首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously found that crocin (crocetin di-gentiobiose ester) antagonizes the inhibitory effect of ethanol on long-term potentiation in the rat hippocampus in vivo and in vitro. To explore mechanisms underlying the antagonism of crocin against ethanol, we investigated the effects of ethanol and crocin on synaptic potentials mediated by N-methyl-d-aspartate (NMDA) receptors in the dentate gyrus of rat hippocampal slices. Synaptic potential mediated by non-NMDA receptors was recorded in normal medium (1.3 mM Mg2+), while NMDA receptor-mediated synaptic potential was isolated in low (0.13 mM) Mg2+ medium containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 μM). Crocin (10 μM) alone did not affect synaptic potentials mediated by non-NMDA nor NMDA receptors. Non-NMDA response was slightly inhibited by 100 mM ethanol, while NMDA response was selectively inhibited by lower concentrations (10–50 mM) of ethanol. Crocin (10 μM) did not affect the inhibition of non-NMDA response by 100 mM ethanol, but significantly blocked the inhibition of NMDA response by 10–50 mM ethanol. In addition, we performed whole-cell patch recording with primary cultured rat hippocampal neurons, and confirmed that crocin blocked ethanol inhibition of inward currents evoked by application of NMDA. These results suggest that crocin specifically antagonizes the inhibitory effect of ethanol on NMDA receptor-mediated responses in hippocampal neurons.  相似文献   

2.
Low magnesium medium and the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) were used to analyze the effect of several manipulations on the component of excitatory postsynaptic potentials (EPSPs) mediated by activation of NMDA receptors in area CA1 of hippocampal slices. The D-AP5 sensitive component of synaptic responses was characterized by a marked sensitivity to changes in extracellular magnesium and calcium concentrations. In both cases the changes in D-AP5 sensitive responses were considerably larger than those in non-NMDA-dependent potentials. Similarly, frequency facilitation, which is due to a transient increase in release, was accompanied by a greater enhancement of NMDA than non-NMDA receptor-mediated components. The degree of paired-pulse facilitation observed with D-AP5 sensitive responses was magnesium-dependent between concentrations of 0.05 and 0.5 mM, an effect not seen with control potentials. Intracellular injections of hyperpolarizing current pulses differentially affected NMDA and non-NMDA receptor-mediated components. Taken together, these results indicate that changes in the amount of transmitter release may affect to a greater degree NMDA than non-NMDA receptor-mediated components of synaptic responses, probably because of the voltage-sensitive blockade by magnesium of the NMDA receptors. In contrast, induction of long-term potentiation (LTP) by high frequency stimulation produced a larger increase in non-NMDA as opposed to NMDA receptor-dependent responses, a result that does not support the idea that an increase in transmitter release is responsible for LTP.  相似文献   

3.
The hypothesis that synaptic excitation in the CA1 region of the hippocampus is mediated in part by N-methyl-D-aspartate (NMDA) receptors was tested using intra- and extracellular recording techniques. Synaptic potentials elicited by stratum radiatum stimulation were examined in individual neurons before and after bath application of the NMDA receptor antagonist, DL-2-amino-5-phosphonovalerate (APV). This antagonist reduced both excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs). When IPSPs were suppressed by the addition of picrotoxin, EPSPs were seen in isolation. APV reduced these EPSPs but did not block synaptic transmission. This antagonist demonstrated anticonvulsant actions when tested against picrotoxin-induced epileptiform activity. These results suggest that, as in the spinal cord and neocortex, synaptic excitation in the CA1 region of the hippocampus is partially mediated by APV-sensitive NMDA receptors. The fact that synaptic activity is not blocked by NMDA antagonists indicates that EPSPs in CA1 neurons are not mediated solely by this receptor.  相似文献   

4.
D Muller  A Arai  G Lynch 《Hippocampus》1992,2(1):29-38
A modified medium containing an AMPA receptor antagonist and low concentrations of magnesium was used to investigate the factors governing the potentiation of synaptic responses mediated by NMDA receptors. When long-term potentiation (LTP) was induced in standard medium and NMDA responses were analyzed by changing to the modified medium, no statistically significant differences were observed between potentiated and control pathways. Returning the slices to the standard medium showed that LTP was still present, indicating that the potentiation effect was not reversed by the modified medium. High-frequency stimulation applied in the modified medium produced an enhancement of synaptic responses, but this was not occluded by prior potentiation in standard medium. The degree of potentiation induced in the modified medium and expressed by NMDA responses was larger in the presence than in the absence of inhibition and, unlike LTP, was proportionately larger when recorded in the stratum pyramidale than in the stratum radiatum. These results indicate that the potentiation of NMDA receptor-mediated responses triggered by high-frequency stimulation applied in modified medium differs in several respects from the LTP induced in standard conditions. They confirm that LTP is expressed to a markedly different degree by NMDA and non-NMDA receptors and suggest that events that do not necessarily accompany LTP affect the potentiation of NMDA receptor-dependent synaptic responses.  相似文献   

5.
Conditioning stimulation applied to afferent fibers in stratum radiatum or stratum oriens of hippocampal area CA1 produced heterosynaptic, posttetanic depression (PTD) of excitatory postsynaptic potentials (EPSPs). PTD amounted to a 60–80% reduction of EPSPs and recovered over a 5 min period. Conditioning stimulation also induced a posttetanic hyperpolarization (PTH) averaging 4 mV and decaying over a 1–1.5 min period. PTH was accompanied by a large reduction in input resistance. We sought to determine the pre- or postsynaptic locus of heterosynaptic PTD. Our results suggest that PTD reflects a presynaptic mechanism: (1) PTD was observed for both N-methyl-Daspartate (NMDA) and non-NMDA receptor mediated EPSPs; (2) Direct depolarization of pyramidal cells, substituted for the synaptic depolarization induced by conditioning stimulation, did not elicit PTD; (3) PTD and PTH were differentially affected by pharmacological and postsynaptic manipulations; (4) Conditioning stimulation depressed responses to pressure applied glutamate, but the magnitude and duration were too small to account for PTD. Since afferent fiber volleys were not depressed following conditioning stimulation, while field EPSPs were, we conclude that conditioning stimulation suppresses synaptic release of glutamate. © 1993 Wiley-Liss. Inc.  相似文献   

6.
The effect of ethanol on the epileptiform activity induced by Mg(++)-free solution was studied in rat amygdalar slices using intracellular recording techniques. The spontaneous and evoked epileptiform discharges consisting of an initial burst followed by afterdischarges were observed 20-30 min after switching to Mg(++)-free medium. Superfusion with ethanol (20-100 mM) reversibly reduced the duration of spontaneous and evoked bursting discharges in a concentration-dependent manner. Synaptic response mediated by N-methyl-D-aspartate (NMDA) receptor activation was isolated by application of a solution containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and either in Mg(++)-free solution or in the presence of 50 microM bicuculline. Application of ethanol reversibly suppressed the duration of NMDA receptor-mediated synaptic response. These results suggest that intoxicating concentrations of ethanol possess anticonvulsant activity through blocking the NMDA receptor-mediated synaptic excitation. In addition, the observed effect of ethanol on NMDA receptor-mediated synaptic response could be relevant to the cognitive and behavioral manifestations seen in some alcoholics.  相似文献   

7.
Evidence from animal stroke models suggests that the proximate cause of neuronal degeneration after ischemia is massive release of glutamate and activation of NMDA receptors. However, in the physiologic presence of oxygen and glucose in the rat hippocampal slice preparation, the neurotoxicity of glutamate, as measured by inhibition of protein synthesis, requires high concentrations and is not prevented by glutamate receptor antagonists. Thus, the NMDA receptor-mediated neurotoxic effects of extracellular glutamate accumulation during ischemia might depend on additional factors, such as neuronal depolarization. In the experiments reported here, slices were exposed to glutamate in a medium intended to mimic the ionic conditions found during ischemia, high potassium (128 mM) and low sodium (26 mM). This depolarizing medium itself inhibited protein synthesis in a manner which was partially mediated by NMDA receptor activation, since it was significantly reversed by the noncompetitive NMDA antagonist, MK-801. Furthermore, the effect of glutamate under depolarizing conditions was also significantly decreased by MK-801, suggesting that glutamate was acting at NMDA receptors. Thus, depolarization appears to enhance the sensitivity of neurons to toxic NMDA receptor activation by glutamate. Under conditions that mimic ischemia, hypoxia plus hypoglycemia, a similar protective effect of NMDA receptor antagonists was observed. Depolarization and ischemia both appeared to attenuate the neurotoxicity of non-NMDA receptor agonists. It appears that under conditions of normal glucose and oxygen, high concentrations of bath applied glutamate inhibit protein synthesis at sites other than the NMDA receptor. However, when the Na+ gradient is decreased, as occurs during ischemia, glutamate's NMDA effects predominate. These findings suggest that ionic shifts may play a central role in permitting NMDA receptor-mediated ischemic neuronal damage.  相似文献   

8.
GABA receptor regulation of NMDA-receptor-mediated synaptic responses was studied in area CA1 of the rat hippocampus using extracellular and intracellular recording techniques. Picrotoxin (PTX) was used to suppress GABAA inhibition and 6,7-dinitroquinoxaline-2,3-dione (DNQX) was used to suppress non-NMDA receptor-mediated responses. In this manner, we were able to avoid the complicating factors caused by potentials induced by other excitatory and inhibitory amino acid receptors. Under these conditions, large NMDA-receptor-mediated EPSPs were observed. When paired stimuli were given at interstimulus intervals from 100 to 400 msec, powerful inhibition of the second response was observed. This inhibition was reversed by the GABAB antagonists phaclofen and 2-hydroxy-saclofen; it was also depressed by removal of Mg2+ from the bath. Examination of non-NMDA receptor-mediated synaptic responses (determined in the presence of D-2-amino-5-phosphonovalerate and PTX) showed no such inhibition, thereby supporting the hypothesis that GABAB inhibition of NMDA EPSPs is postsynaptic. This difference in paired-pulse inhibition of NMDA and non-NMDA EPSPs leads us to conclude that there was no evidence of GABAB-mediated presynaptic inhibition of excitatory transmitter release. Intracellular recordings in the presence of DNQX and PTX revealed a phaclofen-sensitive late IPSP that correlated in time with the period of inhibition of NMDA responses. Taken together, these data suggest that paired-pulse-inhibition of NMDA responses is produced by a GABAB-receptor-mediated hyperpolarization of the postsynaptic membrane, causing an enhanced block of the NMDA channels by Mg2+. Regulation of NMDA-mediated synaptic responses by GABAB receptors constitutes a powerful mechanism for control of a major excitatory system in hippocampal pyramidal cells.  相似文献   

9.
K T Sillar  A Roberts 《Brain research》1991,545(1-2):24-32
Many excitatory amino acid (EAA)-mediated synaptic potentials are dual-component as a result of the simultaneous activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptor subtypes, the two major classes of EAA receptor in vertebrates. This raises the question of whether the two receptor types are located separately or together at individual synaptic contacts. Support for the segregation of NMDA and non-NMDA receptors in discrete anatomical patches arises from the observation that the fast and slow components of dual-component potentials mediated via NMDA and non-NMDA receptor types can fail independently. We have obtained further support for this by investigating the spontaneous release of EAA neurotransmitter at sensory synapses in the spinal cord of Xenopus laevis embryos. We report the occurrence of spontaneous TTX-resistant EPSPs in sensory interneurons that are mediated by EAA receptors. These spontaneous potentials share the same pharmacological sensitivities as EPSPs evoked by skin sensory afferents, being blocked by kynurenic acid and reduced by (+-)-2-amino-5-phosphonovaleric acid (APV). The spontaneous EPSPs differ from evoked EPSPs in their time courses: while evoked EPSPs are almost exclusively of the dual-component variety, the spontaneous EPSPs are predominantly either fast or slow. These data suggest that spontaneous EPSPs reflect release of EAA neurotransmitter at synaptic contacts overlying homogeneous populations of either NMDA or non-NMDA receptors. Their relatively large size, up to 50% or more of the amplitude of unitary EPSPs evoked by stimulation, also suggests that synapses between skin afferents and sensory interneurons may comprise relatively few points of synaptic contact.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The subfornical organ (SFO) plays an important role in central regulation of the autonomic nervous system. The synaptic transmission properties of neurons in the SFO were studied with intracellular and whole-cell patch clamp recordings in the rat slice preparations. Both the spontaneous and evoked excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were almost completely suppressed by the glutamate receptor antagonist kynurenic acid and the non-NMDA (N-methyl-D-aspartic acid) antagonist CNQX. The non-NMDA agonist kainic acid depolarized the membrane most potently, compared with NMDA and quisqualic acid. These suggest that glutamate is a main excitatory neurotransmitter in the SFO and that its action is at least partly mediated through non-NMDA receptors.  相似文献   

11.
The excitatory input from cortex and/or thalamus to striatum appears to promote the maturation of glutamate receptors on striatal neurons, but the mechanisms by which it does so have been uncertain. To explore the possibility that the excitatory input to striatum might influence glutamate receptor maturation on striatal neurons, at least in part, by its depolarizing effect on striatal neurons, we examined the influence of chronic KCl depolarization on the development of glutamate receptor-mediated excitotoxic vulnerability and glutamate receptors in cultured striatal neurons. Dissociated striatal neurons from E17 rat embryos were cultured for 2 weeks in Barrett's medium containing either low (3 mM) or high (25 mM) KCl. The vulnerability of these neurons to NMDA receptor agonists (NMDA and quinolinic acid), non-NMDA receptor agonists (AMPA and KA), and a metabotropic glutamate receptor agonist (trans-ACPD) was examined by monitoring cell loss 24 h after a 1-h agonist exposure. We found that high-KCl rearing potentiated the cell loss observed with 500 microM NMDA or 250 microM KA and yielded cell loss with 250 microM AMPA that was not evident under low KCl rearing. In contrast, neither QA up to 5 mM nor trans-ACPD had a significant toxic effect in either KCl group. ELISA revealed that chronic high KCl doubled the abundance of NMDA NR2A/B, AMPA GluR2/3, and KA GluR5-7 receptor subunits on cultured striatal neurons and more than doubled AMPA GluR1 and GluR4 subunits, but had no effect on NMDA NR1 subunit levels. These receptor changes may contribute to the potentiation of NMDA and non-NMDA receptor-mediated excitotoxicity shown by these neurons following chronic high-KCl rearing. Our studies suggest that membrane depolarization produced by corticostriatal and/or thalamostriatal innervation may be required for maturation of glutamate receptors on striatal neurons, and such maturation may be important for expression of NMDA and non-NMDA receptor-mediated excitotoxicity by striatal neurons. Striatal cultures raised under chronically depolarized conditions may, thus, provide a more appropriate culture model to study the role of NMDA or non-NMDA receptor subtypes in excitotoxicity in striatum.  相似文献   

12.
Whole-cell patch-clamp recordings in rat cerebellar slices were used to investigate the effect of metabotropic glutamate receptor activation on mossy fibre-granule cell synaptic transmission. Transient application of 20 μM 1 S , 3 R -1 -aminocyclopentane-1,3-dicarboxylic acid simultaneously with low-frequency NMDA receptor activation induced long-lasting non-decremental potentiation of both NMDA and non-NMDA receptor-mediated synaptic transmission. Potentiation could be prevented by application of the metabotropic glutamate receptor antagonist (+)- O -methyl-4-carboxyphenyl-glycine at 500 μM. Characteristically, NMDA potentiation was two to three times as large as non-NMDA current potentiation, occurred only in a slow subcomponent, and was voltage independent. This result demonstrates a pivotal role of NMDA receptors in the metabotropic potentiation of transmission, which may be important in regulating cerebellar information processing.  相似文献   

13.
T Kn?pfel 《Brain research》1987,426(2):212-224
We have investigated the role of N-methyl-D-aspartate (NMDA) receptors in the excitatory synaptic transmission to central vestibular neurons in the isolated superfused brainstem of the frog. In superfusate containing 1 mM Mg2+ field potentials in the vestibular nuclei evoked by electrical stimulation of either the ipsi- or the contralateral VIIIth nerve were not affected by bath-applied D-2-amino-5-phosphonovaleric acid (D-APV, 25-50 microM), a selective NMDA antagonist. In a low Mg2+ solution postsynaptic field potential components were larger than control but still unaffected by D-APV. Ipsi- and contralaterally evoked excitatory postsynaptic potentials (EPSPs) differed in their shape parameters as well as in their pharmacological sensitivity. Ipsilaterally evoked EPSPs were not affected by D-APV and has a rise time that was faster than that of contralaterally evoked EPSPs. The peak amplitude of hte latter was reduced by D-APV (25-50 microM) to about 65% of the control value in the presence of 1 mM Mg2+. During bath application of NMDA (100 microM) an increased input resistance and repetitive de- and hyperpolarizing membrane potential shifts were observed. Similar events were observed during a reduction of the Mg2+ concentration. Bath application of NMDA (0.1-1 microM) resulted in an enhanced size of the recorded EPSPs. Dendritic and somatic EPSPs were simulated on a computer with the assumption of a constant NMDA receptor activation and a pulse-like non-NMDA receptor activation. The results of these simulations are consistent with the hypothesis that the efficacy of non-NMDA-mediated vestibular commissural synaptic transmission is modulated through tonically activated NMDA receptors.  相似文献   

14.
Considerable interest has focused on the role of glutamate-mediated excitotoxicity in neurodegenerative disorders of the basal ganglia. The in vitro data on the receptor mechanisms involved in this process, however, have been inconclusive. Some studies have indicated that excitotoxins acting at NMDA receptors kill striatal neurons and others have indicated that NMDA receptor-mediated excitotoxic death of striatal neurons is minimal in the absence of cortex. In the present study, we used a pharmacological approach to carefully reexamine this issue in 2-week-old cultures of striatal neurons dissociated from E17 rat embryos. The sensitivity of these neurons to glutamate agonists and antagonists was determined by monitoring cell loss in identified regions of the growth dishes. We found that glutamate killed striatal neurons with an EC50 of 100 μM. This loss was not mediated by NMDA receptors, since it was not reduced by the NMDA receptor antagonist APV (0.1-1.0 mM). Consistent with this result, up to 50 mM NMDA receptor-specific excitotoxin quinolinic acid (QA) did not affect neuronal survival. Depolarizing the QA-exposed neurons with 35 mM potassium chloride to enhance NMDA receptor activation by QA also did not produce neuron loss. The metabotropic glutamate receptor antagonist AP3 (500 μM) also had no effect on the striatal neuron loss produced by 100 μM glutamate. In contrast, the non-NMDA antagonist GYKI 52466 (100 μM) did block the excitotoxic effect of glutamate (100 μM). Specific AMPA and KA receptor agonists and the non-NMDA antagonist GYKI 52466 revealed that the non-NMDA receptor-mediated excitotoxic effect of glutamate was mediated by KA receptors. These results suggest that cultured striatal neurons are directly vulnerable to non-NMDA glutamate agonists, but not to NMDA and metabotropic glutamate agonists. Thus, non-NMDA receptors may play a greater role in the excitotoxic death of striatal neurons in disease and experimental animal models than previously realized.  相似文献   

15.
Neuropeptide Y (NPY) reduces excitatory synaptic transmission between stratum radiatum and CA1 pyramidal cells in rat hippocampal slice in vitro by a presynaptic action. To understand NPY's role in the control of excitability in hippocampus, its actions on excitatory and inhibitory synaptic transmission were examined, using intracellular, sharp microelectrode, and tight-seal, whole cell recordings from principal neurons in areas CA1, CA3, and dentate. Bath application of 1 μM NPY reversibly inhibited excitatory postsynaptic potentials (EPSPs) evoked in CA1 pyramidal cells from either stratum radiatum or stratum oriens by about 50%. Neuropeptide Y also inhibited EPSPs at mossy fiber-CA3, stratum oriens-CA3, and CA3-CA3 synapses by between 45% and 55%. As in CA1, the action of NPY was presynaptic. By contrast, NPY did not inhibit EPSPs evoked in dentate granule cells from either perforant path or commissural inputs. Neuropeptide Y did not alter postsynaptic membrane properties in any cell type. Although NPY attenuated the orthodromically evoked (stratum radiatum) inhibitory postsynaptic potentials in CA1 pyramidal cells by about the same amount as it inhibited the EPSPs, it did not affect the IPSPs evoked in the same cells by antidromic stimulation from alveus. Inhibitory postsynaptic potentials evoked in pharmacological isolation in CA1, CA3, or dentate were also not significantly affected by NPY. The evidence supports the hypothesis that NPY acts at feedforward excitatory synapses to presynaptically reduce the amplitude of excitation as it travels through hippocampal circuits. By contrast, synaptically mediated inhibition is not directly affected by NPY. Neuropeptide Y is the only known endogenous substance that selectively reduces feedforward excitatory transmission without causing changes in other properties of the hippocampal circuitry.  相似文献   

16.
The mechanisms of Ca2+ responses evoked in hippocampal glial cells in situ, by local application of glutamate and by synaptic activation, were studied in slices from juvenile rats using the membrane permeant fluorescent Ca2+ indicator fluo-3AM and confocal microscopy. Ca2+ responses induced by local application of glutamate were unaffected by the sodium channel blocker tetrodotoxin and were therefore due to direct actions on glial cells. Glutamate-evoked responses were significantly reduced by the L-type Ca2+ channel blocker nimodipine, the group I/II metabotropic glutamate receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), and the N-methyl-D-aspartate (NMDA) receptor antagonist (+/-)2-amino-5-phosphonopentanoic acid (APV). However, glutamate-induced Ca2+ responses were not significantly reduced by the non-NMDA receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). These results indicate that local application of glutamate increases intracellular Ca2+ levels in glial cells via the activation of L-type Ca2+ channels, NMDA receptors, and metabotropic glutamate receptors. Brief (1 s) tetanization of Schaffer collaterals produced increases in intracellular Ca2+ levels in glial cells that were dependent on the frequency of stimulation (> or =50 Hz) and on synaptic transmission (abolished by tetrodotoxin). These Ca2+ responses were also antagonized by the L-type Ca2+ channel blocker nimodipine and the metabotropic glutamate receptor antagonist MCPG. However, the non-NMDA receptor antagonist CNQX significantly reduced the Schaffer collateral-evoked Ca2+ responses, while the NMDA antagonist APV did not. Thus, these synaptically mediated Ca2+ responses in glial cells involve the activation of L-type Ca2+ channels, group I/II metabotropic glutamate receptors, and non-NMDA receptors. These findings indicate that increases in intracellular Ca2+ levels induced in glial cells by local glutamate application and by synaptic activity share similar mechanisms (activation of L-type Ca2+ channels and group I/II metabotropic glutamate receptors) but also have distinct components (NMDA vs. non-NMDA receptor activation, respectively). Therefore, neuron-glia interactions in rat hippocampus in situ involve multiple, complex Ca2+-mediated processes that may not be mimicked by local glutamate application.  相似文献   

17.
During early postnatal development, the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor plays a dominant role in excitatory amino acid-mediated synaptic transmission in essentially every brain region that has been examined. In contrast, we have found that in the rat striatum, NMDA receptor-mediated current develops later in the medium-sized neurons (MSNs) than currents mediated by activation of non-NMDA receptors. MSNs were identified using infrared video microscopy, and voltage-clamped in a slice preparation using the whole-cell patch-clamp technique. Intrastriatal stimulation was used to evoke excitatory synaptic currents from slices in animals ranging in age from postnatal day (PND) 5 to 60. Though most cells from animals younger than PND 10 failed to respond to synaptic stimulation, postsynaptic responses were occasionally evoked in cells as young as PND 5. Synaptic currents from cells between PNDs 5 and 7 had a significant contribution due to activation of non- NMDA receptors, as evidenced by sensitivity to the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione and rapidly rising and falling response components. The relative contribution of NMDA receptors increased approximately twofold from the first to the third postnatal week; no further change was observed through PND 60. At the same ages that the NMDA receptors contributed maximally to the synaptic current, the decay time constant of the NMDA receptor-mediated current decreased significantly. The increasing weight of NMDA receptor-mediated current may reflect a change in the number of functional receptors at the synapse since there was no apparent change in the voltage dependence of the current. To more completely examine receptor function early in postnatal development, NMDA and kainate were applied either iontophoretically or in the bath. Iontophoretic application of NMDA onto cells obtained from rats between PNDs 3 and 5 only occasionally evoked current, provided that the membrane was held at depolarized potentials to remove the Mg(2+) block. In contrast, application of kainate consistently evoked a response from cells of the same age group. Bath application of the same agonists provided similar results. Taken together, the present experiments demonstrate that striatal non-NMDA receptor-mediated currents are more mature than NMDA receptor-mediated currents early in development.  相似文献   

18.
Blockade of γ-aminobutyric acid (GABA)ergic synaptic transmission in mature hippocampal slice cultures for a period of 3 days with convulsants was shown previously to induce chronic epileptiform activity and to mimic many of the degenerative changes observed in the hippocampi of epileptic humans. The cellular mechanisms underlying the induction of this degeneration were examined in the present study by comparing the effects of GABA blockers with the effects produced by the K+ channel blocker tetraethylammonium (2 mM). Both types of convulsant caused a comparable decrease in the number of Nissl-stained pyramidal cells in areas CA1 and CA3. No significant cell loss was induced by tetraethylammonium when epileptiform discharge was reduced by simultaneous exposure of cultures to tetrodotoxin (0.5 μM) or to the anticonvulsants pentobarbital (50 μM) or tiagabine (50 μM). We conclude that this degeneration was mediated by convulsant-induced epileptiform discharge itself. The hypothesis that N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity underlies cell death in this model was tested by applying convulsants together with specific antagonists of glutamate receptors. Whereas coapplication of antagonists of both non-NMDA and NMDA receptors strongly reduced the degeneration induced by the convulsants, application of either class of antagonist alone did not. Application of exogenous NMDA produced potent cell death, and this degeneration was blocked by the NMDA receptor antagonist methyl-10,11-dihydro-5-H-dibenzocyclohepten-5,10-imine (MK-801). Convulsants also induced a loss of dendritic spines that could be partially prevented by NMDA or non-NMDA receptor antagonists. We conclude that NMDA receptor activation is not solely responsible for the neuronal pathology resulting as a consequence of epileptiform discharge. © 1996 Wiley-Liss, Inc.  相似文献   

19.
We have investigated the role ofN-methyl-d-asparte (NMDA) receptors in the excitatory synaptic transmission to central vestibular neurons in the isolated superfused brainstem of the frog. In superfusate containing 1 mM Mg2+ field potentials in the vestibular nuclei evoked by electrical stimulation of either the ipsi- or the contralateral VIIIth nerve were not affected by bath-appliedd-2-amino-5-phosphonovaleric acid (D-APV, 25–50 μM), a selective NMDA antagonist. In a low Mg2+ solution postsynaptic field potential components were larger than control but still unaffected by D-APV. Ipsi- and contralaterally evoked excitatory postsynaptic potentials (EPSPs) differed in their shape parameters as well as their pharmacological sensitivity. Ipsilaterally evoked EPSPs were not affected by D-APV and had a rise time that was faster than that of contralaterally evoked EPSPs. The peak amplitude of the latter was reduced by D-APV (25–50 μM) to about 65% of the control value in the presence of 1 mM Mg2+. During bath application of NMDA (100 μM) an increased input resistance and repetitive de- and hyperpolarizing membrane potential shifts were observed. Similar events were observed during a reduction of the Mg2+ concentration. Bath application of NMDA (0.1–1 μM) resulted in an enhanced size of the recorded EPSPs. Dendritic and somatic EPSPs were stimulated on a computer with the assumption of a constant NMDA receptor activation and a pulse-like non-NMDA receptor activation. The results of these stimulations are consistent with the hypothesis that the efficacy of non-NMDA-mediated vestibular commissural synaptic transmission is modulated through tonically activated NMDA receptors.  相似文献   

20.
Long-term potentiation (LTP) induced in the lateral entorhinal cortex by theta-patterned tetanic stimulation of the piriform cortex was analyzed in the isolated guinea pig brain maintained in vitro. Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the piriform cortex are composed of an early and late component selectively blocked bynon-N-methyl-d-aspartate (non-NMDA) and NMDA receptor antagonists, respectively. LTP induction was dependent on NMDA receptor activation, being blocked by perfusing the preparation with 2-amino-5-phosphonovalerate (AP-5). LTP was expressed through synaptic enhancement of both early non-NMDA and late, possibly NMDA receptor-mediated responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号