首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
Objective: To explore the antitumor effects of hemaagglutinin-neuraminase gene (HN gene) from Newcastle disease virus. Methods: Plasmid vaccine of pIRHN was constructed and transfected into HeLa cells.The expression of HN was analyzed by Western blot analysis, and the mode of cell death was detected by fluorescence microscope, gel electrophoresis and TUNEL assay and the expression of p53 and bcl-2 was also analyzed in transfected Hela cells. The effect of pIRHN on sialic acid contents in the Hela cell was examined. Results: plRHN nucleic acid vaccines could be expressed in eukaryotic cell. pIRHN could induce apoptosis after HeLa cells were transfected. The effect of antitumor responses of pIRHN was correlated with the contents of sialic acid in tumor cells, and there was no prominent evidence for the relatedness of the antitumor effect with the expression of p53 and bcl-2. Conclusion: pIRHN may become a new antitumor biological agent.  相似文献   

2.
ObjectiveTo observe the feasibility of gene silencing of MAT1 gene by small interference RNA in human pancreatic cancer cells.MethodsBxPC-3 cells were transfected using chemically synthesized double stranded RNA formulated with liposome.Gene expression of MAT1 was assayed by RT-PCR and Western blot respectively.The cell proliferation assay was carded out by counting alive cells after Trypan blue exclusion.The cells invasion ability was determined by Boyden chamber model.ResultsThe MAT1 mRNA and protein expression of BxPC-3 cells were significantly down-regulated by small interference RNA compared with the control groups.The expression of MAT1 mRNA was reduced by 55.2% and 64.3% in 24 h and 48 h respectively (P<0.01).The cell proliferation and invasion ability of BxPC-3 cell were significantly inhibited (P<0.01).ConclusionThe results suggest that gene silencing of MAT1 by siRNA can inhibit the cell proliferation and invasion of BxPC-3 cells,which may be a target in the gene therapy of human pancreatic cancer.  相似文献   

3.
Objective: To investigate the relation of X-linked inhibitor of apoptosis (XIAP) and second mitochondria-derived activator of caspase (Smac) signaling pathway to chemoresistance in human pancreatic cancer Panc-1 and BXPC-3 cells. Methods: Apoptosis and the changes of XIAP expression in permeabilized cells induced by cisplatin and 5-fluorouracil (FU) were measured by flow cytometry. The cytosolic expression of XIAP, Smac and caspase-3 was detected by Western blot. A recombinant plasmid vector pEGFP-N1/Smac was constructed and transfected into of Pancol cells. The effect of cytosolic overexpression of Smac on apoptosis of Panc-1 cells was evaluated by flow cytometry. Results: Panc-1 was more resistant to cisplatin or 5-FU induced apoptosis than BXPC-3. Western blot revealed that chemoresistant Panc-1 highly expressed XIAP, and increased cytosolic expression of Smac might be responsible for the marked down-regulation of XIAP in chemo-sensitive BXPC-3 cells after exposure to cisplatin or 5-FU. Furthermore, cytosolic overexpression of Smac could significantly down-regulate the levels of XIAP and promote the activity of caspase-3, as well as sensitize Panc-1 cells to anticancer drug-induced apoptosis. Conclusion: Anticancer drug-induced apoptosis requires mitochondrial release of Smac and downregulation of XIAP, which may be an important determinant of chemo-sensitivity in pancreatic cancer cells. Up-regulation of cytosolic expression of Smac may act as an effective modifying signal to overcome apoptosis resistance to chemotherapy in pancreatic cancer cells.  相似文献   

4.
Objective: To construct a mutant pEGFP- hTERT expression vector, to observe its steady expression in transfected human bladder carcinoma cell line T24 and its role in molecular regulatory mechanisms of telomerase, and to provide a new target gene for bladder cancer. Methods:PCR amplification was performed by using primers based on the known gene sequence of hTERT. PCR production was cloned into plasmid pGEMT-T easy and the sequence of mutant hTERT gene was analyzed. A recombinant mutant hTERT vector (pEGFP-hTERT) was constructed at the EcoR I and Sa/I sites of the pEGFP-C1 vector. After transfecting the fusion gene into bladder carcinoma cell line T24 by calcium phosphate-DNA coprecipitation, the steady expression of GFP-hTERT fusion protein was tested by fluorescent light microscopy. The proliferation changes of bladder carcinoma cell line T24 were detected by light microscopy and senescence correlated [3-galactosidase staining. Results: Identification of pEGFP-hTERT by enzyme digestion showed that mutant hTERT fragment had been cloned into EcoR I and Sal I sites of the pEGFP-C1 vector. The steady expression of GFP-hTERT fusion protein was localized in the nucleus of transfected cells. Expression of senescence-associated ~-galactosidase in transfected cells gradually increased with extended cultured time and cell growth was suppressed. Conclusion: The mutant-type hTERT gene suppresses the proliferation of bladder carcinoma cell line T24 by competitive effect on telomerase activity. This suggests that hTERT gene might be a suitable gene target for bladder cancer therapy.  相似文献   

5.
Objective: To study the effects of a new Chinese herb AT-1 on the tumor cell proliferation and metastasis in vitro.Methods: Tumor cell proliferation activity was tested by MTT. The ability of tumor cell invasion and migration was assayed by counting the number of tumor cells going throw matrigel. The expression changes of CD44 genes in PG cells treated with AT-1 were tested by FACS. Results:Compared with the control, the proliferation activity of the cells treated with the At-1 was restrained. The invasion and migration ability of PG cells and the expression of the cell adherence related gene CD44 was decreased treatment with AT-1. Conclusion: AT-1 is a new antitumor proliferation and metastasis agent. Its antitumor metastasis effect might be achieved by decreasing the expression of the cell adherence-associate gene CD44.  相似文献   

6.
Objective: To detect the style of K-ras gene point mutation in human pancreatic cancer cell line PANC-1 and decide the bp sequence of Ras target position interfered by RNA. Methods: Three kinds of special sequence primers (SSP) for polymerase chain reaction (PCR) with regard to the mutation styles (OAT, COT and GOT) at codon 12 of K-ras were used to study the human pancreatic cancer cell line PANC-1. The amplification products were studied with polyacrylamine gel electrophoresis to detect the style of point mutation. Results: The style of K-ras gene point mutation at codon 12 was OAT in human pancreatic cancer cell line. Conclusion: PCR-SSP is rapid, convenient and high specific. The results provide a basis for further gene therapy by RNA interference for pancreatic cancer.  相似文献   

7.
Objective: To construct the small interfering RNA(siRNA) expression cassettes (SECs) targeting activated K-ras gene sequence and investigate the effects of SECs on K-ras gene in human pancreatic cancer cell line MIAPaCa-2. Methods: Three different sites of SECs were constructed by PCR. The K1/siRNA, K2/siRNA and K3/siRNA were located at the site 194, 491 and 327, respectively. They were transfected into MiaPaCa-2 cells by liposome to inhibit the expression of activated K-ras. In the interfering groups of site 194, 491, we observed the cytopathic effect of confluent MiaPaCa-2 cells after they were incubated for 48 hours, and detected the apoptosis in cells by FACS, then we tested the alternation of K-ras gene in confluent MiaPaCa-2 cells by RT-PCR, immunofluorescence and western blot, respectively. Results: Introductions of the K1/siRNA and K2/siRNA against K-ras into MiaPaCa-2 cells led to cytopathic effect, slower proliferation and increased apoptosis, while the appearances of control MiaPaCa-2 cells remained well. The number of apoptotic cells increased compared with control cells. RT-PCR, immunofluorescence and western blot showed the effects of inhibited expression of activated K-ras gene by RNA interference in the K1/siRNA and K2/siRNA groups. We also found that the introduction of K3/siRNA had no effect on MiaPaCa-2 cells. Conclusion: K1/siRNA and K2/siRNA can inhibit the expression of activated K-ras and decrease the growth of MiaPaCa-2 cells, while K3/siRNA has no such effect, demonstrating that the suppression of tumor growth by siRNA is sequence-specific. We conclude that K-ras is involved in maintenance of tumor growth of human pancreatic cancer, and SECs against K-ras expression may be a powerful tool to be used therapeutically against human pancreatic cancer.  相似文献   

8.
9.
Objective: To study the therapeutic effect and mechanisms of recombinant adenovirus Ad-p14ARF in hepatocellular carcinoma cell lines. Methods: Morphology and trypan blue assay were adopted to evaluate the proliferation of different liver cancer cells after Ad-p14ARF infection. Cell apoptosis was confirmed by detecting phosphatidylserine (PS) externalization with Annexin V/PI double staining. Western blotting assay analyzed the expression of related proteins. Subcutaneous tumor model of BEL7402 was established to evaluate the therapeutic ability of Ad-p14ARF. Results: Ad-p14ARF suppressed cell growth, proliferation and promoted cell apoptosis of cancer cell lines with different genetic background. Ad-p14ARF inhibited growth of liver cancer cells (HepG2, BEL7402) in a dose-dependent manner. Ad-p14ARF leaded to overexpression of Bax and p21, which were the downstream regulating genes of p53. Ad-p14ARF suppressed tumor growth significantly in the experimental therapy in nude mice bearing subcutaneous tumor of BEL7402. Conclusion: P14ARF gene is a powerful tumor suppressor gene to be used in cancer gene therapy. It may play an important role in gene therapy against the malignancies in the future.  相似文献   

10.
Objective: To establish a stable C6/EGFP glioma cell transfected with the human immunodeficiency virus line for studies on glioma. Methods: The C6 glioma cell line was type I (HIV-1) based lentivirus vector containing two enhancer-promoters CMV and EF1α. Enhanced green fluorescent protein (EGFP)-positive C6 cells were sorted out by fluorescence-activated cell sort. Expression of EGFP was observed by fluorescent microscopy. EGFP gene in C6 genome was assessed by Polymerase chain reaction (PCR) and DNA sequencing. Original and transfected cells were compared biologically and cytomorphologically. Results: Lentivirus vector transfection produced up to 40% EGFP-positive cells. After fluorescence-activated cell sort selection, a pure cell line C6/EGFP was established. PCR and DNA sequencing revealed integration of EGFP gene in C6 cell genome. Analysis of cell characteristics revealed no difference between transfected and original cells. Conclusion: A C6/EGFP cell line expressing EGFP as a marker is established, in which the EGFP gene is integrated into the genome. This cell line can be served as a promising tool for further basic research and gene therapy studies.  相似文献   

11.
TRAIL is a cytokine with a unique ability to induce apoptosis selectively in many transformed cell lines. The instability of TRAIL and the resistance of some cancer cells to TRAIL present the main obstacles for clinical experimentation. We generated an adenovirus expressing full-length TRAIL and tested its efficacy in several cancer cell lines. Ad-TRAIL-infected cancer cells localized full-length TRAIL protein to the cytoplasm and released same-sized TRAIL in the media. Ad-TRAIL was found to induce apoptotic cell death in several cancer cell lines resistant to soluble TRAIL (A549, SKOV3, HT-29 and LNCap) and in TRAIL-sensitive cell lines. Ad-TRAIL, but not soluble TRAIL, induced apoptotic cell death in TRAIL-resistant cell lines, manifested by an increased sub-G1 proportion, caspase-3 activation and PARP cleavage. Ad-TRAIL also induced a media-transferable bystander effect, but only in soluble TRAIL-sensitive cell lines. In conclusion, two novel characteristics of ad-TRAIL were found during this study. First, that ad-TRAIL can induce apoptotic cell death in several cancer cell lines resistant to sTRAIL. Second, that ad-TRAIL induces a media-transferable bystander effect, which is expected to increase its therapeutic value by allowing TRAIL to overcome the locally acting nature and low transduction rate commonly encountered in clinical situation.  相似文献   

12.
INTRODUCTION: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a variety of malignant cells, but not in normal cells. This preferential toxicity to the abnormal cells renders TRAIL potentially a very powerful therapeutic weapon against cancer. However, a requirement for large quantities of TRAIL to suppress tumor growth in vivo is one of the major factors that has hindered it from being widely applied clinically. To overcome this, we constructed a replication-deficient adenovirus that carries a human full-length TRAIL gene (Ad-TRAIL) and tested its efficacy against a lung cancer model system in comparison to that of the recombinant soluble TRAIL protein. METHODS: To investigate the antitumor activity and therapeutic value of the Ad-TRAIL on the non-small cell lung cancer (NSCLC), four NSCLC cell lines, namely, YTMLC, GLC, A549, and H460 cells, were used. TRAIL protein expression was determined by Western blotting and flow cytometry. Cell viability was analyzed by proliferation assay, and DNA ladder and cell-cycle analysis were used to identify apoptosis. To further evaluate the effect of Ad-TRAIL in vivo, YTMLC cells were inoculated to the subcutis of nude mice. The Ad-TRAIL was subsequently administered into the established tumors. Tumor growth and the TRAIL toxicity were evaluated after treatment. RESULTS: YTMLC cells infected with Ad-TRAIL showed decreased cell viability and a higher percentage of apoptosis. Similar, Ad-TRAIL treatment also significantly suppressed tumor growth in vivo. CONCLUSIONS: TRAIL gene therapy provides a promising therapy for the treatment of NSCLC.  相似文献   

13.
目的克隆人TFPI-2基因全长cDNA,构建其真核表达载体,并将其转染到人胰腺癌细胞Panc-1中,检测其表达。方法用RT-PCR法从人胎盘组织中扩增人TFPI-2基因,并将其与真核表达载体pEGFP-C1连接,构建真核表达载体pEGFP-C1-TFPI-2。将构建的重组载体转染到人胰腺癌细胞系Panc-1细胞,Westernblot检测TFPI-2在Pane-1细胞中的表达。结果RT-PCR成功的扩增出一条约708bp的片断,扩增片断与载体连接后,经限制性内切酶酶切电泳分析和DNA序列测定证实该基因已经成功构建到载体上,转染Panc-1细胞后,荧光显微镜观察到稳定转染细胞发出较强绿色荧光,Westernblot技术证明TFPI-2基因能在Panc-1细胞中稳定表达。结论成功构建了人TFPI-2基因的真核表达载体pEGFP-C1-TFPI-2,获得了稳定表达TFPI-2的Panc-1细胞,证实TFPI-2基因能够在人胰腺癌细胞系Panc-1中高效、稳定的表达,为进一步研究其胰腺癌迁移、浸润及转移中的作用打下基础。  相似文献   

14.
Neuropilin-1 (NRP-1) is a novel co-receptor for vascular endothelial growth factor (VEGF). Neuropilin-1 is expressed in pancreatic cancer, but not in nonmalignant pancreatic tissue. We hypothesised that NRP-1 expression by pancreatic cancer cells contributes to the malignant phenotype. To determine the role of NRP-1 in pancreatic cancer, NRP-1 was stably transfected into the human pancreatic cancer cell line FG. Signal transduction was assessed by Western blot analysis. Susceptibility to anoikis (detachment induced apoptosis) was evaluated by colony formation after growth in suspension. Chemosensitivity to gemcitabine or 5-fluorouracil (5-FU) was assessed by MTT assay in pancreatic cancer cells following NRP-1 overexpression or siRNA-induced downregulation of NRP-1. Differential expression of apoptosis-related genes was determined by gene array and further evaluated by Western blot analysis. Neuropilin-1 overexpression increased constitutive mitogen activated protein kinase (MAPK) signalling, possibly via an autocrine loop. Neuropilin-1 overexpression in FG cells enhanced anoikis resistance and increased survival of cells by > 30% after exposure to clinically relevant levels of gemcitabine and 5-FU. In contrast, downregulation of NRP-1 expression in Panc-1 cells markedly increased chemosensitivity, inducing > 50% more cell death at clinically relevant concentrations of gemcitabine. Neuropilin-1 overexpression also increased expression of the antiapoptotic regulator, MCL-1. Neuropilin-1 overexpression in pancreatic cancer cell lines is associated with (a) increased constitutive MAPK signalling, (b) inhibition of anoikis, and (c) chemoresistance. Targeting NRP-1 in pancreatic cancer cells may downregulate survival signalling pathways and increase sensitivity to chemotherapy.  相似文献   

15.
目的探讨凋亡抑制蛋白XIAP和促凋亡因子Smac在胰腺癌细胞化疗抵抗中的作用及其分子机制。方法应用流式细胞术检测顺铂、5-FU介导的Panc-1、BXPC-3的凋亡率及胞浆染色分析细胞XIAP表达变化,Western-blot分析XIAP、Smac、Caspase-3表达水平;构建pEGFP-N1/Smac真核表达载体并转染胰腺癌Panc-1细胞,流式细胞术检测转染胞浆表达型 Smac基因对Panc-1细胞凋亡敏感性的作用。结果与BXPC-3细胞相比,Panc-1对顺铂或5-FU介导的凋亡具有较强抵抗性,Western blot分析显示Panc-1细胞高表达XIAP,在化疗药物作用下化疗敏感细胞BXPC-3胞浆内XIAP水平下降明显多于Panc-1细胞,而且凋亡的BXPC-3细胞释放入胞浆内的成熟 Smac蛋白水平明显高于Panc-1细胞。转染胞浆表达型Smac基因至化疗抵抗Panc-1细胞,可明显下调其XIAP表达水平,促进效应 Caspase-3分子活化,显著提高顺铂、5-FU诱导的细胞凋亡率。结论在化疗药物诱导的凋亡中,线粒体释放Smac下调XIAP是胰腺癌化疗敏感性的重要决定因素,而上调Smac活性蛋白的胞浆表达作为一种有效调节信号,通过拮抗XIAP的凋亡抑制作用协同化疗药物促进胰腺癌细胞凋亡。  相似文献   

16.
17.
Decreased expression of the tumor suppressor gene, KAI1, is associated with metastasis formation in pancreatic cancer. The aim of the present study was to investigate whether KAI1 influences pancreatic cancer cell growth and colony formation. A full-length KAI1 cDNA expression vector was stably transfected into Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. Transfection was confirmed by Western blot analysis and immunohistochemistry. Tumor cell growth and cell cycle distribution were determined by MTT cell growth assays, colony formation assays, and flow cytometric analysis. KAI1-transfected, but not control-transfected pancreatic cancer cells displayed cytoplasmic KAI1 immunoreactivity. Cell proliferation decreased in the KAI1-transfected cells compared to parental and control cells together with a Go/G1-phase cell cycle arrest. Colony formation was reduced by 2.6- and 3.5-fold in the KAI1-transfected Panc-1 and MiaPaCa-2 pancreatic cancer cells, respectively, compared with parental cells. KAI1 blocks pancreatic cancer cell growth through cell cycle arrest and inhibits anchorage-independent cell growth. These findings support the premise that KAI1 functions as a tumor suppressor in this malignancy.  相似文献   

18.
目的:检测DNMT3a在胰腺癌细胞中的表达及对奥沙利铂(oxaliplatin,OXA)敏感性的影响,探讨DNMT3a对胰腺癌细胞奥沙利铂敏感性影响的机制。方法:MTT法检测奥沙利铂对人胰腺癌Panc-1细胞的增殖影响,及下调DNMT3a对Panc-1细胞奥沙利铂敏感性的影响。Western blot检测siDNMT3a对DNMT3a蛋白表达的影响,检测奥沙利铂及下调DNMT3a对γ-H2AX、RAD51、p-STAT3和STAT3蛋白表达的影响。流式细胞仪检测奥沙利铂及联合下调DNMT3a对Panc-1细胞凋亡的影响。结果:奥沙利铂能够以浓度依赖方式抑制胰腺癌Panc-1细胞的增殖。奥沙利铂能够引起DNA损伤、γ-H2AX上调及RAD51增高,同时引起STAT3通路的一过性活化。下调DNMT3a表达能够明显增加Panc-1细胞对奥沙利铂的敏感性,抑制STAT3一过性活化,并抑制RAD51表达,促进DNA损伤,进而增加奥沙利铂诱导Panc-1细胞的凋亡。结论:下调DNMT3a表达能够通过抑制STAT3活化及增加DNA损伤增加胰腺癌细胞对奥沙利铂的敏感性,DNMT3a有望成为胰腺癌新的治疗靶点。  相似文献   

19.
Kagawa S  He C  Gu J  Koch P  Rha SJ  Roth JA  Curley SA  Stephens LC  Fang B 《Cancer research》2001,61(8):3330-3338
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to specifically kill malignant cells but to be relatively nontoxic to normal cells. To evaluate the antitumor activity and therapeutic value of the TRAIL gene, we constructed adenoviral vectors expressing the human TRAIL gene and transferred them into malignant cells in vitro and tumors in vivo. The in vitro transfer elicited apoptosis, as demonstrated by the quantification of viable or apoptotic cells and by the analysis of activation of pro-caspase-8 and cleavage of poly(ADP-ribose) polymerase. The intratumoral delivery elicited tumor cell apoptosis and suppressed tumor growth. In comparison with Bax gene treatment, which is toxic to normal cells, TRAIL gene treatment caused no detectable toxicity in cultured normal fibroblasts nor in mouse hepatocytes after systemic gene delivery. Furthermore, coculture of cancer cells expressing TRAIL with those expressing green fluorescent protein (GFP) resulted in apoptosis of both cells, whereas coculture of Bax-expressing cells with GFP-expressing cells resulted in the cell death of the Bax-expressing cells only, which suggested that the transfer of the TRAIL gene resulted in bystander effects. Moreover, culture of cells with medium from TRAIL-expressing cells showed the proapoptotic activity and bystander effect of the TRAIL gene to be not transferable with medium. To further demonstrate the bystander effect of the TRAIL gene, we constructed plasmid vectors encoding GFP-TRAIL or GFP-Bik chimeric proteins. Transfection of the GFP-TRAIL gene into cancer cells resulted in the death of GFP-positive cells and their neighbors, whereas transfection of the GFP-Bik gene killed GFP-positive cells only. Finally, GFP-TRAIL genes, transfected into normal human fibroblasts or bronchial epithelial cells, did not kill such cells, whereas transfected GFP-Bik genes did. Thus, the direct transfer of the TRAIL gene led to selective killing of malignant cells with bystander effect, which suggests that the TRAIL gene could be valuable for treatment for cancers. Together, these results suggest that delivering the TRAIL gene to cancerous cells may be an alternative approach to cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号