首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.

Statement of problem

The manufacturers of computer-aided design and computer-aided manufacturing (CAD-CAM) systems emphasize that new technologies can improve the marginal fit of dental crowns. However, data supporting this claim are limited.

Purpose

The purpose of this in vitro study was to investigate the differences among the following fabrication methods on the marginal discrepancy of dental crowns: intraoral optical scanners, powder application, and adjustments of intaglio surface.

Material and methods

A single human premolar was fixed on a typodont and prepared to receive crowns prepared by the CEREC CAD-CAM system. Three fabrication techniques were used: digital scans using the CEREC Bluecam scanner with titanium dioxide powder (TDP), digital scans using the CEREC Omnicam scanner without TDP, and digital scans using the Omnicam scanner with TDP. Five experimental groups (n=10) were designated: Bluecam (group B), Bluecam with adjustments (group BA), Omnicam (group O), Omnicam with adjustments (group OA), and Omnicam with TDP (group OP). The specimens were scanned using microcomputed tomography to measure the vertical, horizontal, and internal fit and volumetric 3-dimensional (3D) internal fit values of each luting space. The paired t test was used to evaluate mean marginal fit change after adjustments within the same group. One-way analysis of variance and post hoc tests were used to compare groups B, O, and OP (α=.05).

Results

Mean vertical fit values ±standard deviations of group B=29.5 ±13.2 μm; BA=26.9 ±7.7 μm; O=149.4 ±64.4 μm; OA=49.4 ±12.7 μm; and OP=33.0 ±8.3 μm. Adjustments in the intaglio surface and TDP application statistically influenced the vertical fit of group O (P<.001). The percentage of vertical fit values <75 μm in group B=89.3%, BA=92.7%, O=31.0%, OA=73.5%, and OP=92.0%. Mean horizontal fit values for group B=56.2 ±21.5 μm; 85.8 ±44.4 μm for group BA; 77.5 ±11.8 μm for group O; 102.5 ±16.2 μm for group OA; and 91.4 ±19.4 μm for group OP. Results from group B were significantly different from those of the other test groups (P<.05). The percentages of horizontal misfit were 61.2% in group B; 73.5% in group BA; 88.1% in group O; 92.4% in group OA; and 85.0% in group OP. Volumetric 3D internal fit values in group B were 9.4 ±1.3 mm3; 10.7 ±1.0 mm3 in group BA; 11.8 ±2.1 mm3 in group O; 11.0 ±1.3 mm3 in group OA; and 9.6 ±0.9 mm3 in group OP. The overall results from groups B and OP were better than those of group O, with regard to vertical misfit and volumetric 3D internal fit.

Conclusions

Different intraoral optical scanners, powder application, and internal adjustments influenced the marginal discrepancy of crowns. Crowns fabricated using the Omnicam system had significantly higher vertical discrepancy and volumetric 3D internal fit than those fabricated using the Bluecam scanner with TDP. Adjustments of the intaglio surface improved the vertical fit of crowns made using the Omnicam scanner; however, TDP application before Omnicam scanning improved the vertical fit as well as the volumetric 3D internal fit value of the luting space of crowns.  相似文献   

2.
3.

Statement of problem

Bond strength (BS) values from in vitro studies are useful when dentists are selecting an adhesive system, but there is no ideal measuring method.

Purpose

The purpose of this in vitro study was to investigate the influence of the evaluation method in the BS between dentin and composite resin.

Material and methods

Molars with exposed superficial dentin (N=240) were divided into 3 groups according to the test: microtensile (μTBS), microshear (μSBS), and micropush-out (μPBS). Each one was subdivided into 4 groups according to the adhesive system: total etch, 3- and 2-step; and self-etch, 2- and 1-step). For the μPBS test, a conical cavity was prepared and restored with composite resin. An occlusal slice (1.5 mm in thickness) was obtained from each tooth. For the μSBS test, a composite resin cylinder (1 mm in diameter) was built on the dentin surface of each tooth. For the μTBS test, a 2-increment composite resin cylinder was built on the dentin surface, and beams with a sectional area of 0.5 mm2 were obtained. Each subgroup was divided into 2 (n=10) as the specimens were tested after 7 days and 1 year of water storage. The specimens were submitted to load, and the failure recorded in units of megapascals. Original BS values from the μTBS and μSBS tests were normalized for the area from μPBS specimens. Original and normalized results were submitted to a 3-way ANOVA (α=.05). The correlation among mechanical results, stress distribution, and failure pattern was investigated.

Results

Significant differences (P<.05) were found among the adhesive systems and methods within both the original and normalized data but not between the storage times (P>.05). Within the 7 days of storage, the original BS values from μTBS were significantly higher (P<.001) than those from μPBS and μSBS. After 1 year, μSBS presented significantly lower results (P<.001). However, after the normalization for area, the BS values of the μTBS and μPBS tests were similar, and both were higher (P<.001) than that of μSBS in both storage times. In the μSBS and μTBS specimens, cohesive and adhesive failures were observed, whereas μPBS presented 100% of adhesive failures. The failure modes were compatible with the stress distribution.

Conclusions

The storage time did not affect the results, but differences were found among the adhesives and methods. For comparisons of bond strength from tests with different bonding areas, the normalization for area seemed essential. The microshear bond test should not be used for bond strength evaluation, and the microtensile test needs improvement to enable reliable results regarding stress concentration and failure mode. The micropush-out test may be considered more reliable than the microtensile in the bond strength investigation, as demonstrated by the uniform stress concentration and adhesive failure pattern.  相似文献   

4.

Statement of problem

Computer-aided design and computer-aided manufacturing (CAD-CAM) has enhanced the physicomechanical stability of ceramics. However, various factors in the oral cavity may impair the longevity of restorations by negatively affecting their properties. Appropriate surface treatments such as glaze application or mechanical polishing are necessary to diminish these effects.

Purpose

The purpose of this in vitro study was to evaluate the influence of common beverages and toothbrushing on the surface roughness, microhardness, and color stainability of a vitreous CAD-CAM lithium disilicate ceramic with a glazed or mechanically polished surface.

Material and methods

Specimens (N=160) were divided into 2 groups according to the surface treatment method: polishing with abrasive disks or glaze application. Each group was subdivided (n=8) according to the immersion solution and toothbrushing: distilled water and distilled water plus brushing; coffee and coffee plus brushing; black tea and black tea plus brushing; red wine and red wine plus brushing; and cola and cola plus brushing. Before and after simulating a 5-year period of immersion and toothbrushing, a contact profilometer and a Vickers microhardness tester were used to measure the surface roughness and microhardness. CIELab parameters were assessed by using a portable spectrophotometer, and color differences were calculated by using the CIEDE2000 formula (ΔE00). Data were compared by using 3-way ANOVA/Bonferroni test for post hoc analysis (α=.05).

Results

Surface roughness increased irrespective of solution (P=.763), being influenced by surface treatment (P<.001), with the glazed groups presenting higher values. Microhardness decrease was influenced by solutions (P<.038) and surface treatment (P<.001), and glazing was associated with lower values. Irrespective of the surface treatment, color stainability was influenced by solutions (P<.001), with ΔE00 values for red wine being above the perceptibility threshold (ΔE00>1.30). No influence of toothbrushing was found for any parameter (P>.05).

Conclusions

Despite its excellent mechanical properties, CAD-CAM lithium disilicate ceramic degraded after exposure to commonly consumed beverages. Irrespective of surface treatment, beverages decreased microhardness and caused color changes. Surface roughness increased, showing higher variation for glazed groups. Toothbrushing was unable to potentiate or diminish the observed effects. In general, the results showed that proper mechanical polishing can produce a surface with desirable properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号