl4, 90+/-23; FS, 136+/-27). Significant GSH depletion was seen with APAP (9.6+/-1.7% of control levels) and BB (52.8+/-6.2% of control levels) 1h after administration, but not with FS and CCl4. Western Blot analysis revealed an increase in nuclear Nrf2, 1h after administration of BB (209+/-10% control), CCl4 (146+/-3% control) and FS (254+/-41% control), however this was significantly lower than the levels observed in the APAP-treated mice (462+/-36% control). The levels of Nrf2-dependent gene induction were also analysed by quantitative real-time PCR and Western blotting. Treatment with APAP for 1h caused a significant increase in the levels of haem oxygenase-1 (HO-1; 2.85-fold) and glutamate cysteine ligase (GCLC; 1.62-fold) mRNA. BB and FS did not affect the mRNA levels of either gene after 1h of treatment; however CCl4 significantly increased HO-1 mRNA at this time point. After 24h treatment with the hepatotoxins, there was evidence for the initiation of a late defence response. BB significantly increased both HO-1 and GCLC protein at this time point, CCl4 increased GCLC protein alone, although FS did not alter either of these proteins. In summary, we have demonstrated that the hepatotoxins BB, CCl4 and FS can induce a small but significant increase in Nrf2 accumulation in hepatic nuclei. However, this was associated with modest changes in hepatic GSH, a delayed development of toxicity and was insufficient to activate an early functional adaptive response to these hepatotoxins.  相似文献   

9.
10.
11.
12.
Multidrug resistance-associated proteins (Mrps) are a group of ATP-dependent efflux transporters for organic anions. Mrp2 and Mrp4 are co-localized to the apical (brush-border) membrane domain of renal proximal tubules, where they may function together in the urinary excretion of organic anions. Previous reports showed that urinary excretion of some organic anions is not impaired in transport-deficient (TR-) rats, which lack Mrp2, suggesting that up-regulation of other transporter(s) may compensate for the loss of Mrp2 function. The purpose of this study was to determine whether Mrp4 expression in kidney is altered in TR- rats. Mrp4 mRNA expression was quantified using the high-throughput branched DNA signal amplification assay. Mrp4 protein expression was determined by Western blot and immunohistochemical analysis. Mrp4 mRNA in kidney of TR- rats was 100% higher than normal Wistar rats. Western blot analysis showed a 200% increase in Mrp4 protein expression in kidney of the mutant rats compared to normal rats. Immunohistochemical analysis of Mrp4 protein demonstrated apical localization of Mrp4 on renal proximal tubules, and that the immunoreactivity was more intense in kidney sections from TR- rats than those from normal rats. In summary, the results of the present study demonstrate that renal Mrp4 expression is up-regulated in TR- rats, which may explain why urinary excretion of some organic anions remains normal in the mutant rats.  相似文献   

13.
We evaluated the effect of acetaminophen (APAP), given as a single, 1g/kg body weight dose, on expression and activity of rat liver multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp), two major canalicular drug transporters. The studies were performed 24h after administration of the drug. APAP induced an increase in plasma membrane content of Mrp2 detected by western blotting, consistent with increased detection of the protein at the canalicular level by immunoflourescence microscopy. In vivo biliary excretion of dinitrophenyl-S-glutathione, a well known Mrp2 substrate, was slightly but significantly increased by APAP, agreeing well with upregulation of the transporter. Basal biliary excretion of oxidized glutathione, an endogenous Mrp2 substrate, was also increased by APAP, likely indicating increased hepatic synthesis as a result of APAP-induced oxidative stress followed by accelerated canalicular secretion mediated by Mrp2. APAP also increased the expression of P-gp detected by western blotting and immunofluorescence microscopy as well as the in vivo biliary secretory rate of digoxin, a model P-gp substrate. Because specific APAP-conjugated metabolites are Mrp2 substrates, we postulate that induction of Mrp2 by APAP may represent an adaptive mechanism to accelerate liver disposition of the drug. In addition, increased Mrp2-mediated elimination of oxidized glutathione may be essential in maintaining the redox equilibrium in the hepatocyte under conditions of APAP-induced oxidative stress.  相似文献   

14.
15.
16.
Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na(+)-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance-associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis.  相似文献   

17.
18.
Researchers who study acetaminophen (APAP) hepatotoxicity use either a 50% propylene glycol solution or saline as a diluent. Previous studies demonstrated differential expression of hepatobiliary transporter mRNA in mice treated with a toxic dose of APAP dissolved in 50% propylene glycol. The purpose of this study was to determine whether using saline as a diluent for APAP alters regulation of transporter gene expression during hepatotoxicity. Male C57BL/6J mice received acetaminophen (APAP 400 mg/kg, i.p. in saline) or saline (20 ml/kg). Plasma and liver samples were collected at 24 and 48 h for assessment of alanine aminotransferase (ALT) activity and gene expression. It was determined that plasma ALT activity was elevated at 24 and 48 h after APAP administration. Using the branched DNA signal amplification assay, reductions in organic anion-transporting polypeptides Oatp1a1, Oatp1b2, sodium/taurocholate-cotransporting polypeptide (Ntcp), and bile salt export pump (Bsep) mRNA were observed in APAP-treated mice. In contrast, multidrug resistance-associated proteins Mrp1, Mrp2, Mrp3, and Mrp4, as well as multidrug resistance proteins Mdr1a and Mdr1b genes, were increased following APAP. No changes in Oatp1a4, Mdr2, or breast cancer resistance protein (Bcrp) mRNA were observed. Alterations in transporter gene expression in this study were similar to those reported previously using propylene glycol as diluent. With the exceptions of Oatp1a1, Ntcp, and Mrp1, these data mirror previous results suggesting that the solution used to dissolve APAP may alter the susceptibility of mice to hepatotoxicity, but only minimally change the regulation of transporter gene expression.  相似文献   

19.
Gender is a factor that influences susceptibility of individuals to drug-induced liver injury in experimental animals and humans. In this study, we investigated the mechanisms underlying resistance of female mice to acetaminophen (APAP)-induced hepatotoxicity. Overnight-fasted male and female CD-1 mice were administered APAP intraperitoneally. A minor increase in serum alanine aminotransferase levels was observed in female mice after APAP administration at a dose that causes severe hepatotoxicity in males. Hepatic glutathione (GSH) depleted rapidly in the both genders prior to development of hepatotoxicity, whereas its recovery was more rapid in female than in male mice. This was consistent with higher induction of hepatic glutamate-cysteine ligase (GCL) in females. Pretreatment of mice with L-buthionine sulfoximine (BSO), an inhibitor of GCL, exaggerated APAP hepatotoxicity only in female mice, resulting in much higher hepatotoxicity in female than in male mice. In addition, hepatic GSH was markedly depleted in BSO-pretreated female mice compared with male mice, which supports severe hepatotoxicity in BSO-pretreated females. APAP treatment highly induced multidrug resistance-associated protein 4 (Mrp4) only in female mice. The resulting high Mrp4 expression could thus contribute to decreased hepatic GSH levels via sinusoidal efflux when GCL is inhibited. In conclusion, resistance to APAP hepatotoxicity in female mice and its reversal by pretreatment with BSO could be attributed to sex differences in disposition of hepatic GSH, which may generally determine susceptibility to drug-induced liver injury.  相似文献   

20.
The multidrug resistance‐associated protein1 (MRP1/ABCC1) is a member of the ABCC transporter subfamily that mediates the efflux of pharmaceuticals, xenobiotics and steroid hormones, typically as glutathione, glucuronide or sulfate conjugates. Since loss of one transporter can be compensated by increasing the expression of other transporters and conjugation enzymes, we sought to examine compensatory changes in phase I, II and III enzyme expression in extrahepatic tissues, including the kidney, lungs and small intestine of intact or castrated Mrp1?/? male mice. In the kidney, the expression of several P450s, sulfotransferase 1a1 (Sult), glucuronosyltransferases (Ugt) and Mrps2–4, were significantly changed owing to castration alone. The only time genotype mattered was between the castrated FVB and Mrp1 knockout mice. In contrast, expression of the Ugts, Sult 1a1 and Mrp3 in the lungs was significantly downregulated in the Mrp1 knockout mice, so based exclusively on genotype. In the small intestine, there were interactions between steroid hormone levels and genotype, as the expression differences were only found in mice lacking Mrp1, and were changed between intact and castrated animals. The mechanism behind this pattern of expression may be to due to Nrf2 regulation, as its expression mirrors that of the phase II and phase III enzymes. These results indicate that compensatory responses owing to the loss of Mrp1 vary dramatically, depending on the particular tissue. This information will aid in the understanding of how drug uptake, disposition and elimination can be influenced by both hormone status and the presence and magnitude of transporter expression. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号