首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac PET combined with CT is rapidly expanding despite artifactual defects and false-positive results due to misregistration of PET and CT attenuation correction data-the frequency, cause, and correction of which remain undetermined. METHODS: Two hundred fifty-nine consecutive patients underwent diagnostic rest-dipyridamole myocardial perfusion PET/CT using (82)Rb, a 16-slice PET/CT scanner, helical CT attenuation correction with breathing and also at end-expiratory breath-hold, and averaged cine CT data during breathing. Misregistration on superimposed PET/CT fusion images was objectively measured in millimeters and correlated with associated quantitative size and severity of PET defects. Misregistration artifacts were defined as PET defects with corresponding misregistration on helical CT-PET fusion images that resolved after correct coregistration using a repeat CT scan, cine CT averaged attenuation during normal breathing, or shifted cine CT data that coregistered with PET data. RESULTS: Misregistration of standard helical CT PET images caused artifactual PET defects in 103 of 259 (40%) patients that were moderate to severe in 59 (23%) (P = 0.0000) and quantitatively normalized on cine or shifted cine CT PET (P = 0.0000). Quantitative misregistration was a powerful predictor of artifact size and severity (P = 0.0000), particularly for transaxial misregistration >6 mm occurring in anterior or lateral areas in 76%, in inferior areas in 16%, and at the apex in 8% of 103 artifactual defects. CONCLUSION: Misregistration of helical CT attenuation and PET emission images causes artifactual defects with false-positive results in 40% of patients that normalize on cine CT PET using averaged CT attenuation data during normal breathing comparable to normal breathing during PET emission scanning and shifting cine CT images to coregister visually with PET.  相似文献   

2.
Cardiac PET/CT is optimized by cine CT with dedicated shift software for manual correction of attenuation-emission misregistration. Separate rest and stress CT scans incur greater radiation dose to patients than does standard helical PET/CT or "pure" PET using rotating rod attenuation sources. To reduce radiation dose, we tested quantitative accuracy of using a single poststress cine CT attenuation scan for reconstructing rest perfusion images to eliminate resting CT attenuation scans. METHODS: A total of 250 consecutive patients underwent diagnostic rest-dipyridamole myocardial perfusion PET/CT with (82)Rb and a 16-slice PET/CT scanner using averaged cine CT attenuation data during breathing at rest and stress. After correcting for any attenuation-emission misregistration, we quantitatively compared resting perfusion images reconstructed using rest cine CT attenuation data with the same resting emission data reconstructed with poststress cine CT attenuation data. Automated software quantifying average regional quadrant activity, severity, size, and combined size and severity of perfusion defects was used for this comparison. RESULTS: Resting perfusion images reconstructed using rest cine CT attenuation data were quantitatively comparable to resting images reconstructed with poststress cine CT attenuation data with no clinically significant differences. Twenty-five (10%) of 250 cases required shifting of stress cine CT attenuation data to achieve optimal attenuation-emission coregistration with resting perfusion data. Eliminating rest CT attenuation scans reduced CT radiation dose by 50% below rest-plus-stress cine CT protocols. CONCLUSION: Resting perfusion images reconstructed using poststress cine CT attenuation data are quantitatively comparable to resting images reconstructed with resting cine CT attenuation data. Eliminating the rest CT scan reduces CT radiation dose by 50%.  相似文献   

3.
Recent studies have shown increased artifacts in CT attenuation-corrected (CTAC) PET images acquired with oral contrast agents because of misclassification of contrast as bone. We have developed an algorithm, segmented contrast correction (SCC), to properly transform CT numbers in the contrast regions from CT energies (40-140 keV) to PET energy at 511 keV. METHODS: A bilinear transformation, equivalent to that supplied by the PET/CT scanner manufacturer, for the conversion of linear attenuation coefficients of normal tissues from CT to PET energies was optimized for BaSO(4) contrast agent. This transformation was validated by comparison with the linear attenuation coefficients measured for BaSO(4) at concentrations ranging from 0% to 80% at 511 keV for PET transmission images acquired with (68)Ge rod sources. In the CT images, the contrast regions were contoured to exclude bony structures and then segmented on the basis of a minimum threshold CT number (300 Hounsfield units). The CT number in each pixel identified with contrast was transformed into the corresponding effective bone CT number to produce the correct attenuation coefficient when the data were translated by the manufacturer software into PET energy during the process of CT attenuation correction. CT images were then used for attenuation correction of PET emission data. The algorithm was validated with a phantom in which a lesion was simulated within a volume of BaSO(4) contrast and in the presence of a human vertebral bony structure. Regions of interest in the lesion, bone, and contrast on emission PET images reconstructed with and without the SCC algorithm were analyzed. The results were compared with those for images obtained with (68)Ge-based transmission attenuation-corrected PET. RESULTS: The SCC algorithm was able to correct for contrast artifacts in CTAC PET images. In the phantom studies, the use of SCC resulted in an approximate 32% reduction in the apparent activity concentration in the lesion compared with data obtained from PET images without SCC and a <7.6% reduction compared with data obtained from (68)Ge-based attenuation-corrected PET images. In one clinical study, maximum standardized uptake value (SUV(max)) measurements for the lesion, bladder, and bowel were, respectively, 14.52, 13.63, and 13.34 g/mL in CTAC PET images, 59.45, 26.71, and 37.22 g/mL in (68)Ge-based attenuation-corrected PET images, and 11.05, 6.66, and 6.33 g/mL in CTAC PET images with SCC. CONCLUSION: Correction of oral contrast artifacts in PET images obtained by combined PET/CT yielded more accurate quantitation of the lesion and other, normal structures. The algorithm was tested in a clinical case, in which SUV(max) measurements showed discrepancies of 2%, 1.3%, and 5% between (68)Ge-based attenuation-corrected PET images and CTAC PET images with SCC for the lesion, bladder, and bowel, respectively. These values correspond to 6.5%, 62%, and 66% differences between CTAC-based measurements and (68)Ge-based ones.  相似文献   

4.
CT-based attenuation correction is a widely used option in commercial PET/CT scanners. However, as a result of a nonsimultaneous acquisition and differences in temporal resolution between both modalities, a potential misregistration between the PET and CT, especially in the thorax and the upper abdomen, can be found. We observed a substantial number of apparent perfusion defects in spatial coincidence with the misregistered segments of the heart and assumed these defects were related to an incorrect attenuation correction. The purpose of this work was to assess the clinical impact of emission-transmission misalignment in myocardial perfusion imaging with PET/CT and to investigate potential solutions. METHODS: Twenty-eight coronary artery disease patients underwent PET/CT (13)NH3 rest/stress examinations. The emission-transmission misalignment was corrected by manual registration and the PET studies were reconstructed again using the realigned CT images for attenuation correction. The effects of the registration were evaluated by quantitative analysis of the local tracer uptake on a polar map basis. In addition to manual registration, 2 alternative realignment methods were evaluated: mutual information-based image registration and emission-driven correction based on the outline of the heart in the PET image. RESULTS: Manual realignment resulted in a change in the defect size of >10% of the left ventricle in 6 of 28 studies (21.4%); in 5 of the studies, this resulted in the disappearance of large apparent perfusion defects (15%-46% of the left ventricle), which were fully due to emission-transmission misregistration. Automatic image registration was unable to realign the datasets, whereas the emission-driven correction showed a good agreement with manual registration. CONCLUSION: Misregistration of PET and CT images is common in cardiac PET/CT studies and results in artifacts on the attenuation-corrected PET images, which appear to be corrected by repeating the PET reconstruction after manual realignment of the CT image data. In contrast to manual realignment, an automated emission-driven correction appears to be a promising approach.  相似文献   

5.
Purpose  Breathing causes artefacts on PET/CT images. Cine CT has been used to reduce respiratory artefacts by acquiring multiple images during a single breathing cycle. The aim of this prospective study in non-small-cell lung cancer (NSCLC) patients was twofold. Firstly, we sought to compare the motion artefacts in PET/CT images attenuation-corrected with helical CT (HCT) and with averaged CT (ACT), which provides an average of cine CT images. Secondly, we wanted to evaluate the differences in maximum standardized uptake values (SUVmax) between HCT and ACT. Methods  Enrolled in the study were 80 patients with NSCLC. PET images attenuation-corrected with HCT (PET/HCT) and with ACT (PET/ACT) were obtained in all patients. Misregistration was evaluated by measurement of the curved photopenic area in the lower thorax of the PET images for all patients and direct measurement of misregistration for selected lesions. SUVmax was measured separately at the primary tumours, regional lymph nodes, and background. Results  A total of 80 patients with NSCLC were included. Significantly lower misregistrations were observed in PET/ACT images than in PET/HCT images (below-thoracic misregistration 0.25±0.58 cm vs. 1.17±1.17 cm, p<0.001; lesion misregistration 1.38±2.10 vs. 3.10±4.09, p=0.013). Significantly higher SUVmax were noted in PET/ACT images than in PET/HCT images in the primary tumour (p<0.001) and regional lymph nodes (p<0.001). Compared with PET/HCT images, the magnitude of SUVmax in PET/ACT images was higher by 0.35 for the main tumours and 0.34 for lymph nodes. Conclusion  Due to its significantly reduced misregistration, PET/ACT provided more reliable SUVmax and may be useful in treatment planning and monitoring the therapeutic response in patients with NSCLC.  相似文献   

6.
Artifacts related to metallic implants are an established limitation of CT-based attenuation correction (CT-AC) in PET/CT. However, the impact of metallic components of pacemaker leads and implantable cardioverter defibrillator (ICD) leads on the accuracy of cardiac PET has not been evaluated. The goal of this study was to investigate the magnitude of artifacts related to pacing and defibrillation leads in both phantom and patient studies. METHODS: Images were acquired on a PET/CT scanner using CT-AC and were compared with those obtained on a dedicated PET scanner using transmission source-based attenuation correction. Phantoms consisting of pacemaker leads and ICD leads submerged in uniform background activity solution were imaged, and regions were analyzed to measure radionuclide concentrations at known lead locations relative to background. In addition, 15 cardiac 18F-FDG patients (having either pacing leads, defibrillation leads, or both) were imaged on both PET/CT and PET scanners. Images were visually and quantitatively assessed to determine whether artifact related to the implanted leads was present and, if so, its severity relative to surrounding myocardium. RESULTS: In phantom studies, artifacts caused by pacing lead electrodes were barely noticeable, but artifacts arising from highly radioopaque ICD shock coil electrodes were clearly apparent. In the patient studies, no artifacts from pacing leads were identified. However, significant artifact was observed in 50% of the patient studies with ICD leads. In the affected areas, local myocardial uptake in PET/CT images using CT-AC was, on average, 30% higher than that in the corresponding PET images. CONCLUSION: Although pacemaker leads do not appear to cause artifact in cardiac PET/CT images, ICD leads frequently do result in artifacts of sufficient magnitude to impact clinical image interpretation. Accordingly, software-based corrections in CT-AC algorithms appear necessary for accurate cardiac imaging with PET/CT.  相似文献   

7.
OBJECTIVE: Image fusion has been recognized as a useful technique in diagnostic imaging. We have been evaluating the manual image fusion of PET and contrast-enhanced (CE) CT obtained separately. The CT images can be used for attenuation correction as well as for image fusion; however, the quantitative accuracy of CT-corrected PET images has yet to be assessed. The purpose of this study was to compare the radioactivity concentration between conventional (68)Ge-corrected and CECT-corrected PET images. METHODS: Twenty patients underwent a whole-body PET scan, followed by a CT scan with intravenous contrast material, after careful positioning using an individually molded vacuum cushion. Two different attenuation-corrected emission data sets were produced, i.e., (68)Ge-corrected images and CECT-corrected images. Image registration was performed by maximizing mutual information-based cost function, between the CT and the combination of emission and transmission PET volumes. The CT pixel values in Hounsfield units were transformed into linear attenuation coefficients in cm(-1), using a conversion formula for a lookup-table from phantom experiments. Measured activity concentrations from identical regions of interest in representative normal organs and in 25 pathologic foci of uptake were compared. In addition, the quality of the reconstructed images was assessed using the normal mean square error (NMSE). RESULTS: Measured average radioactivity concentrations were 1.38-9.56% higher for CECT-corrected images than for (68)Ge-corrected images. Overall, the NMSE value of CECT-corrected images compared with (68)Ge-corrected images was 0.02+/-0.01. CONCLUSIONS: The difference in quantitative values between (68)Ge-corrected and CECT-corrected PET images was comparable to that of an integrated PET/CT system. Diagnostic CT images with intravenous contrast performed separately before or after a PET scan could be used clinically not only for fusion but also for attenuation correction.  相似文献   

8.
Heart disease is a leading cause of death in North America. With the increased availability of PET/CT scanners, CT is now commonly used as a transmission source for attenuation correction. Because of the differences in scan duration between PET and CT, respiration-induced motion can create inconsistencies between the PET and CT data and lead to incorrect attenuation correction and, thus, artifacts in the final reconstructed PET images. This study compared respiration-averaged CT and 4-dimensional (4D) CT for attenuation correction of cardiac PET in an in vivo canine model as a means of removing these inconsistencies. METHODS: Five dogs underwent respiration-gated cardiac (18)F-FDG PET and 4D CT. The PET data were reconstructed with 3 methods of attenuation correction that differed only in the CT data used: The first method was single-phase CT at either end-expiration, end-inspiration, or the middle of a breathing cycle; the second was respiration-averaged CT, which is CT temporally averaged over the entire respiratory cycle; and the third was phase-matched CT, in which each PET phase is corrected with the matched phase from 4D CT. After reconstruction, the gated PET images were summed to produce an ungated image. Polar plots of the PET heart images were generated, and percentage differences were calculated with respect to the phase-matched correction for each dog. The difference maps were then averaged over the 5 dogs. RESULTS: For single-phase CT correction at end-expiration, end-inspiration, and mid cycle, the maximum percentage differences were 11% +/- 4%, 7% +/- 3%, and 5% +/- 2%, respectively. Conversely, the maximum difference for attenuation correction with respiration-averaged CT data was only 1.6% +/- 0.7%. CONCLUSION: Respiration-averaged CT correction produced a maximum percentage difference 7 times smaller than that obtained with end-expiration single-phase correction. This finding indicates that using respiration-averaged CT may accurately correct for attenuation on respiration-ungated cardiac PET.  相似文献   

9.
The diagnostic accuracy of cardiac FDG imaging obtained with the dual-head coincidence gamma camera (DHC) is impaired by artifacts induced by nonuniform attenuation. This study proposed a new method (registration and segmentation method for attenuation correction [AC-RS]) to correct these attenuations in the chest region without the need for additional hardware or expensive transmission scanning equipment. METHODS: Before DHC imaging, 99mTc-tetrofosmin SPECT was performed using dual-energy acquisition from both the photopeak and Compton scatter windows. The scatter window images of the 99mTc-tetrofosmin were then registered 3-dimensionally with the cardiac DHC images and segmented into anatomic regions to obtain body and lung contours by applying the optimal threshold method on localized histograms. Theoretic attenuation coefficient values were assigned to the corresponding anatomic regions, and the DHC emission images were reconstructed using these attenuation correction factors. The results were quantitatively evaluated by imaging a cardiac phantom filled with a uniform solution and placed in a chest phantom. Eight nondiabetic subjects were also examined using this technique, and the results were compared with those of measured attenuation-corrected PET images. RESULTS: Use of this technique in phantom and clinical studies decreased the degree of artifacts seen in the inferior wall activity and corrected the emission images. When the results were compared with those of PET scans, the regional relative counts of the uncorrected DHC scan did not correlate with the results of the PET scan. However, the regional relative counts of the AC-RS-corrected DHC scan exhibited a linear correlation with the results of the PET scan (r = 0.73; P < 0.001). CONCLUSION: Reasonably accurate attenuation-corrected cardiac DHC images can be obtained using AC-RS without the need for transmission scanning.  相似文献   

10.
We investigated the effect of CT truncation in whole-body (WB) PET/CT imaging of large patients, and we evaluated the efficacy of an extended field-of-view (eFOV) correction technique. METHODS: Two uniform phantoms simulating a "torso" and an "arms-up" setup were filled with (18)F-FDG/water. A third, nonuniform "body phantom was prepared with hot and cold lesions. All 3 phantoms were positioned in the center of the PET/CT gantry with >or=10% of their volume extending beyond the maximum CT FOV. An eFOV algorithm was used to estimate complete CT projections from nonlinear extrapolation of the truncated projections. CT-based attenuation correction (CT AC) of the phantom data was performed using CT images reconstructed from truncated and extended projections. For clinical validation, we processed truncated datasets from 10 PET/CT patients with and without eFOV correction. RESULTS: When using truncated CT images for CT AC, PET tracer distribution was suppressed outside the transverse CT FOV in phantom and patient studies. PET activity concentration in the truncated regions was only 10%-32% of the true value but increased to 84%-100% when using the extended CT images for CT AC. At the same time, the contour of phantoms and patients was recovered to the anatomically correct shape from the uncorrected emission images, and the apparent distortion of lesions near the maximum CT FOV was reduced. CONCLUSION: Truncation artifacts in WB PET/CT led to visual and quantitative distortions of the CT and attenuation-corrected PET images in the area of truncation. These artifacts can be corrected to improve the accuracy of PET/CT for diagnosis and therapy response evaluation.  相似文献   

11.
PURPOSE: To evaluate 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) imaging of simulated lung nodules in a realistic chest phantom by using attenuation-corrected and non-attenuation-corrected 511-keV single photon emission computed tomography (SPECT), camera-based positron emission tomography (PET), and dedicated PET imaging. MATERIALS AND METHODS: Spheres with diameters of 6, 10, 13, and 22 mm were placed in the lungs of an anthropomorphic chest phantom to simulate nodules. The lungs, nodules, chest wall, and mediastinum were filled with fluorine-18 activities based on the average radionuclide concentrations in those structures from analysis of attenuation-corrected dedicated FDG PET scans. The image sets were evaluated visually and quantitatively by using contrast and signal-to-noise ratios. RESULTS: Attenuation correction reduced the artificially high apparent uptake in the lungs, restored the spherical shape to the nodules, and provided an accurate outer body contour with appropriate intensity. Dedicated PET depicted all four nodules, camera-based PET depicted the three largest nodules, and SPECT depicted the two largest nodules. Lesion contrast was better on the attenuation-corrected images than on the non-attenuation-corrected images. The signal-to-noise ratio generally was improved with attenuation correction. CONCLUSION: Attenuation correction results in many changes in the images and improves lesion detection.  相似文献   

12.
Motion in PET/CT leads to artifacts in the reconstructed PET images due to the different acquisition times of positron emission tomography and computed tomography. The effect of motion on cardiac PET/CT images is evaluated in this study and a novel approach for motion correction based on optical flow methods is outlined. The Lukas-Kanade optical flow algorithm is used to calculate the motion vector field on both simulated phantom data as well as measured human PET data. The motion of the myocardium is corrected by non-linear registration techniques and results are compared to uncorrected images.  相似文献   

13.
OBJECTIVES: CT data can be used for both anatomical image and attenuation correction (CTAC) of PET data in PET-CT scanners. The CTAC method is useful for attenuation correction, because the CT scan time is much shorter than the external radionuclide (e.g., (68)Ge) transmission scan time. However, the energy of the X-rays from CT is not monoenergetic and is much lower than that of the external radionuclide source. In this study, we evaluated the differences between emission PET images reconstructed with CT-based and (68)Ge-based attenuation correction. METHODS: CT scans and (68)Ge-Transmission scans were acquired and used for attenuation correction (CTAC, MAC, and SAC). The PET emission scan time was 4 min. CT scans were acquired at 10, 20, 40, 80, and 160 mA. (68)Ge-Transmission scans were acquired at 1, 3, 5, 10, 20, 40, 60, and 300 min. The attenuation-corrected emission image using MAC on a 300 min transmission scan was defined as the reference image. Seven cylinders (30 mm diameter) were filled with (18)F-FDG placed in a heart-liver phantom with simulated pulmonary mass lesions. The PET value [counts/cc] was measured in circular regions of interest (ROI) over the cylindrical mass lesion. Averages [counts/cc], coefficients of variation [C.V.(%)], and ratios of difference [%Diff] from the reference value were calculated for all conditions. RESULTS: In the CT-Transmission, analysis of variance revealed no significant effect of CT current on the average and the C.V. In the (68)Ge-Transmission, the average and the C.V. changed in dependence on the acquisition time. All %Diff using CT-Transmission were small. It was shown that CT-Transmission is more appropriate than (68)Ge-Transmission.  相似文献   

14.
In combined PET/CT studies, x-ray attenuation information from the CT scan is generally used for PET attenuation correction. Iodine-containing contrast agents may induce artifacts in the CT-generated attenuation map and lead to an erroneous radioactivity distribution on the corrected PET images. This study evaluated 2 methods of thresholding the CT data to correct these contrast agent-related artifacts. METHODS: PET emission and attenuation data (acquired with and without a contrast agent) were simulated using a cardiac torso software phantom and were obtained from patients. Seven patients with known coronary artery disease underwent 2 electrocardiography-gated CT scans of the heart, the first without a contrast agent and the second with intravenous injection of an iodine-containing contrast agent. A 20-min PET scan (single bed position) covering the same axial range as the CT scans was then obtained 1 h after intravenous injection of (18)F-FDG. For both the simulated data and the patient data, the unenhanced and contrast-enhanced attenuation datasets were used for attenuation correction of the PET data. Additionally, 2 threshold methods (one requiring user interaction) aimed at compensating for the effect of the contrast agent were applied to the contrast-enhanced attenuation data before PET attenuation correction. All PET images were compared by quantitative analysis. RESULTS: Regional radioactivity values in the heart were overestimated when the contrast-enhanced data were used for attenuation correction. For patients, the mean decrease in the left ventricular wall was 23%. Use of either of the proposed compensation methods reduced the quantification error to less than 5%. The required time for postprocessing was minimal for the user-independent method. CONCLUSION: The use of contrast-enhanced CT images for attenuation correction in cardiac PET/CT significantly impairs PET quantification of tracer uptake. The proposed CT correction methods markedly reduced these artifacts; additionally, the user-independent method was time-efficient.  相似文献   

15.
Germanium-68 based attenuation correction (PET(Ge68)) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET(CT)) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET(Ge68) and PET(CT). Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET(CT) in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET(Ge68) images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET(Ge68) and PET(CT) images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be evaluated in patients undergoing PET of the head and neck.  相似文献   

16.
In PET, transmission scanning for attenuation correction has most commonly been performed with an external positron-emitting radionuclide source, such as (68)Ge. More recently, combined PET/CT scanners have been developed in which the CT data can be used for both anatometabolic image formation and attenuation correction of the PET data. The purpose of this study was to assess the quantitative differences between CT-based and germanium-based attenuation-corrected PET images. METHODS: Twenty-eight patients with known or suspected cancer underwent whole-body (18)F-FDG PET/CT scanning for clinical diagnostic purposes. For each patient, attenuation maps were obtained from both the CT scan and the (68)Ge transmission data, and 2 different attenuation-corrected emission datasets were produced. Measured activity concentrations (both mean and maximum) from identical regions of interest in representative normal organs and in 36 pathologic foci of uptake were compared. RESULTS: CT-corrected emission images generally showed slightly higher radioactive concentration values than did germanium-corrected images (P < 0.01) for all lesions and all normal organs except the lung. Mean and maximum radioactivity concentrations were 4.3%-15.2% higher for CT-corrected images than for germanium-corrected images. Calculated radioactivity concentrations were significantly greater in osseous lesions than in nonosseous lesions (11.0% vs. 2.3%, P < 0.05, for mean value; 11.1% vs. 2.1%, P < 0.01, for maximum value). A weak positive correlation was observed between the CT Hounsfield units within the regions of interest and the percentage difference in apparent tracer activity in the CT-corrected images. CONCLUSION: Although quantitative radioactivity values are generally comparable between CT- and germanium-corrected emission PET images, CT-based attenuation correction produced radioactivity concentration values significantly higher than the germanium-based corrected values. These effects, especially in radiodense tissues, should be noted when using and comparing quantitative PET analyses from PET and PET/CT systems.  相似文献   

17.

Objective

Cine average CT (CACT) and interpolated average CT (IACT) have been proposed to improve attenuation correction (AC) for PET/CT in oncologic and cardiac studies. This study aims to evaluate their effectiveness on myocardial perfusion SPECT/CT using computer simulation and physical phantom experiments.

Methods

We first simulated normal male with 99mTc-sestamibi distribution using digital XCAT phantom with respiratory motion amplitudes of 2, 3, and 4 cm. Average activity and attenuation maps represented static SPECT and CACT, while the attenuation maps of end-inspiration and end-expiration represented two helical CTs (HCTs), respectively. Sixty noise-free and noisy projections were simulated over 180° using an analytical parallel-hole projector. We then filled 673 MBq 99mTc into an anthropomorphic torso phantom with normal heart or heart with a defect which placed on a programmable respiratory platform to model various respiratory amplitudes. Sixty projections were acquired over 180° using a clinical SPECT/CT scanner. The CACT, standard HCT, and 2 HCTs at extreme phases were acquired. Interpolated CT phases were generated between them using affine plus b-spline registration, and IACT was obtained by averaging the interpolated phases and the 2 original extreme phases for both simulation and phantom experiments. Projections were reconstructed with AC using CACT, IACT, and HCTs, respectively. Polar and 17-segment plots were analyzed by relative difference (RD) of the uptake. Two regions-of-interest (ROI) were drawn on the defect and background area to obtain the intensity ratio (IR).

Results

No substantial difference was observed on the polar plots generated from different AC methods, while the quantitative RD measurements showed that SPECTCACT were most similar to the original phantom, followed by SPECTIACT, with RDmax <8 and <10% in the simulation study. The RD of SPECTHCTs deviated from the original phantom and SPECTCACT in various segments, with RDmax of 19.76 and 16.68% in the simulation and phantom experiment, respectively. The IR of SPECTHCTs fluctuated more from the truth for higher motion amplitude.

Conclusions

Both CACT-AC and IACT-AC reduced respiratory artifacts and improved quantitation in myocardial perfusion SPECT as compared to HCT-AC. The use of IACT further reduced the radiation dose.
  相似文献   

18.
BACKGROUND: In current combined positron emission tomography/computed tomography (PET/CT) systems, high-quality CT images not only increase diagnostic value by providing anatomic delineation of hyper- and hypometabolic tissues, but also shorten the acquisition time for attenuation correction compared with standard PET imaging. However, this technique potentially introduces more radiation burden to patients as a result of the higher radiation exposure from CT. METHODS: In this study, the radiation doses delivered from typical germanium-based and CT-based transmission scans were measured and compared using an anthropomorphic Rando Alderson phantom with insertions of thermoluminescent dosimeters. Image geometric distortion and quantified uptake values in PET images with different manipulating CT acquisition protocols for attenuation correction were also evaluated. RESULTS: It was found that radiation doses during germanium-based transmission scans were almost negligible, while doses from CT-based transmission scans were significantly higher. Using a lower radiation dose, the CT acquisition protocol did not significantly affect attenuation correction and anatomic delineation in PET. CONCLUSIONS: This study revealed the relation between image information and dose. The current PET/CT imaging acquisition protocol was improved by decreasing the radiation risks without sacrificing the diagnostic values.  相似文献   

19.
Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The effectiveness of the scatter and attenuation correction process was similar to that observed in the phantom study. Because the total time required for computer processing was less than 10 minutes, this method of attenuation correction and image fusion for SPECT images is expected to become popular in clinical practice.  相似文献   

20.
Objective  The objective of this study was to investigate the effects of computed tomography (CT) artifacts caused by dental metal prostheses on positron emission tomography (PET) images. Methods  A dental arch cast was fixed in a cylindrical water-bath phantom. A spherical phantom positioned in the vicinity of the dental arch cast was used to simulate a tumor. To simulate the tumor imaging, the ratio of the 18F-fluoro-deoxy-glucose radioactivity concentration of the spherical phantom to that of the water-bath phantom was set at 2.5. A dental bridge composed of a gold–silver–palladium alloy on the right mandibular side was prepared. A spherical phantom was set in the white artifact area on the CT images (site A), in a slightly remote area from the white artifact (site B), and in a black artifact area (site C). A PET/CT scan was performed with and without the metal bridge at each simulated tumor site, and the artifactual influence was evaluated on the axial attenuation-corrected (AC) PET images, in which the simulated tumor produced the strongest accumulation. Measurements were performed using three types of PET/CT scanners (scanners 1 and 2 with CT-based attenuation correction, and 3 with Cesium-137 (137Cs)-based attenuation correction). The influence of the metal bridge was evaluated using the change rate of the SUVmean with and without the metal bridge. Results  At site A, an overestimation was shown (scanner 1: +5.0% and scanner 2: +2.5%), while scanner 3 showed an underestimation of −31.8%. At site B, an overestimation was shown (scanner 1: +2.1% and scanner 2: +2.0%), while scanner 3 showed an underestimation of −2.6%. However, at site C, an underestimation was shown (scanner 1: −25.0%, scanner 2: −32.4%, and scanner 3: −8.4%). Conclusions  When CT is used for attenuation correction in patients with dental metal prostheses, an underestimation of radioactivity of accumulated tracer is anticipated in the dark streak artifact area on the CT images. In this study, the dark streak artifacts of the CT caused by metallic dental prostheses may cause false negative finding of PET/CT in detecting small and/or low uptake tumor in the oral cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号