首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 884 毫秒
1.
Parvalbumin, calretinin, and calbindin-D28k are calcium-binding proteins that are located in largely nonoverlapping neuronal populations in the brain. The authors studied the distribution of parvalbumin-, calretinin-, and calbindin-D28k–immunoreactive (ir) cells, fibers, terminals, and neuropil in the eight subfields of the human entorhinal cortex. The distribution of each of the three calcium-binding proteins largely followed the cytoarchitectonic borders of the eight entorhinal subfields, although the regional and laminar distributions of the three proteins were segregated rather than overlapping. The highest density of parvalbumin-ir neurons and terminals was found in the caudal and lateral subfields of the entorhinal cortex. Calretinin and calbindin-D28k immunoreactivities were high rostromedially, although a large number of calretinin and calbindin-D28k neurons were also found in the caudal subfields. All parvalbumin-ir cells had a morphological appearance of nonpyramidal neurons. Parvalbumin-ir terminals formed basket-like formations around unstained somata and cartridges, suggesting that parvalbumin neurons compose a subpopulation of gamma-aminobutyric acid (GABA)ergic basket cells and chandelier cells, respectively. Although calretinin and calbindin-D28k were also found in numerous nonpyramidal neurons, both were also located in pyramidal-shaped neurons in layers V and VI (calretinin) and in layers II and III (calbindin) of the entorhinal cortex, suggesting that they play roles in projection neurons as well. Moreover, the high density of nonpyramidal neurons containing calcium-binding proteins in layers II and III of the entorhinal cortex suggests that they form an integral component of a network that controls the entorhinal outputs to the hippocampus. Furthermore, the largely nonoverlapping distributions of the parvalbumin-, calretinin-, and calbindin-ir neuronal populations in the entorhinal cortex indicate that each of them may modulate a different subset of topographically organized entorhinal outputs. J. Comp. Neurol. 388:64–88, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
In the cerebral cortex, local circuit neurons provide critical inhibitory control over the activity of pyramidal neurons, the major class of excitatory efferent cortical cells. The calciumbinding proteins, calretinin, calbindin, and parvalbumin, are expressed in a variety of cortical local circuit neurons. However, in the primate prefrontal cortex, relatively little is known, especially with regard to calretinin, about the specific classes or distribution of local circuit neurons that contain these calcium-binding proteins. In this study, we used immunohistochemical techniques to characterize and compare the morphological features and distribution in macaque monkey prefrontal cortex of local circuit neurons that contain each of these calcium-binding proteins. On the basis of the axonal features of the labeled neurons, and correlations with previous Golgi studies, calretinin appeared to be present in double-bouquet neurons, calbindin in neurogliaform neurons and Martinotti cells, and parvalbumin in chandelier and wide arbor (basket) neurons. Calretinin was also found in other cell populations, such as a distinctive group of large neurons in the infragranular layers, but it was not possible to assign these neurons to a known cell class. In addition, although the animals studied were adults, immunoreactivity for both calretinin and calbindin was found in Cajal-Retzius neurons of layer I. Dual labeling studies confirmed that with the exception of the Cajal-Retzius neurons, each calcium-binding protein was expressed in separate populations of prefrontal cortical neurons. Comparisons of the laminar distributions of the labeled neurons also indicated that these calcium-binding proteins were segregated into discrete neuronal populations. Calretinin-positive neurons were present in greatest density in deep layer I and layer II, calbindin-immuno-reactive cells were most dense in layers II-superficial III, and parvalbumin-containing neurons were present in greatest density in the middle cortical layers. In addition, the relative density of calretinin-labeled neurons was approximately twice that of the calbindin- and parvalbumin-positive neurons. However, within each group of labeled neurons, their laminar distribution and relative density did not differ substantially across regions of the prefrontal cortex. These findings demonstrate that calretinin, calbindin, and parvalbumin are markers of separate populations of local circuit neurons in monkey prefrontal cortex, and that they may be useful tools in unraveling the intrinsic inhibitory circuitry of the primate prefrontal cortex in both normal and disease states.  相似文献   

3.
The cyto- and chemoarchitecture of the olfactory bulb of two monotremes (shortbeaked echidna and platypus) was studied to determine if there are any chemoarchitectural differences from therian mammals. Nissl staining in conjunction with enzyme reactivity for NADPH diaphorase, and immunoreactivity for calcium binding proteins (parvalbumin, calbindin and calretinin), neuropeptide Y, tyrosine hydroxylase and non-phosphorylated neurofilament protein (SMI-32 antibody) were applied to the echidna. Material from platypus bulb was Nissl stained, immunoreacted for calretinin, or stained for NADPH diaphorase. In contrast to eutherians, no immunoreactivity for either the SMI-32 antibody or calretinin was found in the mitral or dispersed tufted cells of the monotremes and very few parvalbumin or calbindin immunoreactive neurons were found in the bulb of the echidna. On the other hand, immunoreactivity for tyrosine hydroxylase in the echidna was similar in distribution to that seen in therians, and periglomerular and granule cells showed similar patterns of calretinin immunoreactivity to eutherians. Multipolar neuropeptide Y immunoreactive neurons were confined to the deep granule cell layer and underlying white matter of the echidna bulb and NADPH diaphorase reactivity was found in occasional granule cells, fusiform and multipolar cells of the inner plexiform and granule cell layers, as well as underlying white matter. Unlike eutherians, no NPY immunoreactive or NADPH diaphorase reactive neurons were seen in the glomerular layer. The bulb of the echidna was comparable in volume to prosimians of similar body weight, and its constituent layers were highly folded. In conclusion, the monotreme olfactory bulb does not show any significant chemoarchitectural dissimilarities from eutheria, despite differences in mitral/tufted cell distribution.  相似文献   

4.
We have examined the distribution and morphology of neurons immunoreactive for nonphosphorylated neurofilament protein (SMI-32 antibody), calcium-binding proteins (parvalbumin, calbindin, calretinin), and neuropeptide Y as well as neurons reactive for NADPH diaphorase in the cerebral cortex of the Australian short-beaked echidna (Tachyglossus aculeatus). We have also studied synaptic morphology and density in S1 somatosensory cortex and assessed parameters associated with metabolic activity of the cerebral cortex (vessel volume density, mitochondrial volume density, and mitochondrial numerical density) in semi- and ultrathin sections. SMI-32 immunoreactivity was found mostly in layer V pyramidal neurons in selected cortical regions (S1, PV, V1, A). These neurons often showed atypical morphology compared with therian cortex. Neurons immunoreactive for calcium-binding proteins were broadly similar in both morphology and distribution to those seen in therian cortex, although calretinin-immunoreactive neurons were rare. Both Gray type I and Gray type II synapses could be identified in echidna S1 cortex and were similar to those seen in therian cortex. Peak synaptic density was in upper layer IV, followed by layer I, lower layer II, and upper layer III. Most synapses were of type I (72%), although types I and II were encountered with similar frequency in lower layer II and upper layer III. The capillary volume fraction values obtained for the echidna (from 1.18% in V1 to 1.34% in S1 cortex) fall within the values for rodent cortex. Similarly, values for mitochondrial volume fraction in echidna somatosensory cortex (4.68% +/- 1.76%) were comparable to those in eutherian cortex.  相似文献   

5.
Research is here reported on the distribution of immunoreactivities of the calcium-binding proteins parvalbumin and calbindin D-28K in the entorhinal cortex of normal human brains. Topographically, parvalbumin immunoreactive neurons were only seen in the lateral portion of the rostral entorhinal cortex, in continuity with the adjacent perirhinal cortex. The intermediate and caudal portions gave positive results along the mediolateral extension of the entorhinal cortex. The laminar distribution of parvalbumin immunoreactive neurons was similar throughout the entorhinal cortex. Heavy immunostaining, largely coincident with cell islands, was observed in cells and fibers in layer II, being densest in the deep half of layer III and more sparsely distributed in layers V and VI. Calbindin D-28K immunoreactivity was found throughout the entorhinal cortex. In contrast to parvalbumin immunoreactivity, calbindin D-28K was present from layer I up to upper layer III, the neurons being most numerous in the cell islands of layer II. These results show that rostromedial portions of the human entorhinal cortex contain calbindin immunoreactivity, but not parvalbumin, while the lateral, intermediate and caudal portions of the entorhinal cortex contain both calcium-binding proteins. As it is known that these two proteins belong to a subset of GABAergic neurons, we suggest that a topographical diversity in some of the cells may be responsible for inhibitory effects in the human entorhinal cortex. This proposed diversity might be relevant to the processing of information that the entorhinal cortex conveys to the dentate gyrus and receives from various components of the hippocampus, the subicular complex and other cortical and subcortical sources.  相似文献   

6.
Neurons projecting to the parietal cortex or striatum and neurons showing immunoreactivity for the calcium-binding proteins parvalbumin and 28KD-calbindin were examined in the anterior intralaminar nuclei (IL) of the cat. Retrograde tracing from deep or superficial parietal cortical layers or from the caudate nucleus was coupled with immunohistochemistry to determine which of these proteins were expressed in the projection neurons. It was found that IL neurons project to deep as well as to superficial layers of the parietal cortex, that IL-cortical neurons could be differentiated into two populations according to their cortical projection pattern and their soma size, and that IL neurons projecting to the parietal cortex or to the striatum express 28KD calbindin immunoreactivity but not parvalbumin immunoreactivity. The distribution of immunoreactivity to 28KD calbindin and parvalbumin in the neuropil showed a consistent complementary distribution pattern in the IL. The compartments based on differential parvalbumin and 28KD calbindin expression may indicate the presence of functionally segregated units in IL.  相似文献   

7.
Pioneering work indicates that the final position of neurons in specific layers of the mammalian cerebral cortex is determined primarily by birthdate. Glutamatergic projection neurons are born in the cortical proliferative zones of the dorsal telencephalon, and follow an "inside-out" neurogenesis gradient: later-born cohorts migrate radially past earlier-born neurons to populate more superficial layers. GABAergic interneurons, the major source of cortical inhibition, comprise a heterogeneous population and are produced in proliferative zones of the ventral telencephalon. Mechanisms by which interneuron subclasses find appropriate layer-specific cortical addresses remain largely unexplored. Major cortical interneuron subclasses can be identified based on expression of distinct calcium-binding proteins including parvalbumin, calretinin, or calbindin. We determined whether cortical layer-patterning of interneurons is dependent on phenotype. Parvalbumin-positive interneurons populate cortical layers with an inside-out gradient, and birthdate is isochronous to projection neurons in the same layers. In contrast, another major GABAergic subtype, labeled using calretinin, populates the cerebral cortex using an opposite "outside-in" gradient, heterochronous to neighboring neurons. In addition to birthdate, phenotype is also a determinant of cortical patterning. Discovery of a cortical subpopulation that does not follow the well-established inside-out gradient has important implications for mechanisms of layer formation in the cerebral cortex.  相似文献   

8.
Recent immunocytochemical stainings on cat visual cortex, visually stimulated for 1 h, showed a strong induction of Fos expression in cortical neurons. We initiated immunocytochemical double staining experiments with different cytochemical markers to investigate the neurochemical and morphological character of these activated neurons showing Fos induction after sensory stimulation. Double staining with Fos and glutamic acid decarboxylase (GAD) demonstrated the presence of Fos in the nuclei of GABAergic neurons of the primary visual cortex. To further subdivide this Fos/GABAergic cell population we investigated whether Fos colocalized with parvalbumin, calbindin or calretinin. Colocalization of Fos with these calcium-binding proteins delineated distinct neuronal subclasses of Fos-immunoreactive neurons in supra- and infragranular layers of cat area 17. Quantitative analysis of the proportion of immunoreactive local circuit neurons revealed that 35% of the GABAergic neurons showed Fos induction in supragranular layers, whereas in infragranular layers a mere 10% of the GABAergic cells revealed Fos expression. Fos coexisted in about 24% of the calbindin-immunopositive cells within supra- and infragranular layers, but only a minority of the parvalbumin and the calretinin neuronal subgroups were immunopositive for Fos in the corresponding layers of area 17. These findings suggest that visual stimulation induces Fos expression in distinct subsets of inhibitory neurons in cat primary visual cortex.  相似文献   

9.
The present study describes the distribution and structural features of calretinin-immunoreactive neurons and fiber plexuses in the cerebral cortex of a lacertid lizard, at the light and electron microscopic levels, and also examines the colocalization of calretinin with parvalbumin and gamma-aminobutyric acid (GABA) in certain cortical regions. Calretinin-immunoreactive neurons are present throughout the cerebral cortex of Psammodromus and can be classified according to morphological and neurochemical criteria. Neurons in the medial cortex are small, spine-free and lack parvalbumin, whereas in the lateral cortex, calretinin-immunoreactive neurons display sparsely spiny dendrites and also lack parvalbumin. The dorsomedial and dorsal cortices contain most of the calretinin cortical neurons, which were located almost exclusively in the deep plexiform layer. These neurons are large, with an extensive spine-free dendritic tree. Most of the calretinin-immunoreactive neurons of dorsomedial and dorsal cortices are GABAergic and contain parvalbumin. Calretinin-immunoreactive fibers form two main afferent systems in the cortical areas. One probably intrinsic inhibitory system, arising from the calretinin and parvalbumin GABAergic neurons in the dorsomedial and dorsal cortices, makes symmetrical synapses on the soma and proximal dendrites of neurons located in the cell layers of the same cortical areas. The other system is formed by extremely thin axons running within the superficial plexiform layers of the medial, dorsomedial and dorsal cortices. These axons make asymmetrical synapses on dendrites or dendritic spines. We suggest that this system, probably extrinsic excitatory, arises from neurons located in the basal forebrain. J. Comp. Neurol. 382:382-393, 1997. © 1997 Wiley-Liss Inc.  相似文献   

10.
Cortex of the upper bank of the superior temporal sulcus (STS) in macaque monkeys, termed the superior temporal polysensory (STP) region, corresponds largely to architectonic area TPO and is connectionally distinct from adjacent visual areas. To investigate whether or not the STP region contains separate subdivisions, immunostaining for parvalbumin and neurofilament protein (using the SMI-32 antibody) was compared with patterns of corticocortical terminations in the STS. Chemoarchitectonic results provided evidence for three caudal-to rostral subdivisions: TPOc, TPOi, and TPOr. Area TPOc was characterized by patchy staining for parvalbumin and SMI-32 in cortical layers IV/III and III, respectively. Area TPOi had more uniform chemoarchitectonic staining, whereas area TPOr had a thicker layer IV than TPOi. The connectional results showed prefrontal cortex in the location of the frontal eye fields (area8) and dorsal area 46 projected in a columnar pattern to all cortical layers of area TPOc, to layer IV of TPOi, and in a columanr fashion, with a moderate increase in density in layer IV, to TPOr. In TPOc, columns of frontal connections showed a peridicity similar to that of the SMI-32 staining. The caudal inferior parietal lobule (area 7a) and superior temporal gyrus projected to each subdivision of area TPO, displaying either panlaminar or fourth-layer terminations. In addition to STP cortex, parvalbumin and SMI-32 immunostaining allowed identification of caudal visual areas of the STS, including MT, MST, FST, and V4t. These areas received first and sixth-layer projections from prefrontal cortex and area 7a. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Abnormalities in the layer II neurons of human entorhinal cortex have been implicated in the pathophysiology of Alzheimer's disease and schizophrenia. The reported abnormalities are not homogeneously distributed throughout the entorhinal cortex, suggesting that layer II of entorhinal cortex may contain different subpopulations of neurons, each with a different susceptibility to pathological mechanisms. In order to investigate the possible heterogeneity of neurons in layer II of human entorhinal cortex, we first identified distinct subdivisions of human entorhinal cortex by adapting the cytoarchitectonic criteria for subdivisions of monkey entorhinal cortex described by Amaral et al. (J Comp Neurol 264:326, 1987). The morphology and regional distribution of distinct subpopulations of human layer II neurons were determined through the use of immunohistochemical techniques. Multipolar, stellate, and modified pyramidal neurons in the characteristic cell clusters or islands of layer II were immunoreactive for nonphosphorylated neurofilament proteins. The intensity of immunoreactivity for the nonphosphorylated neurofilament proteins gradually increased along the rostrocaudal axis of entorhinal cortex and was primarily due to a similar gradient in the density of labeled neurons per island. The calcium-binding protein calbindin D-28K was found in both pyramidal and nonpyramidal neurons in layers II and superficial III. The distribution of calbindin-immunoreactive neurons also depended upon the region of entorhinal cortex. In rostral entorhinal cortex, labeled neurons were scattered throughout the superficial layers, whereas in caudal entorhinal cortex, distinctive patches of small calbindin-immunoreactive neurons were found among the layer II islands. Another calcium-binding protein, parvalbumin, was present in nonpyramidal neurons in layers II and III that were distinct from those containing calbindin. The regional distribution of parvalbumin-positive neurons was very similar to that of the neurofilament immunoreactive neurons; in rostral entorhinal cortex very few parvalbumin-labeled neurons were present but their frequency gradually increased in the caudal direction. In addition, punctate parvalbumin immunoreactivity was frequently encountered in the location of the nonphosphorylated neurofilament protein-positive layer II islands. These findings demonstrate that layer II of human entorhinal cortex contains distinct subpopulations of neurons, that the relative density of each subpopulation differs across cytoarchitectonic regions, and that the patterns of distribution of these subpopulations are in some cases similar and in other cases complementary. This heterogeneity in the organization of layer II of human entorhinal cortex has important implications for the study of some neuropsychiatric disorders.  相似文献   

12.
A monoclonal antibody that recognizes a nonphosphorylated epitope on the 168 kDa and 200 kDa subunits of neurofilament proteins has been used in an immunohistochemical study of cynomolgus monkey (Macaca fascicularis) and human neocortex. This antibody, SMI-32, primarily labels the cell body and dendrites of a subset of pyramidal neurons in both species. A greater proportion of neocortical pyramidal neurons were SMI-32 immunoreactive (ir) in the human than in the monkey. SMI-32-ir neurons exhibited consistent differences in the intensity of their immunoreactivity that correlated with cell size. The cellular specificity of SMI-32 immunoreactivity suggests that a subpopulation of neurons can be distinguished on the basis of differences in the molecular characteristics of basic cytoskeletal elements such as neurofilament proteins. The size, density, and laminar distribution of SMI-32-ir neurons differed substantially across neocortical areas within each species and between species. Differences across cortical areas were particularly striking in the monkey. For example, the anterior parainsular cortex had a substantial population of large SMI-32-ir neurons in layer V and a near absence of any immunoreactive neurons in the supragranular layers. This contrasted with the cortical area located more laterally on the superior temporal gyrus, where layers III and V contained substantial populations of large SMI-32-ir neurons. Both areas differed significantly from the posterior inferior temporal gyrus, which was distinguished by a bimodal distribution of large SMI-32-ir neurons in layer III. Differences across human areas were less obvious because of the increase in the number of SMI-32-ir neurons. Perhaps the most notable differences across human areas resulted from shifts in the density of the larger SMI-32-ir neurons in deep layer III. A comparison between the species revealed that isocortical areas exhibited greater differences in their representation of SMI-32-ir neurons than primary sensory or transitional cortical areas. A comparison of distribution patterns of SMI-32-ir neurons across monkey cortical areas and data available on the laminar organization of cortical efferent neurons suggests that a common anatomic characteristic of this chemically identified subpopulation of neurons is that they have a distant axonal projection. Such correlations of cell biological characteristics with specific elements of cortical circuitry will further our understanding of the molecular and cellular properties that are critically linked to a given neuron's role in cortical structure and function.  相似文献   

13.
Hyposmia is an early symptom of idiopathic Parkinson’s disease but the pathological bases of such dysfunction are largely unknown. The distribution of α-synuclein, which forms Lewy bodies and Lewy neurites, and the types of neurons (based on their neurotransmitters) affected by α-synucleinopathy were investigated in the olfactory system in Parkinson’s disease. Immunohistochemical distribution of α-synuclein and its co-localization with tyrosine hydroxylase, somatostatin, calbindin, calretinin, parvalbumin and substance P in the olfactory bulb, anterior olfactory nucleus, olfactory tubercle and piriform, periamygdaloid and rostral entorhinal cortices of idiopathic Parkinson’s disease cases (n = 11) and age-matched controls (n = 11) were investigated. Lewy bodies and Lewy neurites were present in the olfactory bulb, particularly in mitral cells and in the inner plexiform layer. α-synuclein was particularly abundant in the different divisions of the anterior olfactory nucleus (bulbar, intrapeduncular, retrobulbar and cortical). In contrast, Lewy bodies and Lewy neurites were less abundant in the olfactory tubercle and olfactory cortices. In the olfactory bulb, anterior olfactory nucleus and olfactory cortices, cells affected by α-synucleinopathy rarely co-localized tyrosine hydroxylase or somatostatin, but they frequently co-localized calbindin, calretinin, parvalbumin and substance P. The present data provide evidence that α-synucleinopathy affects neurons along the olfactory pathway. Dopamine- and somatostatin-positive cells are rarely affected; whereas the cell types most vulnerable to neurodegeneration include glutamate- (mitral cells), calcium-binding protein- and substance P-positive cells. These results provide data on the distribution and cell types involved by α-synucleinopathy in the human olfactory system during Parkinson disease that may be useful for future clinical investigation.  相似文献   

14.
In adult rats single seizures of varying behavioural severities were caused by slow, systemic infusion of picrotoxin, an antagonist of the Cl channel at the GABAA receptor. We used a double labelling immunohistochemical method to define the subclasses of neurons that contained Fos protein following seizures. In four cortical regions (piriform, entorhinal, motor and sensory) neuronal subclasses were defined with antibodies against the calcium-binding proteins calbindin D-28K, parvalbumin and calretinin (aspiny neurons), and neurofilament protein (spiny neurons). The remaining spiny neuron population was estimated by subtraction of defined subclasses from total neuronal numbers determined from Nissl stain. After seizures, most of the calbindin D-28K immunoreactive interneurons (> 80%) and many of the unlabelled spiny neurons (60–80%) were Fos positive. Co-localisation of Fos was found in about 30% of parvalbumin, calretinin and neurofilament protein immunoreactive neurons. Paradoxically, mild seizures were associated with induction of Fos in up to 80% of cortical cells and more severe seizures with 60%, the difference being due to different levels of Fos induction in spiny neurons. These results also demonstrate that seizures induce Fos predominantly in excitatory cortical neurons.  相似文献   

15.
Peripheral deafferentation alters cortical function and such alterations have been shown to affect the cortical expression of the calcium-binding proteins calbindin and parvalbumin and of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To determine whether cortical deafferentation produces similar effects, we examined the long-term consequences of cortical lesions on the neurochemistry of interconnected cortical areas. We studied the reciprocal effects of localized damage to either visual cortical areas 17 and 18, or posteromedial lateral suprasylvian (PMLS) cortex in the adult cat. These areas are strongly interconnected and play an important role in the processing of visual information. Combined lesions of areas 17 and 18 caused a marked, topographically specific decrease in the proportion of neurons expressing calbindin in supragranular layers of PMLS cortex. Similarly, lesions of PMLS cortex caused topographically restricted decreases in calbindin expression within supragranular layers of areas 17 and 18, but not in other cortical areas with which PMLS is interconnected. To categorize the calbindin-positive neurons affected by such lesions, we carried out double-labeling experiments for the inhibitory neurotransmitter GABA. This investigation showed lesions of areas 17 and 18 to affect calbindin-positive excitatory and inhibitory neurons equally, but PMLS lesions had stronger effects on inhibitory, calbindin-positive neurons. This finding may represent differential damage to feed-forward vs. feed-back projections in the two types of lesions. Finally, the expression of parvalbumin and GABA was unchanged, even in zones of decreased calbindin immunoreactivity. Our results suggest that damage to adult visual cortical areas, whether striate or extrastriate, induces neurochemical changes in the supragranular corticocortical network to which these areas belong. That changes were restricted to calbindin expression suggests cell-specific and/or biochemical pathway-specific alterations in calcium homeostasis.  相似文献   

16.
We have examined the topography of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, and nonphosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase (AChE) and NADPH diaphorase. Myelinated fibers terminating in layer IV of the cortex were abundant in the primary sensory cortical areas (areas S1, R, and PV of somatosensory cortex; primary visual cortex) as well as the frontal cortex. Parvalbumin immunoreactivity was particularly intense in the neuropil and somata of somatosensory regions (S1, R, and PV areas) but was poor in motor cortex. Immunoreactivity with the SMI-32 antibody was largely confined to a single sublayer of layer V pyramidal neurons in discrete subregions of the somatosensory, visual, and auditory cortices, as well as a large field in the frontal cortex (Fr1). Surprisingly, SMI-32 neurons were absent from the motor cortex. In AChE preparations, S1, R, V1, and A regions displayed intense reactivity in supragranular layers. Our findings indicate that there is substantial regional differentiation in the expanded frontal cortex of this monotreme. Although we agree with many of the boundaries identified by previous authors in this unusual mammal (Abbie [1940] J. Comp. Neurol. 72:429-467), we present an updated nomenclature for cortical areas that more accurately reflects findings from functional and chemoarchitectural studies.  相似文献   

17.
The monotremes (echidnas and platypus) have been claimed by some authors to show 'avian' or 'reptilian' features in the gross morphology and microscopic anatomy of the cerebellum. We have used Nissl staining in conjunction with enzyme histochemistry to acetylcholinesterase and cytochrome oxidase and immunohistochemistry to non-phosphorylated neurofilament protein (SMI-32 antibody), calcium binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase to examine the cyto- and chemoarchitecture of the cerebellar cortex and deep cerebellar nuclei in the short-beaked echidna. Immunoreactivity for non-phosphorylated neurofilament (SMI-32 antibody) was found in the deep cerebellar nuclei and in Purkinje cells of most regions except the nodule. Purkinje cells identified with SMI-32 immunoreactivity were clearly mammalian in morphology. Parvalbumin and calbindin immunoreactivity was found in Purkinje cells with some regional variation in staining intensity and in Purkinje cell axons traversing cerebellar white matter or terminating on Lugaro cells. Calbindin immunoreactivity was also present in inferior olivary complex neurons. Calretinin immunoreactivity was found in pontocerebellar fibers and small cells in the deep granule cell layer of the ansiform lobule. We found that, although the deep cerebellar nuclei were much less clearly demarcated than in the rodent cerebellum, it was possible to distinguish medial, interposed and lateral nuclear components in the echidna. As far as we can determine from our techniques, the cerebellum of the echidna shows all the gross and cytological features familiar from the cerebellum of therian mammals.  相似文献   

18.
Treatment of rats with methylazoxymethanol (MAM) on gestational day (GD)17 disrupts corticolimbic development in the offspring (MAM-GD17 rats) and leads to abnormalities in adult MAM-GD17 rats resembling those described in schizophrenic patients. The underlying changes in specific cortical and limbic cell populations remain to be characterised. In schizophrenia, decreases in inhibitory gamma-aminobutyric acid (GABA)-containing interneurons that express the calcium-binding protein parvalbumin have been reported in the prefrontal cortex and hippocampus. In this study we analysed the expression of parvalbumin (PV), calretinin (CR) and calbindin (CB) in the prefrontal cortex and hippocampus of MAM-GD17 rats. Exposure in utero to MAM led to a significant decrease in the number of neurons expressing PV in the hippocampus, but not the prefrontal cortex. Neurons expressing CR or CB were not affected in either structure. The neurochemical changes in MAM-GD17 rats were accompagnied by increased hyperlocomotion after administration of phencyclidine (PCP), analogous to the hypersensitivity of schizophrenic patients to PCP. Therefore, the developmental MAM-GD17 model reproduces key neurochemical and behavioural features that reflect cortical and subcortical dysfunction in schizophrenia, and could be a useful tool in the development of new antipsychotic drugs.  相似文献   

19.
Increased neuronal density, cortical thinning, and alterations of GABAergic interneurons in the prefrontal cortex have been associated with the pathophysiology of schizophrenia. This study used antibodies directed against the calcium-binding proteins, calretinin (CR), parvalbumin (PV), and calbindin (CB) to compare the relative density of subpopulations of GABAergic interneurons in BA9 of the prefrontal cortex from six subjects with schizophrenia and six control subjects matched for age, gender, and postmortem interval. The relative density of interneurons expressing CR, PV, or CB did not differ significantly between subjects with schizophrenia and control subjects. In addition, no change in somal size of immunoreactive (IR) neurons or cortical thickness was observed between the two groups. This study supports previous reports consistently demonstrating no change in the relative density of interneurons expressing CR in the dorsolateral prefrontal cortex in schizophrenia but does not support previous inconsistent findings that the relative density of interneurons expressing PV and CB might be altered in this disorder.  相似文献   

20.
Phosphate-activated glutaminase (PAG) is the major enzyme involved in the synthesis of the excitatory neurotransmitter glutamate in cortical neurons of the mammalian cerebral cortex. In this study, the distribution and morphology of glutamatergic neurons in cat visual cortex was monitored through immunocytochemistry for PAG. We first determined the specificity of the anti-rat brain PAG polyclonal antibody for cat brain PAG. We then examined the laminar expression profile and the phenotype of PAG-immunopositive neurons in area 17 and 18 of cat visual cortex. Neuronal cell bodies with moderate to intense PAG immunoreactivity were distributed throughout cortical layers II-VI and near the border with the white matter of both visual areas. The largest and most intensely labeled cells were mainly restricted to cortical layers III and V. Careful examination of the typology of PAG-immunoreactive cells based on the size and shape of the cell body together with the dendritic pattern indicated that the vast majority of these cells were pyramidal neurons. However, PAG immunoreactivity was also observed in a paucity of non-pyramidal neurons in cortical layers IV and VI of both visual areas. To further characterize the PAG-immunopositive neuronal population we performed double-stainings between PAG and three calcium-binding proteins, parvalbumin, calbindin and calretinin, to determine whether GABAergic non-pyramidal cells can express PAG, and neurofilament protein, a marker for a subset of pyramidal neurons in mammalian neocortex. We here present PAG as a neurochemical marker to map excitatory cortical neurons that use the amino acid glutamate as their neurotransmitter in cat visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号