首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
The cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of vanadium(V) traces using differential pulse adsorptive cathodic stripping voltammetry (DP AdCSV) with presence of chloranilic acid as a ligand is presented. The calibration graph obtained for V(V) is linear from 0.25 nM (12.7 ng L−1) to 150 nM (7.6 μg L−1) for a preconcentration time of 20 s, with correlation coefficient of 0.9992. For a Hg(Ag)FE with a surface area of 6.6 mm2 the detection limit for a preconcentration time of 90 s is as low as 0.5 ng L−1. The repeatability of the method at a concentration level of the analyte as low as 1.3 μg L−1, expressed as RSD is 2.1% (n = 5). The proposed method was successfully applied and validated by studying the certified reference materials TMRAIN-95, SPS-SW1, SPS-SW2 and simultaneously recovery of V(V) from spiked water samples.  相似文献   

2.
In the present work, a new method for a trace analysis of metal cadmium ion has been developed on the stannum/bismuth/poly(p-aminobenzene sulfonic acid) film electrode in combination with square wave anodic stripping voltammetry. This new electrode was prepared by in situ depositing stannum, bismuth and target metal on the poly(p-aminobenzene sulfonic acid)(p-ABSA) coated glassy carbon electrode. Some key factors including the pH of measure solution, the proper proportion between Bi(III) and Sn(II), the preconcentration time and the preconcentration potential have been studied and optimized. Compared with the traditional bismuth-film electrode, the stannum/bismuth/poly(p-ABSA) film electrode displayed higher stripping current response. In addition, it has the advantages of better stability and less toxicity. Under the optimum conditions, the linear calibration graph for Cd(II) in the concentration range of 0.5–55 μg L−1 was obtained and the detection limit was 0.32 μg L−1. The method was applied to the analysis of cadmium ion in tap water sample with satisfactory results.  相似文献   

3.
A stable modified glassy carbon electrode based on the poly 3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid (CDDA) film was prepared by electrochemical polymerization technique to investigate its electrochemical behavior by cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and their stability were examined. The homogeneous rate constant, ks, for the electron transfer between CDDA and glassy carbon electrode was calculated as 5.25(±0.20) × 102 cm s−1. The modified electrode showed electrocatalytic activity toward ascorbic acid (AA), dopamine (DA), and uric acid (UA) oxidation in a buffer solution (pH 4.0) with a diminution of their overpotential of about 0.12, 0.35, and 0.50 V for AA, DA, and UA, respectively. An increase could also be observed in their peak currents. The modified glassy carbon electrode was applied to the electrocatalytic oxidation of DA, AA, and UA, which resolved the overlapping of the anodic peaks of DA, AA, and UA into three well-defined voltammetric peaks in differential pulse voltammetry (DPV). This modified electrode was quite effective not only for detecting DA, AA, and UA, but also for simultaneous determination of these species in a mixture. The separation of the oxidation peak potentials for ascorbic acid–dopamine and dopamine–uric acid were about 0.16 V and 0.17 V, respectively. The final DPV peaks potential of AA, DA and UA were 0.28, 0.44, and 0.61 V, respectively. The calibration curves for DA, AA, and UA were linear for a wide range of concentrations of each species including 5.0–240 μmol L−1 AA, 5.0–280 μmol L−1 DA, and 0.1–18.0 μmol L−1 UA. Detection limits of 1.43 μmol L−1 AA, 0.29 μmol L−1 DA and 0.016 μmol L−1 UA were observed at pH 4. Interference studies showed that the modified electrode exhibits excellent selectivity toward AA, DA, and UA.  相似文献   

4.
A functionalized carbon nanotubes paste electrode modified with cross-linked chitosan for the determination of trace amounts of cadmium(II) and mercury(II) by linear anodic stripping voltammetry is described. Under optimal experimental conditions, the peak current was linear in the Cd(II) concentration range from 5.9 × 10−8 to 1.5 × 10−6 mol L−1 with a detection limit of 9.8 × 10−9 mol L−1 and, for Hg(II) from 6.7 × 10−9 to 8.3 × 10−8 mol L−1with a detection limit of 2.4 × 10−9 mol L−1. The proposed method was successfully applied for the determination of Hg(II) in natural and industrial wastewater samples, and Cd(II) in sediments, human urine, natural, and industrial wastewater samples.  相似文献   

5.
In the present paper, the use of a gold electrode modified by 2-(2,3-dihydroxy phenyl)-1,3-dithiane self-assembled monolayer (DPDSAM) for the determination of epinephrine (EP) and uric acid (UA) was described. Initially, cyclic voltammetry was used to investigate the redox properties of this modified electrode at various scan rates. The apparent charge transfer rate constant, ks, and transfer coefficient, α, were calculated. Next, the mediated oxidation of EP at the modified electrode was described. At the optimum pH of 8.0, the oxidation of EP occurs at a potential about 155 mV less positive than that of an unmodified gold electrode. The values of electron transfer coefficients (α = 0.356), catalytic rate constant (k = 1.624 × 104 M−1 s−1) and diffusion coefficient (D = 1.04 × 10−6 cm2 s−1) were calculated for EP, using electrochemical approaches. Based on differential pulse voltammetry, the oxidation of EP exhibited a dynamic range between 0.7 and 500.0 μM and a detection limit (3σ) of 0.51 μM. Furthermore, simultaneous determination of EP and UA at the modified electrode was described. Finally, this method was used for the determination of EP in EP ampoule.  相似文献   

6.
A highly sensitive voltammetric detection of silicic acid (SA), the main chemical species of dissolved silica in sea water, is described. The protocol relies on a fast square-wave voltammetric measurement of the decreased molybdenum stripping signal due to the formation of silicomolybdate complex. The cathodic stripping experiments were performed at the bismuth film electrode using HCl–KCl (pH 1.6) buffer solution. Different ligands, pH, ligand concentration, deposition potential and accumulation time were evaluated. Under the optimal conditions, a linear response is observed over the 50–400 μg L−1 SA concentration range with a detection limit of 2 μg L−1. A highly stable response, with a relative standard deviation (RSD) of 4.8%, is observed for 10 repetitive measurements. Such an electrochemical approach offers great promise for a simple, rapid, sensitive, and on-site or in situ real-time detection of SA.  相似文献   

7.

Objective

Psychological stress is considered as a risk factor for periodontal diseases. The stress-related hormone, cortisol is one of the main molecules released during human stress response and is found in plasma and gingival crevicular fluid. This hormone has been suggested to modify composition of subgingival biofilms. The aim of this study was to investigate the effect of exposure to cortisol on Porphyromonas gingivalis (P. gingivalis) growth.

Materials and methods

P. gingivalis ATCC strain 33277 was cultured under strict anaerobic conditions at 37 °C in Brain Heart Infusion medium supplemented with hemin (5 μg ml−1) and menadione (1 μg ml−1). Bacterial cultures were incubated with or without hydrocortisone (0.04–10 μg ml−1) at 37 °C for 12, 24 and 48 h and bacterial growth was evaluated by spectrophotometric method (OD600 nm). Cortisol consumption has been followed by HPLC.

Results

Cortisol significantly increased P. gingivalis growth in the first 24 h peaking at 12 h but this increase was not related to the concentration used. During the time period, no consumption of cortisol was observed.

Conclusions

This study provides further support for the idea that stress-induced hormone; cortisol may influence the growth of P. gingivalis. This specific effect may be involved in the relationship between stress and periodontal diseases.  相似文献   

8.
Voltammetric and electrochemical impedance spectroscopic (EIS) studies of generation one poly(propylene imine) (G1 PPI) dendrimer as an electroactive and catalytic nanomaterials both in solution and as an electrode modifier based on a simple one step electrodeposition method is presented. The G1 PPI exhibited a reversible one electron redox behaviour at E0′ ca 210 mV in phosphate buffer pH 7.2 with diffusion coefficient and Warburg coefficient of 7.5 × 10−10 cm2 s−1 and 8.87 × 10−4 Ω s−1/2 respectively. Cyclic voltammetric electrodeposition of a monolayer of G1 PPI on glassy carbon electrode was carried out between −100 mV and 1100 mV for 10 cycles. The nanoelectrode was electroactive in PBS at E0′ ca 220 mV. Kinetic profiles such as time constant (4.64 × 10−5 s rad−1), exchange current (1.55 × 10−4 A) and heterogeneous rate constant (4.52 × 10−3 cm s−1) obtained from EIS showed that the dendrimer layer catalysed the redox reaction of Fe2+/3+ in [Fe(CN)6]3−/4− redox probe.  相似文献   

9.
A novel electrochemical sol–gel imprinted sensor for sensitive and convenient determination of thymidine was developed. Thin film of molecularly imprinted sol–gel polymers with specific binding sites for thymidine was cast on carbon electrode by electrochemical deposition. Multi-walled carbon nanotubes (MWCNTs) were introduced for the enhancement of electronic transmission and sensitivity. The morphology and performance of the imprinted film was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) and amperometric measurements (it) in detail. The results showed that the imprinted film exhibited high selectivity toward thymidine. The linear range is over the range from 2 to 22 μmol L−1, and the linear regression equation for thymidine is I = 0.867C + 0.232 with the detection limit of 1.6 × 10−9 mol L−1(S/N = 3). The imprinted sensor was successfully employed to detect thymidine in some zidovudine-tablet samples.  相似文献   

10.
An ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) based carbon ionogel electrode (CIE) was fabricated for the sensitive voltammetric sensing of hydroquinone (HQ) in this paper. Due to the specific characteristics of the prepared working electrode, HQ exhibited an enhanced electrochemical response on CIE with a pair of well-defined redox peaks appeared in pH 2.5 phosphate buffer solution. The electrochemical behaviors of HQ on CIE were investigated by different electrochemical methods such as cyclic voltammetry and differential pulse voltammetry with the electrochemical parameters calculated. Under the optimal conditions the oxidation peak currents exhibited good linear relationship with the HQ concentration in the range from 0.13 to 100.0 μmol L−1 with the detection limit of 0.07 μmol L−1 (3σ). The CIE showed separated electrochemical response to HQ and catechol in the mixture solution. The proposed method was successfully applied to HQ detection in artificial wastewater with the recovery in the range from 98.9% to 102.0%.  相似文献   

11.
Trace chromium(VI) determination plays an important role since it is carcinogenic agent and toxic pollutant. For this purpose a direct method is developed using differential pulse polarography, DPP. When selenite was added into solutions of some ions such as copper(II), lead(II), cadmium(II), zinc(II), and chromium(VI) their DP polarographic peak decreased. This kind of interference will cause large errors in the determinations, its elimination is very important. The interference between selenite and Cr(VI) ions could be eliminated in B-R (Britton-Robbinson) buffer at pH 8.5. In this work the effect of components present in buffer has been investigated and it was found that phosphate and borate eliminated the formation of Cr–Se intermetallic compound formation. While it was possible to determine 1 × 10−5 M Cr(VI) in the presence of 100 times more selenite as (1.0 ± 0.1) × 10−5 M, in borate medium, it was possible to determine (1.0 ± 0.05) × 10−5 M in phosphate medium. In the presence of selenite detection limit (S/N = 3) was 9.0 × 10−8 M Cr(VI) by using either phosphate or borate This method was applied to Gerede river water, after oxidation all Cr(III) present into Cr(VI).  相似文献   

12.
A flow sensor for trace analysis of lead, using cyclam-modified graphite felt as working electrode is reported here. The detection is performed in two steps: the preconcentration of Pb2+ ions by complexation with immobilized cyclam and the analysis by linear sweep stripping voltammetry. Cyclam ligands are covalently immobilized onto the graphite felt by chemical reactions on amino acid linkers, previously attached to the electrode by an electrochemical process. A surface concentration of about 12% is estimated by cyclic voltammetry analyses, using redox probes. The factors, affecting the performances of the flow sensor are reported, such as the flow rate and the volume of the analyzed solution used during the preconcentration step. A calibration curve typical of an equilibrium process is obtained for lead ions with a limit of detection able to reach 2.5 × 10−8 mol L−1, showing the ability of the cyclam-modified electrode to complex Pb2+ ions. The flow sensor shows a good selectivity toward lead in the presence of Cu2+ and Zn2+ ions.  相似文献   

13.
A sensitive and simplified voltammetric method is developed for the determination of trace amounts of vanadium(V) by adsorptive anodic stripping voltammetry using an acetylene black (AB) paste electrode. The method is based on the preconcentration of the V(V)–alizarin violet (AV) complex at open circuit while stirring the solution for 90 s in 0.15 mol dm−3 hexamethylenetetraamine–hydrochloric acid buffer (pH 4.4), the adsorbed complex is then oxidized, producing a response with a peak potential of 564 mV when scanning linearly from 0 to 1000 mV. For voltammetric determination of V(V), the parameters influencing the peak current have been optimized. Under the selected conditions, the peak current and concentration of V(V) accorded with linear relationship in the range of 8.0 × 10−10 mol dm−3–1.0 × 10−7 mol dm−3 (cAV = 2.0 × 10−6 mol dm−3) and 1.0 × 10−7 mol dm−3–8.0 × 10−6 mol dm−3 (cAV = 2.0 × 10−5 mol dm−3), the detection limit (three times signal to noise) was estimated to be 6.0 × 10−10 mol dm−3 for 90 s accumulation. The relative standard deviation (RSD) is 1.9% and 2.3% for V(V) concentrations of 1.0 × 10−7 mol dm−3 and 1.0 × 10−8 mol dm−3 respectively. Finally, this proposed method was successfully applied to the determination of V(V) in natural water samples.  相似文献   

14.
The nano composited film of indigotetrasulfonate (ITS) electrodeposited onto poly-l-lysine (PLL)–glutaraldehyde (GA) (ITS/PLL–GA) was modified on glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. Composited of the proposed film was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), electrochemical quartz crystal microbalance (EQCM), electrochemical impedance spectroscopy (EIS), and UV–vis spectrum for the absorption at λmax at 566 nm. For the electrocatalytic reduction of dissolved oxygen, ITS/PLL–GA film modified electrodes was determined in 0.1 M acetate buffer solution (pH 5.6) by cyclic voltammetry and rotating disk electrode voltammetry. This dissolved oxygen electrochemical sensor exhibited a linear response range (from 0 to 178.4 μM, R2 = 0.9949), lowest detection limit (2.2 μM), lowest overpotential at −0.09 V, high sensitivity (906 μA mM−1) and relative standard deviation (RSD) for determining dissolved oxygen (n = 3) was 4.2%. In addition, the ITS/PLL–GA/GCE was advantageous in terms of its simple preparation, specificity, stability and the ability of regeneration.  相似文献   

15.
This research in finding a cheap and efficient catalyst for electrooxidation of formaldehyde give us an attempt to make and examine the behavior of poly(N-methylaniline)/nickel modified carbon paste electrode (Ni/P(NMA)/MCPE) in absence and presence of formaldehyde. This involves in situ electropolymerization of N-methylaniline at carbon paste electrode, which is following to the incorporation of Ni(II) to polymeric layer by immersion of modified electrode in 1.0 M nickel sulphate solution. The electrocatalytic oxidation of formaldehyde was studied by cyclic voltammetry and chronoamperometry methods. The effects of scan rate and formaldehyde concentration on the electrocatalytic oxidation of formaldehyde were also investigated at the surface of Ni/P(NMA)/MCPE. The diffusion coefficient (D = 14.1 × 10−5 cm2 s−1), and some kinetic parameters such as the transfer coefficient (α = 0.45) and also second-order rate constant (k = 8.96 × 10−4 cm3 mol−1 s−1) of formaldehyde were calculated.  相似文献   

16.
The electrochemical behaviors of magnolol have been studied at glassy carbon electrode using cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Moreover, its interaction with DNA was investigated in solution by electrochemical methods and ultraviolet–visible spectroscopy. The experiment results indicated that the electrochemical oxidation of magnolol was an irreversible process with one proton and one electron transfer. The electron transfer coefficient (α) was calculated to be 0.441 ± 0.001. At the scan rate from 100 mV/s to 450 mV/s, the electrode process was controlled by the adsorption step and at the range of 600–950 mV/s the electrochemical oxidation was diffusion controlled process. The corresponding electrochemical rate constant (ks) was 0.0760 ± 0.0001 s−1. Through chronocoulometry experiment, the diffusion coefficient (D) and the surface concentration (Γ) were obtained as (3.76 ± 0.01) × 10−7 cm2/s and (2.98 ± 0.01) × 10−10 mol/cm2. In addition, the interaction of magnolol and DNA was ascribed to be electrostatic interaction and the calculated association constant (β) and Hill coefficient (m) were 1.14 × 105 M−1 and 0.973. At last a sensitive and convenient electrochemical method was proposed for the determination of magnolol.  相似文献   

17.
Cyclic voltammetric investigation of calcium dobesilate (CD) in aqueous acid media was carried out by using an ordered mesoporous carbon-modified pyrolytic graphite electrode (OMC/PGE). A pair of well-defined redox peaks of CD was observed at the OMC/PGE, showing its good elelctrochemial response towards CD. The anodic current is linear with CD concentration in the range of 1.0 × 10−7–1.3 × 10−3 mol L−1, with a detection limit of 4.0 × 10−8 mol L−1. Meanwhile, the proposed electrode can avoid some interference coexisting with CD, such as uric acid, serotonin, and ascorbic acid. The proposed method can be potentially applied for selective electrochemical sensing of CD in physiological condition.  相似文献   

18.
A sensitive and selective method for determination of dopamine (DA) using multi-wall carbon nanotube (MWCNT)-poly(3,5-dihydroxy benzoic acid) [poly(DBA)] modified electrode is developed. The modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solutions at pH 7.4. Using cyclic voltammetry, the linear range of 1 × 10−7–7.0 × 10−5 M in the interference of 500 μM ascorbic acid (AA) and the detection limit of 1.0 × 10−8 M were estimated for the measurement of DA in pH 7.4 phosphate buffer solutions. The value of DA current retained 98.36% of the initial response current after the modified electrode exposed to the air for one week. The interference studies showed that the modified electrode excludes effectively large excess of AA. The kinetic characteristics of the transfer of DA demonstrated that the electron propagation between DA and electrode was accelerated at MWCNT-poly(DBA) modified electrode. The work provided a valid and simple approach to selectively detect dopamine in the presence of AA in physiological environment.  相似文献   

19.
Here, we report a simple and extremely effective method to modify a glassy carbon (GC) electrode with carbon nanotubes (CNTs) and [Mn(CH3COO)(CH3OH)2(pyterpy)]ClO4, (pyterpy = 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine) complex. The kinetics of the reaction between, the terpyridine manganese(II) complex, mediator and hydrazine has been characterized using cyclic voltammetry and rotating disk electrode voltammetry. The catalytic currents were proportional to the concentration of hydrazine giving rise to calibration curves characterized by two linear segments. The linear segment over the concentration range of 1.00 × 10−3–1.05 mM could be used with analytical purposes to determination of hydrazine with a detection limit of 0.50 μM and a sensitivity of 0.038 μA/μM. The heterogeneous rate constant, k′ for the oxidation of hydrazine at the surface of the modified electrode was determined by rotating disk electrode voltammetry using the Koutecky–Levich plot. The transfer coefficient (α) for electrocatalytic oxidation of hydrazine and the diffusion coefficient of this substance under the experimental conditions were also investigated. The resulting modified electrode retains its initial response for at least one month if stored dry in air.  相似文献   

20.
The phase-boundary potential between the moderately hydrophobic ionic liquid and a low ionic strength aqueous solution is demonstrated to be stable and constant with the standard deviation of 0.4 mV down to 20 μmol kg−1 HBr, LiBr, and KBr solutions, for three ionic liquids that consist of either N-methyl-N-octylpyrrolidinium, N-heptyl-N-methylpyrrolidinium, or N-hexyl-N-methylpyrrolidinium and a common anion species, bis(pentafluoroethanesulfonyl)amide. This stability is promising for accurate measurements of pH of low ionic strength samples and reliable estimates of single ion activities in general. The phase-boundary potential deviates from the value determined by the partition of the ionic liquid in further dilute aqueous solutions. The magnitude of the deviation ranges from 3 to 11 mV at 5 μmol kg−1 MBr (M is H+, Li+, or K+). The solubility of these ionic liquids in water is 0.2 mmol dm−3 at most at 25 °C, which is another advantage of ionic liquid salt bridge in electroanalytical chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号