首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many normal human cells produce thrombospondin-1 (TSP-1), a potent antiangiogenic protein that promotes vascular quiescence. In various organ systems, including the brain, breast and bladder and in fibroblasts, TSP-1 secretion is reduced during tumorigenesis, thereby allowing induction of the vigorous neovascularization required for tumor growth and metastasis. Full-length and short TSP-1-derived peptides inhibit angiogenesis by inducing endothelial cell apoptosis and thus disrupting the vasculature of the growing tumor. CD36 expressed on the surface of endothelial cells functions as the primary antiangiogenic receptor for TSP-1. A D-isoleucyl enantiomer of a TSP-1 heptapeptide specifically inhibits the proliferation and migration of capillary endothelial cells. DI-TSP, an approximately 1 kDa capped version of this peptide, is also antiangiogenic in vitro, with a specific activity approaching that of the 450 kDa parental molecule. Here, we show that DI-TSP delivered systemically dose-dependently inhibits the growth of murine melanoma metastases in syngeneic animals and that its more soluble isomer, DI-TSPa, similarly blocks the progression of primary human bladder tumors in an orthotopic model in immune-deficient mice. Like intact TSP-1, these peptide mimetics had no effect on cancer cells growing in vitro but markedly suppressed the growth of endothelial cells by inducing receptor-dependent apoptosis. Antibodies raised against CD36 blocked the ability of peptides to induce apoptosis in endothelial cells but had no effect on tumor necrosis factor-alpha-induced apoptosis. In vivo, the peptide mimetics were associated with a significantly reduced microvessel density and increased apoptotic indices in both the endothelial and tumor cell compartments. Such short peptides targeted to a specific antiangiogenic receptor, potent and easy to synthesize, show great promise as lead compounds in clinical antiangiogenic strategies.  相似文献   

2.
Osteosarcomas, especially those with metastatic or unresectable disease, have limited treatment options. The antitumor effects of pharmacologic inhibitors of angiogenesis in osteosarcomas are hampered in patients by the rapid development of tumor resistance, notably through increased invasiveness and accelerated metastasis. Here we demonstrated that thrombospondin 1 (TSP-1) is a potent inhibitor of the growth and metastasis of the osteosarcoma cell line MG-63. Moreover, we demonstrate that upregulation of TSP-1 facilitated expression of vasculostatin in MG-63 cells. In angiogenesis assays, overexpression of TSP-1 inhibited MG-63 cells and induced tube formation of human umbilical vein endothelial cells (HUVECs) in a CD36-dependent fashion. Finally, in xenografted tumors, we observed that TSP-1 overexpression inhibited angiogenesis and tumor growth. These results provided strong evidence for an important role of the TSP-1/CD36/vasculostatin signaling axis in mediating the antiangiogenic activity of osteosarcoma.  相似文献   

3.
The antiangiogenic extracellular matrix protein thrombospondin-1 (TSP-1) inhibits tumor growth and metastasis in animals. However, the clinical relevance of such findings are equivocal as increased stromal TSP-1 expression has been associated with either good or poor prognosis. In an effort to obtain a more integrated understanding of the role of TSP-1 in breast cancer, we first used a breast tumorigenesis model in which tumor-associated stromal fibroblasts were engineered to produce high levels of TSP-1. We demonstrate here that stromal TSP-1 delayed human MDA-MB-231/B02 breast tumor growth. However, this delay in MDA-MB-231/B02 tumor growth upon exposure to TSP-1 was associated with an increased vascular endothelial growth factor (VEGF) expression in tumor cells themselves, leading to a tumor growth rate comparable to that of tumors whose fibroblasts did not overproduce TSP-1. Clinical evidence also suggested that primary breast carcinomas have adapted to escape the effects of stromal TSP-1. TSP-1 was found to be expressed in the stroma of human breast carcinomas where, although its level correlated with decreased vascularization, it was unexpectedly associated with a reduction of relapse-free survival. In metastatic axillary lymph nodes, tumor cells expressed high levels of VEGF and TSP-1 expression were no longer associated with a decreased vascularization. Overall, these results suggest that a resistance may develop early in human breast cancers as a result of high in situ exposure to stromal TSP-1, leading to disease progression.  相似文献   

4.
Wen XF  Yang G  Mao W  Thornton A  Liu J  Bast RC  Le XF 《Oncogene》2006,25(52):6986-6996
We determined the impact of HER2 signaling on two proangiogenic factors, vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8), and on an antiangiogenic factor, thrombospondin-1 (TSP-1). Re-expression of HER2 in MCF-7 and T-47D breast cancer cells that endogenously express low levels of HER2 resulted in elevated expression of VEGF and IL-8 and decreased expression of TSP-1. Inhibition of HER2 with a humanized anti-HER2 antibody (trastuzumab, or Herceptin) or a retrovirus-mediated small interfering RNA against HER2 (siHER2) decreased VEGF and IL-8 expression, but increased TSP-1 expression in BT474 breast cancer cells that express high levels of HER2. These in vitro results were further evaluated by treatment of BT474 xenografts in immunosuppressed mice with trastuzumab. Trastuzumab inhibited growth of BT474 xenografts and decreased microvascular density associated with downregulation of VEGF and IL-8 and with upregulation of TSP-1 expression. Inhibiting the PI3K-AKT pathway decreased VEGF and IL-8 expression. AKT1 overexpession increased VEGF and IL-8 expression, but did not increase TSP-1 expression. A p38 kinase inhibitor, SB203580, instead blocked TSP-1 expression and a p38 activator, MKK6, increased TSP-1 expression. Trastuzumab stimulated sustained p38 activation and SB203580 attenuated the TSP-1 upregulation induced by trastuzumab. HER2 signaling therefore influences the equilibrium between pro- and antiangiogenic factors via distinct signaling pathways. Trastuzumab inhibits angiogenesis and tumor growth, at least in part, through activation of the HER2-p38-TSP-1 pathway and inhibition of the HER2-PI3K-AKT-VEGF/IL-8 pathway.  相似文献   

5.
BACKGROUND: The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. METHODS: The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. RESULTS: GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. CONCLUSIONS: In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.  相似文献   

6.
PURPOSE: Angiogenesis is essential for tumor growth and is controlled by the balance between angiogenic and antiangiogenic factors. We studied the expression of angiogenic factors and antiangiogenic factors in papillary thyroid carcinoma. EXPERIMENTAL DESIGN: We investigated immunohistochemically the expression patterns and levels of antiangiogenic factor and its receptor, thrombospondin-1 (TSP-1) and CD36, and four angiogenic factors, vascular endothelial growth factor (VEGF), VEGF-C, angiopoietin-2 (Ang-2), and Tie-2, in the primary tumors of 75 papillary thyroid carcinoma patients. We also examined the microvessel count (MVC), using CD31 staining. RESULTS: VEGF expression strongly correlated with other angiogenic factors. The cytoplasm of cancer cells stained positive for all factors. Tie-2 and TSP-1 receptor also appeared in endothelia of microvessels. TSP-1 inversely correlated with the degree of invasion of the primary tumor to other adjacent organs and with MVC. A higher MVC correlated with poorer survival. To clarify the balance between angiogenic and antiangiogenic factors in the same tumor, we calculated the ratio of each angiogenic factor against TSP-1 as the antiangiogenic factor. The ratios VEGF/TSP-1, VEGF-C/TSP-1, and Ang-2/TSP-1 significantly correlated with a higher MVC. Furthermore, the ratios VEGF/TSP-1 and Ang-2/TSP-1 significantly correlated with the degree of infiltration. CONCLUSIONS: To the best of our knowledge, this is the first report demonstrating that the balance between angiogenic and antiangiogenic factors correlates with distinct invasion to other organs and neovascularization of papillary thyroid carcinoma.  相似文献   

7.
Elevated expression of Eph receptors has long been correlated with the growth of solid tumors. However, the functional role of this family of receptor tyrosine kinases in carcinogenesis and tumor angiogenesis has not been well characterized. Here we report that soluble EphA receptors inhibit tumor angiogenesis and tumor progression in vivo in the RIP-Tag transgenic model of vascular endothelial growth factor (VEGF)-dependent multistage pancreatic islet cell carcinoma. Soluble EphA receptors delivered either by a transgene or an osmotic minipump inhibited the formation of angiogenic islet, a premalignant lesion, and reduced tumor volume of solid islet cell carcinoma. EphA2-Fc or EphA3-Fc treatment resulted in decreased tumor volume but increased tumor and endothelial cell apoptosis in vivo. In addition, soluble EphA receptors inhibited VEGF and betaTC tumor cell-conditioned medium-induced endothelial cell migration in vitro and VEGF-induced cornea angiogenesis in vivo. A dominant negative EphA2 mutant inhibited--whereas a gain-of-function EphA2 mutant enhanced--tumor cell-induced endothelial cell migration, suggesting that EphA2 receptor activation is required for tumor cell-endothelial cell interaction. These data provide functional evidence for EphA class receptor regulation of VEGF-dependent tumor angiogenesis, suggesting that the EphA signaling pathway may represent an attractive novel target for antiangiogenic therapy in cancer.  相似文献   

8.
The role of cell adhesion molecules has been studied extensively in the process of inflammation, and these molecules are critical components of carcinogenesis and cancer metastasis. This study investigated the effect of tanshinone I derived from the traditional herbal medicine, Salvia miltiorrhiza Bunge, on the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-alpha (TNF-alpha)-stimulated endothelial cells. Furthermore, this study investigated the effect of tanshinone I on cancer growth, invasion and angiogenesis on human breast cancer cells MDA-MB-231, both in vitro and in vivo. Tanshinone I dose dependently inhibited ICAM-1 and VCAM-1 expressions in human umbilical vein endothelial cells (HUVECs) that were stimulated with TNF-alpha for 6 h. Pretreatment with tanshinone I significantly reduced adhesion of either monocyte U937 or MDA-MB-231 cells to HUVECs. Interestingly, the inhibitory effect of tanshinone I on monocyte and cancer cell adhesion to HUVECs was mimicked by transfection with ICAM-1 and VCAM-1 small interfering RNA. In addition, tanshinone I effectively inhibited TNF-alpha-induced production of vascular endothelial growth factor (VEGF) and VEGF-mediated tube formation in HUVECs. Tanshinone I also inhibited TNF-alpha-induced VEGF production in MDA-MB-231 cells and migration of MDA-MB-231 cells through extracellular matrix. Additionally, reduction of tumor mass volume and decrease of metastasis incidents by tanshinone I were observed in vivo. In conclusion, this study provides a potential mechanism for the anticancer effect of tanshinone I on breast cancer cells, suggesting that tanshinone I may serve as an effective drug for the treatment of breast cancer.  相似文献   

9.
Gene transfer is an attractive approach to fight cancer by targeting cancer cells or their vasculature. Our study reports the inhibition of tumor growth and angiogenesis by a nonviral method using dendrimers associated with 36-mer anionic oligomers (ON36) for delivering angiostatin (Kringle 1-3) and tissue inhibitor of metalloproteinase (TIMP)-2 genes. The optimal concentrations of dendrimers and ON36 for an efficient green fluorescent protein (GFP) plasmid delivery in endothelial cells (HMEC-1) and cancer cells (MDA-MB-435) were first chosen. Then the efficacy of transfection was determined by testing angiostatin and TIMP-2 secretion by Western blot and the biologic effects were evaluated. Angiostatin gene transfer markedly reduced in vitro (i) HMEC-1 but not MDA-MB-435 proliferation; (ii) HMEC-1 and MDA-MB-435 wound healing reparation; and (iii) capillary tube formation. TIMP-2 gene transfer did not affect cell proliferation but strongly inhibited (i) wound healing of HMEC-1 and MDA-MB-435 cells; and (ii) capillary tube formation. Supernatants of transfected-MDA-MB-435 cells also inhibited the formation of angiogenic networks on Matrigel, indicating a paracrine effect. In vivo, intratumoral angiostatin or TIMP-2 gene delivery using dendrimers associated with ON36 effectively inhibited tumor growth by 71% and 84%, respectively. Combined gene transfer resulted in 96% inhibition of tumor growth. Tumor-associated vascularization was also greatly reduced. These findings provide a basis for the further development of nonviral delivery of genes to fight cancer.  相似文献   

10.
Huang SW  Lien JC  Kuo SC  Huang TF 《Carcinogenesis》2012,33(5):1022-1030
Angiogenesis occurs not only during tissue growth and development but also during wound healing and tumor progression. Angiogenesis is a balanced process controlled by proangiogenic and antiangiogenic molecules. As a critical factor in the induction of angiogenesis, vascular endothelial growth factor (VEGF) has become an attractive target for antiangiogenic and cancer therapeutic agents. In an effort to develop novel inhibitors to block VEGF signaling, we selected Pj-8, a benzimidazole derivative, and investigated its inhibitory mechanisms in human umbilical vascular endothelial cells (HUVECs). Pj-8 concentration-dependently inhibited VEGF-induced proliferation, migration and tube formation of HUVECs. Pj-8 also suppressed VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed neovascularization of implanted matrigel plugs in vivo. Pj-8 inhibited VEGF-induced phosphorylation of VEGF receptor (VEGFR) 2 and the downstream protein kinases, including Akt, focal adhesion kinase, extracellular signal-regulated kinases and Src. Results from in vitro kinase assay further demonstrated that Pj-8 suppressed the kinase activity of 3-phosphoinositide-dependent kinase 1 (PDK1). Using xenograft tumor angiogenesis model, Pj-8 markedly eliminated tumor-associated angiogenesis. Taken together, our findings suggest that Pj-8 inhibits VEGF and tumor cells MDA-MB-231-induced angiogenesis, and it may be a potential drug candidate in anticancer therapy. Downregulation of VEGFR2-mediated signaling may contribute to its antiangiogenic actions.  相似文献   

11.
Tumor-endothelial interaction contributes to local prostate tumor growth and distant metastasis. In this communication, we designed a novel approach to target both cancer cells and their "crosstalk" with surrounding microvascular endothelium in an experimental hormone refractory human prostate cancer model. We evaluated the in vitro and in vivo synergistic and/or additive effects of a combination of conditional oncolytic adenovirus plus an adenoviral-mediated antiangiogenic therapy. In the in vitro study, we demonstrated that human umbilical vein endothelial cells (HUVEC) and human C4-2 androgen-independent (AI) prostate cancer cells, when infected with an antiangiogenic adenoviral (Ad)-Flk1-Fc vector secreting a soluble form of Flk1, showed dramatically inhibited proliferation, migration and tubular formation of HUVEC endothelial cells. C4-2 cells showed maximal growth inhibition when coinfected with Ad-Flk1-Fc and Ad-hOC-E1, a conditional replication-competent Ad vector with viral replication driven by a human osteocalcin (hOC) promoter targeting both prostate cancer epithelial and stromal cells. Using a three-dimensional (3D) coculture model, we found that targeting C4-2 cells with Ad-hOC-E1 markedly decreased tubular formation in HUVEC, as visualized by confocal microscopy. In a subcutaneous C4-2 tumor xenograft model, tumor volume was decreased by 40-60% in animals treated with Ad-Flk1-Fc or Ad-hOC-E1 plus vitamin D3 alone and by 90% in a combined treatment group, compared to untreated animals in an 8-week treatment period. Moreover, three of 10 (30%) pre-established tumors completely regressed when animals received combination therapy. Cotargeting tumor and tumor endothelium could be a promising gene therapy strategy for the treatment of both localized and metastatic human prostate cancer.  相似文献   

12.
We have recently reported that keratin 14-promoter-driven vascular endothelial growth factor (VEGF)-E(NZ-7) transgenic mice have a significant number of capillary vessels in subcutaneous tissue. However, these vessels are generated in a layer some distance from the epithelial basal cells that express VEGF-E(NZ-7), suggesting that one or more antiangiogenenic molecules may exist very near the basal cell layer. By screening keratinocyte-conditioned medium, we found that thrombospondin-1 (TSP-1) is produced from keratinocytes and suppresses human umbilical vein endothelial cells (HUVEC) growth as well as tubular formation in a HUVEC-fibroblast coculture system. Different to the known mechanism of CD36-dependent endothelial cell apoptosis, the HUVEC we used did not express CD36 at detectable levels, indicating a new mechanism for TSP-1-induced antiangiogenesis. We found that TSP-1 induces little apoptosis of endothelial cells but causes cell-cycle arrest, increasing the amounts of p21(CIP/WAF-1) and unphosphorylated retinoblastoma (Rb) in HUVEC. CD36-binding peptide in TSP-1 and CD36-neutralizing antibody did not block the TSP-1-induced cell-cycle arrest. Our results strongly suggest that TSP-1 utilizes a novel pathway for its antiangiogenic effect independent of CD36, and suppresses the cell cycle.  相似文献   

13.
Recent studies indicate that continuous administration improves the antitumoral efficacy of angiogenesis inhibitors, as compared with intermittent dosing, suggesting a potential role of gene therapy in antiangiogenic tumor therapy. We established a tissue-engineered implant system for the continuous in vivo production of thrombospondin-2 (TSP-2), a potent endogenous inhibitor of tumor growth and angiogenesis. Fibroblasts were retrovirally transduced to overexpress TSP-2 and were seeded onto biodegradable polymer scaffolds. After transplantation into the peritoneal cavity of nude mice, bioimplants maintained high levels of TSP-2 secretion over extended time periods, resulting in increased levels of circulating TSP-2. Bioimplant-generated TSP-2 potently inhibited tumor growth and angiogenesis of human squamous cell carcinomas, malignant melanomas, and Lewis lung carcinomas that were implanted at a distant site. These results provide the first proof-of-principle for the feasibility and therapeutic efficiency of systemic, cell-based antiangiogenic gene therapy using biodegradable polymer grafts for the treatment of cancer.  相似文献   

14.
Thrombospondin-1 (TSP-1) is a potent antiangiogenic factor that has been shown to inhibit tumor growth by preventing endothelial cells from responding to a wide variety of angiogenic stimulators. We have demonstrated previously that D-12 primary tumors (human melanoma xenografts) suppress the growth of their spontaneous pulmonary micrometastases by secreting TSP-1 into the blood circulation. The same tumor model was used in the present work to study antitumor effects of combined radiation therapy and antiangiogenic treatment with TSP-1. Curative radiation treatment of D-12 primary tumors resulted in rapid growth of previously dormant micrometastases. Growth of dormant micrometastases could be prevented by treating the host mice with exogenous TSP-1 after the radiation treatment. Treatment with exogenous TSP-1 after subcurative radiation treatment reduced the growth rate of recurrent primary tumors in addition to suppressing metastatic growth. TSP-1 suppressed tumor growth at both primary and metastatic sites by inducing apoptosis in tumor-associated microvascular endothelial cells. Treatment with exogenous TSP-1 before radiation treatment enhanced the antitumor effect of the radiation treatment. The radiopotentiation by TSP-1 involved at least two distinctly different mechanisms, i.e., TSP-1 reduced the fraction of radiobiologically hypoxic parenchymal tumor cells and increased the radiation sensitivity of the tumor microvasculature by promoting radiation-induced endothelial cell apoptosis. In conclusion, the present preclinical study showed that TSP-1 has antiangiogenic, antimetastatic, and radiopotentiating properties that merit additional investigation in clinical studies.  相似文献   

15.
Host antiangiogenesis factors defend against tumor growth. The matricellular protein, thrombospondin-2 (TSP-2), has been shown to act as an antiangiogenesis factor in a carcinogen-induced model of skin cancer. Here, using an in vivo malignant glioma model in which the characteristics of the tumors formed after intracerebral implantation of GL261 mouse glioma cells are assessed, we found that tumor growth and microvessel density were significantly enhanced in tumors propagated in TSP-2(-/-) mice. Mechanistically, matrix metalloproteinase (MMP)-2 has been associated with neoangiogenesis and it has been proposed that the levels of available MMP-2 may be down-regulated by formation of a complex with TSP-2 that is internalized by low-density lipoprotein receptor-related protein 1 (LRP1). We found elevated expression of MMP-2 and MMP-9 in tumors propagated in TSP-2(-/-) mice, with a preferential localization in the microvasculature. In wild-type mice, MMP-2 was coexpressed with TSP-2 in the tumor microvasculature. In vitro, addition of recombinant (rec) TSP-2 to mouse brain microvessel endothelial cells reduced MMP-2 levels and invasion through mechanisms that could be inhibited by a competitive inhibitor of ligand binding to LRP1 or by siLRP1. Thus, the antiangiogenic activity of TSP-2 is capable of inhibiting the growth of gliomas in part by reducing the levels of MMP-2 in the tumor microvasculature. This mechanism is mediated by LRP1.  相似文献   

16.
Uray IP  Liang Y  Hyder SM 《Cancer letters》2004,207(1):101-107
CD36 is a trans-membrane receptor that regulates apoptosis and angiogenesis in response to its ligand thrombospondin-1 (TSP-1). This study measures expression of CD36 and TSP-1 in breast cancer cell lines. Expression of TSP-1 was approximately 50-fold higher in the aggressive cell line MDA-MB-231 than in less aggressive MCF-7, BT-474, ZR-75 and T47-D cells. In contrast, MDA-MB-231 express 30 to 100-fold less CD36 than less aggressive cells. Hormone-dependent T47-D and MCF-7 cells down-regulate CD36 in response to estradiol, and anti-hormone ICI 182,780 block this effect. These results suggest that the estrogen receptors play a role in regulating CD36 expression and ICI 182,780 prevents loss of CD36 as a novel mechanism for its anti-estrogen effect in breast cancer cells.  相似文献   

17.
Background: Increasing evidence from animal, epidemiological and clinical investigations suggest that dietary anthocyanins have potential to prevent chronic diseases, including cancers. It is also noteworthy that human epidermal growth factor receptor 2 (ErbB2) protein overexpression or ErbB2 gene amplification has been included as an indicator for metastasis and higher risk of recurrence for breast cancer. Materials and Methods: The present experiments investigated the anti-metastasis effects of black rice anthocyanins (BRACs) on ErbB2 positive breast cancer cells in vivo and in vitro. Results: Oral administration of BRACs (150 mg/kg/day) reduced transplanted tumor growth, inhibited pulmonary metastasis, and decreased lung tumor nodules in BALB/c nude mice bearing ErbB2 positive breast cancer cell MDA-MB-453 xenografts. The capacity for migration, adhesion,motility and invasion was also inhibited by BRACs in MDA-MB-453 cells in a concentration dependent manner, accompanied by decreased activity of a transfer promoting factor, urokinase-type plasminogen activator (u-PA). Conclusions: Together, our results indicated that BRACs possess anti-metastasis potential against ErbB2 positive human breast cancer cells in vivo and in vitro through inhibition of metastasis promoting molecules.  相似文献   

18.
Wu MP  Young MJ  Tzeng CC  Tzeng CR  Huang KF  Wu LW  Chou CY 《Carcinogenesis》2008,29(6):1115-1123
Thrombospondin (TSP)-1, a potent angiogenesis inhibitor, has been shown to exert different biological functions on various cell types. Here, we investigate the role of TSP-1 in tumor-stroma reaction, which is mainly characterized by fibroblast activation to create a permissive microenvironment for tumor progression. Immunohistochemistry examinations in the human surgical specimens have shown that a downregulation of TSP-1 during the progression of cervical carcinogenesis was accompanied by an emergence in the upregulation of stroma markers, alpha-smooth muscle actin (alpha-SMA) and desmin. Transfection of SiHa cervical cancer cells with a plasmid expressing the TSP-1 protein exhibited antiangiogenic activity in vitro and resulted in reduced tumor growth in severe combined immunodeficiency (SCID) mice, which was accompanied by a decrease in tumor vascularization and lower expressions of alpha-SMA and desmin than those in the vector controls. Transfection with TSP-1 and purified TSP-1 added to NIH3T3 cells did not alter the protein levels of alpha-SMA and desmin but significantly inhibited matrix metalloprotease-2 activity. Transforming growth factor-beta (TGF-beta), a major factor in the activation of fibroblasts, increased alpha-SMA and desmin expression and the ability of cell migration and invasion in NIH3T3 cells. The increased migration ability and the invasive ability into tumor cluster of TGF-beta-treated NIH3T3 cells were dose dependently inhibited by TSP-1. In contrast, ectopic TSP-1 expression in SiHa cells has little effect on the invasive ability of the NIH3T3 cells. Together, our findings demonstrate a novel role of TSP-1 to inhibit tumor-stroma reaction that could be attributed to the blockage of activated fibroblasts from invading cancer cells.  相似文献   

19.
Previous studies have shown that a single point mutation in endostatin at position 125 (P125A) can improve the biological activity of endostatin. Addition of an integrin-targeting moiety, R-G-D, resulted in better localization to tumor vasculature and improved the antiangiogenic activity of endostatin. Because endostatin has relatively shorter serum half-life, frequent dosing was required for inhibiting tumor growth. In our study, we have genetically fused RGD-P125A-endostatin to Fc of IgG4 isotype and evaluated its antiangiogenic and antitumor effects in athymic mice. Two genetic constructs were made, RGD-P125A-endostatin-Fc (RE-Fc) and P125A-endostatin-RGD-Fc (ER-Fc). Both constructs were cloned and expressed in mammalian cells. Purified fusion proteins inhibited endothelial cell migration and proliferation better than yeast-derived P125A-endostatin. Both RE-Fc and ER-Fc inhibited ovarian cancer growth and were found to be as effective as Bevacizumab treatment. Fusion protein showed marked increased half-life. Combination treatment with Bevacizumab and ER-Fc showed additive inhibition of ovarian cancer growth. These studies demonstrate that genetic fusion with human IgG4-Fc increases the half-life of P125A-endostatin and can be used along with Bevacizumab to improve antiangiogenic and antitumor activities.  相似文献   

20.
BACKGROUND: The role of dietary components in cancer progression and metastasis is an emerging field of clinical importance. Many stages of cancer progression involve carbohydrate-mediated recognition processes. We therefore studied the effects of high pH- and temperature-modified citrus pectin (MCP), a nondigestible, water-soluble polysaccharide fiber derived from citrus fruit that specifically inhibits the carbohydrate-binding protein galectin-3, on tumor growth and metastasis in vivo and on galectin-3-mediated functions in vitro. METHODS: In vivo tumor growth, angiogenesis, and metastasis were studied in athymic mice that had been fed with MCP in their drinking water and then injected orthotopically with human breast carcinoma cells (MDA-MB-435) into the mammary fat pad region or with human colon carcinoma cells (LSLiM6) into the cecum. Galectin-3-mediated functions during tumor angiogenesis in vitro were studied by assessing the effect of MCP on capillary tube formation by human umbilical vein endothelial cells (HUVECs) in Matrigel. The effects of MCP on galectin-3-induced HUVEC chemotaxis and on HUVEC binding to MDA-MB-435 cells in vitro were studied using Boyden chamber and labeling assays, respectively. The data were analyzed by two-sided Student's t test or Fisher's protected least-significant-difference test. RESULTS: Tumor growth, angiogenesis, and spontaneous metastasis in vivo were statistically significantly reduced in mice fed MCP. In vitro, MCP inhibited HUVEC morphogenesis (capillary tube formation) in a dose-dependent manner. In vitro, MCP inhibited the binding of galectin-3 to HUVECs: At concentrations of 0.1% and 0.25%, MCP inhibited the binding of galectin-3 (10 micro g/mL) to HUVECs by 72.1% (P =.038) and 95.8% (P =.025), respectively, and at a concentration of 0.25% it inhibited the binding of galectin-3 (1 micro g/mL) to HUVECs by 100% (P =.032). MCP blocked chemotaxis of HUVECs toward galectin-3 in a dose-dependent manner, reducing it by 68% at 0.005% (P<.001) and inhibiting it completely at 0.1% (P<.001). Finally, MCP also inhibited adhesion of MDA-MB-435 cells, which express galectin-3, to HUVECs in a dose-dependent manner. CONCLUSIONS: MCP, given orally, inhibits carbohydrate-mediated tumor growth, angiogenesis, and metastasis in vivo, presumably via its effects on galectin-3 function. These data stress the importance of dietary carbohydrate compounds as agents for the prevention and/or treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号