首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) are key instigators of adaptive immune responses. Using an alphaviral expression cloning technology, we have identified the chemokine CCL19 as a potent inducer of T cell proliferation in a DC-T cell coculture system. Subsequent studies showed that CCL19 enhanced T cell proliferation by inducing maturation of DCs, resulting in upregulation of costimulatory molecules and the production of proinflammatory cytokines. Moreover, CCL19 programmed DCs for the induction of T helper type (Th) 1 rather than Th2 responses. Importantly, only activated DCs that migrated from the periphery to draining lymph nodes, but not resting steady-state DCs residing within lymph nodes, expressed high levels of CCR7 in vivo and responded to CCL19 with the production of proinflammatory cytokines. Migrating DCs isolated from mice genetically deficient in CCL19 and CCL21 (plt/plt) presented an only partially mature phenotype, highlighting the importance of these chemokines for full DC maturation in vivo. Our findings indicate that CCL19 and CCL21 are potent natural adjuvants for terminal activation of DCs and suggest that chemokines not only orchestrate DC migration but also regulate their immunogenic potential for the induction of T cell responses.  相似文献   

2.
We show that the T-cell immunoglobalin mucin, Tim-1, initially reported to be expressed on CD4(+) T cells, is constitutively expressed on dendritic cells (DCs) and that its expression further increases after DC maturation. Tim-1 signaling into DCs upregulates costimulatory molecule expression and proinflammatory cytokine production, thereby promoting effector T-cell responses, while inhibiting Foxp3(+) Treg responses. By contrast, Tim-1 signaling in T cells only regulates Th2 responses. Using a high-avidity/agonistic anti-Tim-1 antibody as a co-adjuvant enhances the immunogenic function of DCs, decreases the suppressive function of Tregs, and substantially increases proinflammatory Th17 responses in vivo. The treatment with high- but not low-avidity anti-Tim-1 not only worsens experimental autoimmune encephalomyelitis (EAE) in susceptible mice but also breaks tolerance and induces EAE in a genetically resistant strain of mice. These findings indicate that Tim-1 has an important role in regulating DC function and thus shifts the balance between effector and regulatory T cells towards an enhanced immune response. By understanding the mechanisms by which Tim-1 regulates DC and T-cell responses, we may clarify the potential utility of Tim-1 as a target of therapy against autoimmunity, cancer, and infectious diseases.  相似文献   

3.
Distinct subsets of dendritic cells (DCs) are present in blood, probably "en route" to different tissues. We have investigated the chemokines and adhesion molecules involved in the migration of myeloid (CD11c(+)) and plasmacytoid (CD123(+)) human peripheral blood DCs across vascular endothelium. Among blood DCs, the CD11c(+) subset vigorously migrated across endothelium in the absence of any chemotactic stimuli, whereas spontaneous migration of CD123(+) DCs was limited. In bare cell migration assays, myeloid DCs responded with great potency to several inflammatory and homeostatic chemokines, whereas plasmacytoid DCs responded poorly to all chemokines tested. In contrast, the presence of endothelium greatly favored transmigration of plasmacytoid DCs in response to CXCL12 (stromal cell-derived factor-1) and CCL5 (regulated on activation, normal T expressed and secreted). Myeloid DCs exhibited a very potent transendothelial migration in response to CXCL12, CCL5, and CCL2 (monocyte chemoattractant protein-1). Furthermore, we explored whether blood DCs acutely switch their pattern of migration to the lymph node-derived chemokine CCL21 (secondary lymphoid-tissue chemokine) in response to microbial stimuli [viral double-stranded (ds)RNA or bacterial CpG-DNA]. A synthetic dsRNA rapidly enhanced the response of CD11c(+) DCs to CCL21, whereas a longer stimulation with CpG-DNA was needed to trigger CD123(+) DCs responsive to CCL21. Use of blocking monoclonal antibodies to adhesion molecules revealed that both DC subsets used platelet endothelial cell adhesion molecule-1 to move across activated endothelium. CD123(+) DCs required beta(2) and beta(1) integrins to transmigrate, whereas CD11c(+) DCs may use integrin-independent mechanisms to migrate across activated endothelium.  相似文献   

4.
Dendritic cells (DCs) are the most efficient antigen-presenting cells and thus, have a major role in regulating host immune responses. In the present study, we have analyzed the ability of Gram-positive, pathogenic Streptococcus pyogenes and nonpathogenic Lactobacillus rhamnosus to induce the maturation of human monocyte-derived DCs. Stimulation of DCs with S. pyogenes resulted in strong expression of DC costimulatory molecules CD80, CD83, and CD86 accompanied with a T helper cell type 1 (Th1) cytokine and chemokine response. S. pyogenes also induced interleukin (IL)-2 and IL-12 production at mRNA and protein levels. In addition, IL-23 and IL-27 subunits p40, p19, p28, and EBI3 were induced at mRNA level. In contrast, L. rhamnosus-stimulated DCs showed only moderate expression of costimulatory molecules and produced low levels of cytokines and chemokines. Furthermore, no production of IL-2 or IL-12 family cytokines was detected. Bacteria-induced DC maturation and especially cytokine and chemokine production were reduced when bacteria were heat-inactivated. Our results show that human monocyte-derived DCs respond differently to different Gram-positive bacteria. Although pathogenic S. pyogenes induced a strong Th1-type response, stimulation with nonpathogenic L. rhamnosus resulted in development of semi-mature DCs characterized by moderate expression of costimulatory molecules and low cytokine production.  相似文献   

5.
In this study, the early innate cytokine and chemokine response of murine dendritic cells (DCs) and macrophages to Mycobacterium tuberculosis infection was compared. The findings indicate a dissimilar gene expression pattern between the two cell types. The expression of IL-12 and IL-23, important for promoting Th1 and Th17 cells, respectively, was up-regulated only in DCs. In addition, expression of CCL1 and CCL17, which are important in recruitment of T regulatory cells, was DC-specific, as was the expression of the immunosuppressive cytokine IL-10. Macrophages, in contrast, exhibited enhanced expression for CCL2 and CXCL10, chemokines that recruit cells to sites of inflammation, and for mycobactericidal molecules NO synthase 2 and TNF. Together, the findings suggest that a component of the innate DC response is not only programmed toward Th1 priming but is also for controlling the magnitude of the Th1 response, and part of the macrophage response is intended for recruiting cells to the lung and for mycobactericidal functions.  相似文献   

6.
The thymus is the main site of immune sensitization to AChR in myasthenia gravis (MG). In our previous studies we demonstrated that Toll-like receptor (TLR) 4 is over-expressed in MG thymuses, suggesting its involvement in altering the thymic microenvironment and favoring autosensitization and autoimmunity maintenance processes, via an effect on local chemokine/cytokine network. Here, we investigated whether TLR4 signaling may favor abnormal cell recruitment in MG thymus via CCL17 and CCL22, two chemokines known to dictate immune cell trafficking in inflamed organs by binding CCR4. We also investigated whether TLR4 activation may contribute to immunodysregulation, via the production of Th17-related cytokines, known to alter effector T cell (Teff)/regulatory T cell (Treg) balance. We found that CCL17, CCL22 and CCR4 were expressed at higher levels in MG compared to normal thymuses. The two chemokines were mainly detected around medullary Hassall's corpuscles (HCs), co-localizing with TLR4+ thymic epithelial cells (TECs) and CCR4+ dendritic cells (DCs), that were present in higher number in MG thymuses compared to controls. TLR4 stimulation in MG TECs increased CCL17 and CCL22 expression and induced the production of Th17-related cytokines. Then, to study the effect of TLR4-stimulated TECs on immune cell interactions and Teff activation, we generated an in-vitro imaging model by co-culturing CD4+ Th1/Th17 AChR-specific T cells, naïve CD4+CD25+ Tregs, DCs and TECs from Lewis rats. We observed that TLR4 stimulation led to a more pronounced Teff activatory status, suggesting that TLR4 signaling in MG thymic milieu may affect cell-to-cell interactions, favoring autoreactive T-cell activation. Altogether our findings suggest a role for TLR4 signaling in driving DC recruitment in MG thymus via CCL17 and CCL22, and in generating an inflammatory response that might compromise Treg function, favoring autoreactive T-cell pathogenic responses.  相似文献   

7.
目的:了解人冠状病毒OC43(Human coronavirus OC43,HCoV-OC43)逃避人树突状细胞(Dendritic cell,DC)免疫监视作用的初步机制。方法:利用HCoV-OC43 阳性病人的标本感染BSC-1 细胞分离OC43 病毒,相差显微镜观察细胞病变(Cytopathic effect,CPE),实时荧光定量聚合酶链反应(Real-time PCR)进行鉴定;利用人细胞因子GM-CSF 和IL-4 联合体外诱导DC 分化,于诱导7 d 后用HCoV-OC43 病毒感染DC。采用透射电镜观察DC 感染后的形态,Real-time PCR 检测DC 功能相关细胞因子的表达水平;流式细胞术检测DC 比例及其功能相关共刺激分子的表达。结果:成功建立HCoV-OC43 体外感染DC 的体系。HCoV-OC43 能感染DC 并刺激其产生免疫应答,但培养上清中不能检测到病毒核酸;HCoV-OC43 感染会导致DC细胞表达IFN-α、IFN-β、CCL3 和CCL5 的量显著下调,但其共刺激分子HLA-DR、CD1c 和CD86 的表达不受抑制。结论:HCoV-OC43 可感染人DC 细胞并刺激其产生免疫应答,但不能产生活的子代病毒;HCoV-OC43 可通过抑制宿主DC 细胞IFN-β等相关炎症因子和趋化因子的分泌,来实现免疫逃逸。  相似文献   

8.
CD4+ CD25+ regulatory T cells (Treg) play a major role in the prevention of autoimmune diseases. Converging evidence indicates that Treg specific for self-antigens expressed by target tissues have a greater therapeutic potential than polyclonal Treg. Therefore, the selective expansion of rare self-antigen-specific T(reg) naturally present in a polyclonal repertoire of Treg is of major importance. In this work, we investigated the potential of different dendritic cell (DC) subsets to expand antigen-specific Treg in mice. The in vitro selective expansion of rare islet-specific Treg from polyclonal Treg could only be achieved efficiently by stimulation with CD8+ splenic DC presenting islet antigens. These islet-specific Treg exerted potent bystander suppression on diabetogenic T cells and prevented type 1 diabetes. This approach opens new perspectives for cell therapy of autoimmune diseases.  相似文献   

9.
Regulatory T cells (Tregs) attenuate excessive immune responses, making their expansion beneficial in immune‐mediated diseases, including allogeneic bone marrow transplantation associated with graft‐versus‐host disease (GVHD). In addition to interleukin‐2, Tregs require T‐cell receptor and costimulatory signals from antigen‐presenting cells, such as DCs, for their optimal proliferation. Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) increases DC number and may promote DC‐dependent Treg proliferation. Here, we demonstrate that GM‐CSF treatment increases CD4+CD8 DCs, which are associated with Treg expansion. In a mouse model of chronic GVHD (cGVHD), GM‐CSF therapy expanded Tregs, protected against the development of skin GVHD, and regulated both Th1 and Th17 responses in the peripheral lymph nodes, resulting in an attenuation of skin cGVHD. Notably, the expanded Tregs were instrumental to GM‐CSF‐mediated cGVHD inhibition, which was dependent upon an increased ratio of Tregs to conventional T cells rather than augmentation of suppressive function. These data suggest that GM‐CSF induces Treg proliferation by expanding CD4+CD8? DCs, which in turn regulate alloimmune responses in a cGVHD mouse model. Thus, GM‐CSF could be used as a therapeutic DC modulator to induce Treg expansion and to inhibit excessive alloimmune responses in immune‐related diseases.  相似文献   

10.
Leptin is an adipose‐secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1‐cell polarization and inhibit Th2‐cell responses. Additionally, leptin induces Th17‐cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg‐cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL‐12, TNF‐α, and IL‐6, (iii) increased DC production of TGF‐β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T‐cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin‐free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.  相似文献   

11.
12.
13.
人胸腺基质淋巴细胞生成素与过敏性疾病的研究进展   总被引:1,自引:1,他引:1  
人胸腺基质淋巴细胞生成素(TSLP)是新近发现的具有IL-7样功能的细胞因子。它能够强烈诱导DC表达MHCⅡ类分子以及协同刺激分子CD40、CD80,促进DC产生招募Th2型细胞的趋化因子CCL17和CCL22,诱导初始T细胞分化为分泌IL-4、IL-5、IL-13的变应原特异性CD^4和CD8^+效应T细胞,调节机体免疫应答向Th2型偏移,从而参与遗传过敏性皮炎、哮喘等多种过敏性疾病的发生过程。  相似文献   

14.
Immunotherapy with dendritic cells (DCs), which have been manipulated ex vivo to become immunogenic or tolerogenic, has been tested in clinical trials for disease therapy. DCs are sentinels of the immune system, which after exposure to antigenic or inflammatory signals and crosstalk with effector CD4(+) T cells express high levels of costimulatory molecules and cytokines. Upregulation of either costimulatory molecules or cytokines promotes immunologic DCs, whereas their downregulation generates tolerogenic DCs (TDCs), which induce T regulatory cells (Tregs) and a state of tolerance. Immunogenic DCs are used for the therapy of infectious diseases such as HIV-1 and cancer, whereas tolerogenic DCs are used in treating various autoimmune diseases and in transplantation. DC vaccination is still at an early stage, and improvements are mainly needed in quality control of monitoring assays to generate clinical-grade DC products and to assess the effect of DC vaccination in future clinical trials. Here, we review the recent work in DC generation and monitoring approaches for DC-based trials with immunogenic or tolerogenic DCs.  相似文献   

15.
The hygiene hypothesis has suggested an inhibitory effect of infections on allergic diseases, but the related mechanism remains unclear. We recently reported that DCs played a critical role in Mycobacterium bovis Bacille Calmette-Guérin (BCG)-mediated inhibition of allergy, which depended on IL-12 and IL-10-related mechanisms. Here, we tested the hypothesis that BCG infection could modulate the function of DC subsets, which might in turn inhibit allergic responses through different mechanisms. We sorted CD8α(+) and CD8α(-) DCs from BCG-infected mice and tested their ability to modulate Th2-cell responses to ovalbumin (OVA) using in vitro and in vivo approaches. We found that both DC subsets could inhibit the allergic Th2-cell response in both a DC:T-cell co-culture system and after adoptive transfer. These subsets exhibited different co-stimulatory marker expression and cytokine production patterns and were different in inducing Th1 and Treg cells. Specifically, we found that CD8α(+) DCs produced higher IL-12, inducing higher Th1 cell response, while CD8α(-) DCs expressed higher ICOS-L and produced higher IL-10, inducing CD4(+) CD25(+) FoxP3(+) Treg cells with IL-10 production and membrane-bound TGF-β expression. The finding suggests that one infection may inhibit allergy by both immune deviation and regulation mechanisms through modulation of DC subsets.  相似文献   

16.
DCs are powerful antigen‐presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes. Hypoxia, a condition of low partial oxygen pressure, is a common feature of many pathologic situations, capable of modifying DC phenotype and functional behavior. We studied human monocyte‐derived immature DCs generated under chronic hypoxic conditions (H‐iDCs). We demonstrate by gene expression profiling the upregulation of a cluster of genes coding for antigen‐presentation, immunoregulatory, and pattern recognition receptors, suggesting a stimulatory role for hypoxia on iDC immunoregulatory functions. In particular, we show that H‐iDCs express triggering receptor expressed on myeloid cells(TREM‐1), a member of the Ig superfamily of immunoreceptors and an amplifier of inflammation. This effect is reversible because H‐iDC reoxygenation results in TREM‐1 down‐modulation. TREM‐1 engagement promotes upregulation of T‐cell costimulatory molecules and homing chemokine receptors, typical of mature DCs, and increases the production of proinflammatory, Th1/Th17‐priming cytokines/chemokines, resulting in increased T‐cell responses. These results suggest that TREM‐1 induction by the hypoxic microenvironment represents a mechanism of regulation of Th1‐cell trafficking and activation by iDCs differentiated at pathologic sites.  相似文献   

17.
Experimental autoimmune myocarditis (EAM) in rats is a T-cell-mediated disorder, and the involvement of Th1/Th2 unbalance has been demonstrated. The induction of antigen-specific tolerance is critical for the treatment of EAM and maintenance of immune tolerance. IL-10 is a pleiotrophic immunomodulatory cytokine that functions at different levels of the immune response, so it has emerged as a promising therapeutic factor for the treatment of autoimmune/inflammatory diseases. This study was designed to explore the effects of IL-10 gene modified bone-marrow-derived immature dendritic cells (iDCs) on the in vitro and in vivo immune response to cardiac myosin in EAM. EAM was induced using the classic methods of cardiac myosin immunization on day 0 and day 7. 2 x 10(6)/per rat mature DC (mDC), immature DC (iDC), pcDNA3 transfected iDC, pcDNA3-IL-10 transfected iDC or PBS were injected intravenously for treatment 5 days after the first immunization. On day 21, transthoracic echocardiogram and HE staining were performed to detect the cardiac function and myocardial inflammation. Th1/Th2 cytokines were detected by ELISA and MHC-II molecules, costimulatory molecules were identified by flow cytometry. In vitro T lymphocyte proliferation assay and adoptive transfer of DCs were performed to determine the antigen-specific tolerance induced by IL-10 gene modified iDCs. IL-10 gene modified iDC-treated EAM rats showed improved cardiac function and reduced infiltration of inflammatory cell into myocardium. Serum cytokines data indicated lower Th1 while higher Th2-type responses were induced in the pcDNA3-IL-10-iDC-treated group, suggesting a Th2 polarization. Moreover, IL-10 gene modified iDCs down-regulated MHC-II and costimulatory molecules on the surface of splenocytes and inhibited the antigen-specific immunological responses towards cardiac myosin. Adoptive transfer of IL-10 producing DCs prevented EAM induction. IL-10 gene modified iDCs ameliorates EAM histopathologically and functionally. The underlying mechanisms may be related to the IL-10 induced Th2 polarization and down-regulation of MHC-II molecules and costimulatory molecules expression.  相似文献   

18.
Chicken interleukin 26 (ChIL-26), a member of the IL-10 family, is expressed in T cells and can induce expression of proinflammatory cytokines. We examined the response of signal transduction pathways to ChIL-26 stimulation in the chicken T (CU91), macrophage (HD11), and fibroblast (OU2) cell lines. ChIL-26 activated JAK2 and TYK2 phosphorylation, as well as activation of STAT1, STAT3, and SHP2 via tyrosine/serine residues. We also showed that ChIL-26 activates the phosphorylation of NF-κB1, TAK1, and MyD88 kinase, which are key regulators of NF-κB signaling pathways. Moreover, ChIL-26 stimulation upregulated mRNA expression of chemokines (CCL4, CCL20, and CXCL14), Th1 (IFN-α, IFN-β, IFN-γ, IL-1β, and IL-6), Th2 (IL-4 and IL-10), and Th17 (IL-12p40, IL-17A, and IL-17F), and the Treg cytokines (TGF-β4); additionally, it increased Th1 and Th17 protein levels and nitric oxide production but did not affect cell proliferation. Together, these results suggest that ChIL-26-induced activation of chemokines, Th1, Th2, and, Th17, and the Treg cytokines is mediated through JAK/STAT and NF-κB signaling pathways in chicken T, macrophage, and fibroblast cell lines. These results indicate a key role for ChIL-26-induced polarization of the immune response and could reveal new therapeutic approaches for use in combination with molecules that activate T and macrophage cells via activation JAK/STAT and NF-κB signaling pathways.  相似文献   

19.
A key and limiting step in the process of human monocyte-derived dendritic cells (mDCs) for clinical use is their in vitro maturation and in vivo migration. We previously observed that CD40 signal facilitated human mDC growth and maturation. To further explore this process, mDCs generated with GM-CSF and IL-4 were co-cultured with apoptotic tumor cells for 24 hours, followed by incubating with anti-CD40 monoclonal antibody or TNF-a for 48 hours to generate mature DCs. The chemokine/chemokine receptor expression and functions of mature DCs upon various stimuli were determined. The expression of costimulatory molecules on apoptotic tumor cell-loaded mature DCs co-cultured with either anti-CD40 antibody (anti-CD40-DCs) or TNF-a (TNF-DCs) were up-regulated compared to immature DCs, consistent with the abilities of these cytokine to drive DC maturation in vitro. The mRNA levels of chemokines such as stromal cell-derived factor-1a (SDF-1a), EBV-induced molecule 1 ligand chemokine (ELC), and IFN inducible protein-10 (IP-10) in anti-CD40 activated DCs were increased and the dendritic cell-specific chemokine 1 (DC-CK1) was moderately up-regulated as compared with other mature DCs. The corresponding chemokine receptors CXCR4 and CCR7 of anti-CD40-DCs were significantly expressed. The CXCR3 expression on activated T cells stimulated by anti-CD40-DCs was also increased. Moreover, the anti-CD40-DCs had a stronger ability to stimulate T cell proliferation than any other DCs. The NF-xB activity was much higher in anti-CD40-DCs than that of TNF-DCs. These results offer further evidence of the importance of the CD40 signal in developing efficient human DC vaccines for cancer immune therapy. Cellular & Molecular Immunology.  相似文献   

20.
The first step in the generation of tumor immunity is the migration of dendritic cells (DCs) to the apoptotic tumor, which is presumed to be mediated by various chemokines. To clarify the roles of chemokines, we induced apoptosis using suicide gene therapy and investigated the immune responses following tumor apoptosis. We injected mice with a murine hepatoma cell line, BNL 1ME A.7R.1 (BNL), transfected with HSV-thymidine kinase (tk) gene and then treated the animals with ganciclovir (GCV). GCV treatment induced massive tumor cell apoptosis accompanied with intratumoral DC infiltration. Tumor-infiltrating DCs expressed chemokine receptors CCR1 and CCR5, and T cells and macrophages expressed CCL3, a ligand for CCR1 and CCR5. Moreover, tumor apoptosis increased the numbers of DCs migrating into the draining lymph nodes and eventually generated a specific cytotoxic cell population against BNL cells. Although GCV completely eradicated HSV-tk-transfected BNL cells in CCR1-, CCR5-, or CCL3-deficient mice, intratumoral and intranodal DC infiltration and the subsequent cytotoxicity generation were attenuated in these mice. When parental cells were injected again after complete eradication of primary tumors by GCV treatment, the wild-type mice completely rejected the rechallenged cells, but the deficient mice exhibited impairment in rejection. Thus, we provide definitive evidence indicating that CCR1 and CCR5 and their ligand CCL3 play a crucial role in the regulation of intratumoral DC accumulation and the subsequent establishment of tumor immunity following induction of tumor apoptosis by suicide genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号